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17. Generalized distances and mirror descent

• Bregman distance

• properties

• Bregman proximal mapping

• mirror descent
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Motivation: proximal gradient method

proximal gradient step for minimizing 5 (G) = 6(G) + ℎ(G) (page 4.4):

G:+1 = proxC:ℎ(G: − C:∇6(G:))

= argmin
D

(
ℎ(D) + 6(G:) + ∇6(G:)) (D − G:) +

1
2C:

‖D − G: ‖2
2

)
Interpretation: quadratic term represents

• a penalty that forces G:+1 to be close to G: , where linearization of 6 is accurate

• an approximation of the error term in the linearization of 6 at G:
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Generalized proximal gradient method

replace 1
2‖D − G‖2

2 with a generalized distance 3 (D, G):

G:+1 = argmin
D

(
ℎ(D) + 6(G:) + ∇6(G:)) (D − G:) +

1
C:
3 (D, G:)

)
Potential benefits

1. “pre-conditioning”: use a more accurate model of 6(D) around G, ideally

1
C:
3 (D, G:) ≈ 6(D) − 6(G:) − ∇6(G:)) (D − G:)

2. make the generalized proximal mapping (minimizer D) easier to compute

goal of 1 is to reduce number of iterations; goal of 2 is to reduce cost per iteration
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Bregman distance

3 (G, H) = q(G) − q(H) − ∇q(H)) (G − H)

• q is convex and continuously differentiable on int(dom q)

• domain of q may include its boundary or a subset of its boundary

• we define the domain of 3 as dom 3 = dom q × int(dom q)

• q is called the kernel function or distance-generating function

(H, q(H))

(G, q(G))

3 (G, H)

other properties of q will be required but mentioned explicitly (e.g., strict convexity)
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Immediate properties

3 (G, H) = q(G) − q(H) − ∇q(H)) (G − H)

• 3 (G, H) is convex in G for fixed H

• 3 (G, H) ≥ 0, with equality if G = H

• if q is strictly convex, then 3 (G, H) = 0 only if G = H

• 3 (G, H) ≠ 3 (H, G) in general

to emphasize lack of symmetry, 3 is also called a directed distance or divergence
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Examples

Squared Euclidean distance (with dom q = R=)

q(G) = 1
2
G)G, ∇q(G) = G, 3 (G, H) = 1

2
‖G − H‖2

2

General quadratic kernel (with dom q = R=)

q(G) = 1
2
G)�G, ∇q(G) = �G, 3 (G, H) = 1

2
(G − H))�(G − H)

• � is symmetric positive definite

• in some applications, � is positive semidefinite, but not positive definite
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Examples

Relative entropy (with dom q = R=
+)

q(G) =
=∑
8=1

G8 log G8, ∇q(G) =


log G1 + 1
...

log G= + 1


3 (G, H) =

=∑
8=1

(
G8 log

G8

H8
− G8 + H8

)

Logistic loss divergence (with dom q = [0, 1]=)

q(G) =
=∑
8=1

(G8 log G8 + (1 − G8) log(1 − G8)) , ∇q(G) =


log(G1/(1 − G1))
...

log(G=/(1 − G=))


3 (G, H) =

=∑
8=1

(
G8 log

G8

H8
+ (1 − G8) log

1 − G8

1 − H8

)
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Examples

Hellinger divergence (with dom q = [−1, 1]=)

q(G) = −
=∑
8=1

√
1 − G2

8
, ∇q(G) =


G1/

√
1 − G2

1
...

G=/
√

1 − G2
=


3 (G, H) =

=∑
8=1

©­­«−
√

1 − G2
8
+ 1 − G8H8√

1 − H2
8

ª®®¬
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Examples

Logarithmic barrier (with dom q = R=
++)

q(G) = −
=∑
8=1

log G8, ∇q(G) =

−1/G1

...

−1/G=

 , 3 (G, H) =
=∑
8=1

(
G8

H8
− log

G8

H8
− 1

)
3 (G, H) is sometimes called Itakura–Saito divergence

Inverse barrier (with dom q = R=
++)

q(G) =
=∑
8=1

1
G8
, ∇q(G) =


−1/G2

1
...

