17. Generalized distances and mirror descent

- Bregman distance
- properties
- Bregman proximal mapping
- mirror descent

Motivation: proximal gradient method

proximal gradient step for minimizing $f(x)=g(x)+h(x)$ (page 4.4):

$$
\begin{aligned}
x_{k+1} & =\operatorname{prox}_{t_{k} h}\left(x_{k}-t_{k} \nabla g\left(x_{k}\right)\right) \\
& =\underset{u}{\operatorname{argmin}}\left(h(u)+g\left(x_{k}\right)+\nabla g\left(x_{k}\right)^{T}\left(u-x_{k}\right)+\frac{1}{2 t_{k}}\left\|u-x_{k}\right\|_{2}^{2}\right)
\end{aligned}
$$

Interpretation: quadratic term represents