−1/G2
=

 , 3 (G, H) =
=∑
8=1

1
H8

(√
G8

H8
−
√

H8

G8

) 2
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Bregman distances for symmetric matrices

3 (-,. ) = q(-) − q(. ) − tr(∇q(. ) (- − . ))

• kernel q is a convex function on S=, differentiable on int (dom q)

• domain of 3 is dom 3 = dom q × int (dom q)

Relative entropy (with dom q = S=
++)

q(-) = − log det -, ∇q(-) = −-−1

3 (-,. ) = tr(-.−1) − log det(-.−1) − =

• 3 (-,. ) is relative entropy between normal distributions # (0, -) and # (0, . )

• also known as Kullback–Leibler divergence
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Bregman distances for symmetric matrices

Matrix entropy (with dom q = S=
++):

q(-) = tr(- log -), ∇q(-) = � + log -

3 (-,. ) = tr(- log - − - log. − - + . )

• matrix logarithm log - is defined as

log - =
=∑
8=1

(log_8)@8@)8

if - has eigendecomposition - =
∑

8 _8@8@
)
8

• 3 (-,. ) is also known as quantum relative entropy
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Three-point identity

for all G ∈ dom q and H, I ∈ int(dom q),

3 (G, I) = 3 (G, H) + 3 (H, I) + (∇q(H) − ∇q(I))) (G − H)

• easily verified by substituting the definition of 3

• if 3 is not symmetric, order of the arguments of 3 in the identity matters

• generalizes the familiar identity for squared Euclidean distance:

1
2
‖G − I‖2

2 =
1
2
‖G − H‖2

2 + 1
2
‖H − I‖2

2 + (H − I)) (G − H)
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Strongly convex kernel

we will sometimes assume that q is strongly convex (page 1.19):

q(G) ≥ q(H) + ∇q(H)) (G − H) + `

2
‖G − H‖2

• ` > 0 is strong convexity constant of q for the norm ‖ · ‖

• for twice differentiable q, this is equivalent to

{)∇2q(G){ ≥ `‖{‖2 for all G ∈ int(dom q) and {

(see page 1.18)

• strong convexity of q implies that

3 (G, H) = q(G) − q(H) − ∇q(H)) (G − H)

≥ `

2
‖G − H‖2
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Regularization with Bregman distance

for given H ∈ int(dom q) and convex 5 , consider

minimize 5 (G) + 3 (G, H)

• equivalently, minimize 5 (G) + q(G) − ∇q(H))G

• feasible set is dom 5 ∩ dom q

Optimality condition: Ĝ ∈ dom 5 ∩ int(dom q) is optimal if and only if

5 (G) + 3 (G, H) ≥ 5 (Ĝ) + 3 (Ĝ, H) + 3 (G, Ĝ) for all G ∈ dom 5 ∩ dom q (1)

Equivalent optimality condition: Ĝ ∈ dom 5 ∩ int(dom q) is optimal if and only if

∇q(H) − ∇q(Ĝ) ∈ m 5 (Ĝ) (2)
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Proof: we derive optimality conditions for the problem

minimize 6(G) + q(G) (3)

with 6 convex, and apply the results to 6(G) = 5 (G) − ∇q(H))G

• optimality condition: Ĝ ∈ dom 6 ∩ int (dom q) is optimal for (3) if and only if

6(G) ≥ 6(Ĝ) − ∇q(Ĝ)) (G − Ĝ) for all G ∈ dom 6 ∩ dom q (4)

combined with the 3-point identity this gives the optimality condition (1)

• equivalent optimality condition: Ĝ ∈ dom 6 ∩ int (dom q) is optimal if and only if

− ∇q(Ĝ) ∈ m6(Ĝ) (5)

applied to 6(G) = 5 (G) − ∇q(H))G this gives the optimality condition (2)
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Proof: optimality of Ĝ

(4) (5)

a

b

c

• implication a follows from convexity of q: if (4) holds, then for all feasible G,

6(G) + q(G) ≥ 6(Ĝ) + q(G) − ∇q(Ĝ)) (G − Ĝ) ≥ 6(Ĝ) + q(Ĝ)

• implication b: by definition of subgradient, (5) can be written as

6(G) ≥ 6(Ĝ) − ∇q(Ĝ)) (G − Ĝ) for all G ∈ dom 6

• we prove c by contradiction: suppose that for some G ∈ dom 6

6(G) < 6(Ĝ) − ∇q(Ĝ)) (G − Ĝ)

define { = G − Ĝ; for small positive C, by convexity of 6 and Taylor’s theorem,

6(Ĝ + C{) + q(Ĝ + C{) ≤ 6(Ĝ) + C (6(G) − 6(Ĝ)) + q(Ĝ + C{)
= 6(Ĝ) + q(Ĝ) + C (6(G) − 6(Ĝ) + ∇q(Ĝ)){) +$ (C2)
< 6(Ĝ) + q(Ĝ)
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Bregman proximal mapping

for convex 5 and Bregman kernel q, define

prox3
5
(H, 0) = argmin

G

(
5 (G) + 0)G + 3 (G, H)

)
= argmin

G

(
5 (G) + (0 − ∇q(H)))G + q(G)

)
• first argument H must be in int (dom q)

• second argument 0 can take any value

• we’ll use this only if for every H and 0, a unique minimizer G ∈ int(dom q) exists
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Example: quadratic kernel

q(G) = 1
2
‖G‖2

2, 3 (G, H) = 1
2
‖G − H‖2

2

Bregman proximal mapping can be expressed in terms of standard prox 5 :

prox3
5
(H, 0) = argmin

G

(
5 (G) + 0)G + 3 (G, H)

)
= argmin

G

(
5 (G) + 0)G + 1

2
‖G − H‖2

2

)
= prox 5 (H − 0)

closedness of 5 ensures existence and uniqueness (see page 6.2)
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Example: relative entropy

q(G) =
=∑
8=1

G8 log G8, 3 (G, H) =
=∑
8=1

(G8 log(G8/H8) − G8 + H8)

• we take 5 = X�, the indicator of hyperplane � = {G | 1)G = 1}

• Bregman proximal mapping is

prox3
5
(H, 0) = argmin

1)G=1
(0)G +

=∑
8=1

G8 log(G8/H8))

=
1

=∑
8=1

H84
−08


H14

−01

...

H=4
−0=


• for every H � 0 and 0, minimizer in the definition exists, is unique, and positive
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Example: relative entropy

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

Contour lines of q(G)

H

Ĝ
−0

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

Contour lines of 3 (G, H)

right-hand figure shows

Ĝ = prox3
5
(H, 0) = argmin (0)G + 3 (G, H))

for H = (0.1, 0.3, 0.6) and 0 = (−0.540, 0.585, −0.045)
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Optimality condition

apply the optimality conditions for Bregman-regularized problem (page 17.14) to

prox3
5
(H, 0) = argmin

G

(
5 (G) + 0)G + 3 (G, H)

)
suppose Ĝ ∈ dom 5 ∩ int (dom q)

• first condition: Ĝ = prox3
5
(H, 0) if and only if

5 (G) + 0)G + 3 (G, H) ≥ 5 (Ĝ) + 0) Ĝ + 3 (Ĝ, H) + 3 (G, Ĝ)

for all G ∈ dom 5 ∩ dom q

• second condition: Ĝ = prox3
5
(H, 0) if and only if

∇q(H) − ∇q(Ĝ) − 0 ∈ m 5 (Ĝ)
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Mirror descent

minimize 5 (G)
subject to G ∈ �

• 5 is a convex function, � is a convex subset of dom 5

• we assume 5 is subdifferentiable on �

Algorithm: choose G0 ∈ � ∩ int(dom q) and repeat

G:+1 = argmin
G∈�

(
C:6

)
: G + 3 (G, G:)

)
, : = 0, 1, . . .

6: is any subgradient of 5 at G:

update can be written as G:+1 = prox3
X�
(G: , C:6:) where X� is indicator of �
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Mirror descent with quadratic kernel

G:+1 = argmin
G∈�

(
C:6

)
: G + 3 (G, G:)

)

for 3 (G, H) = 1
2‖G − H‖2

2, this is the projected subgradient method:

G:+1 = argmin
G∈�

(
C:6

)
: G +

1
2
‖G − G: ‖2

2

)
= argmin

G∈�

1
2
‖G − G: + C:6: ‖2

2

= %� (G: − C:6:)

where %� is Euclidean projection on �
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Assumptions

• problem on page 17.22 has optimal value 5★, optimal solution G★ ∈ � ∩ dom q

• 5 is Lipschitz continuous on � with respect to some norm ‖ · ‖

| 5 (G) − 5 (H) | ≤ �‖G − H‖ for all G, H ∈ �

this is equivalent to ‖6‖∗ ≤ � for all G ∈ � and 6 ∈ m 5 (G)

(proof extends proof for Euclidean norm on page 3.4)

• q is 1-strongly convex on �, with respect to the same norm ‖ · ‖:

3 (G, H) ≥ 1
2
‖G − H‖2 for all G ∈ dom q ∩ � and H ∈ int(dom q) ∩ �
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Analysis

• apply optimality condition on page 17.21 with G = G★, H = G8, Ĝ = G8+1:

3 (G★, G8+1) ≤ 3 (G★, G8) − 3 (G8+1, G8) + C86
)
8 (G8 − G8+1) + C86

)
8 (G

★ − G8)
≤ 3 (G★, G8) − 3 (G8+1, G8) + ‖C868‖∗‖G8+1 − G8‖ + C86

)
8 (G

★ − G8)

≤ 3 (G★, G8) − 3 (G8+1, G8) +
1
2
‖G8+1 − G8‖2 + 1

2
‖C868‖2

∗ + C86
)
8 (G

★ − G8)

last step is arithmetic–geometric mean inequality

• apply strong convexity of kernel and definition of subgradient:

3 (G★, G8+1) ≤ 3 (G★, G8) +
1
2
‖C868‖2

∗ + C8 ( 5★ − 5 (G8))

• define 5best,: = min8=0,...,: 5 (G8) and combine inequalities for 8 = 0, . . . , : :

(
:∑
8=0

C8) ( 5best,: − 5★) ≤ 3 (G★, G0) − 3 (G★, G:+1) +
1
2

:∑
8=0

‖C868‖2
∗

≤ 3 (G★, G0) +
1
2

:∑
8=0

‖C868‖2
∗
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Step size selection

5best,: − 5★ ≤ 3 (G★, G0)
:∑
8=0

C8

+

:∑
8=0

‖C868‖2
∗

2
:∑
8=0

C8

≤ 3 (G★, G0)
:∑
8=0

C8

+
�2 :∑

8=0
C2
8

2
:∑
8=0

C8

• diminishing step size: 5best,: → 5★ if

C8 → 0,
∞∑
8=0

C8 = ∞

(see page 3.7)

• optimal step size for fixed number of iterations : , if we know 3 (G★, G0) ≤ �:

C8 =

√
2�

‖68‖∗
√
: + 1

, 5best,: − 5★ ≤ �
√

2�
√
: + 1

(see page 3.10)
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Entropic mirror descent

minimize 5 (G)
subject to G � 0

1)G = 1

• apply mirror descent with relative entropy distance and � = {G ∈ R= | 1)G = 1}

• constraints G � 0 are enforced by domain of relative entropy distance

Algorithm: choose G0 � 0, 1)G0 = 1, and repeat

G:+1 =
1

B)G:
(B ◦ G:) where B =

(
4−C:6:,1, . . . , 4−C:6:,=

)
• 6: is any subgradient of 5 at G:

• ◦ denotes component-wise vector product

Generalized distances and mirror descent 17.27



Convergence

in the analysis on page 17.26

• if we choose G0 = (1/=)1, then we can take � = log =:

3 (G★, G0) = log = +
=∑
8=1

G★8 log G★8 ≤ log =

• q(G) = ∑
8
G8 log G8 is 1-strongly convex for ‖ · ‖1 on �: by Cauchy–Schwarz,

{)∇2q(G){ =
=∑
8=1

{2
8

G8
≥ ‖{‖2

1 if G � 0, 1)G = 1

• with optimal step size for : iterations,

5best,: − 5★ ≤
�
√

2 log =
√
: + 1

where � is Lipschitz constant of 5 for ‖ · ‖1-norm
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Example

minimize ‖�G − 1‖1
subject to G � 0, 1)G = 1

• subgradient 6 = �)sign(�G − 1), so ‖6‖∞ ≤ � = max 9
∑

8 |�8 9 |

• example with randomly generated � ∈ R1000×500, 1 ∈ R1000

0 200 400 600 800 100010−4

10−3

10−2

10−1

:

( 5best,: − 5 ★)/ 5 ★

C: = 0.01/
√
: + 1

C: = 0.1/(: + 1)
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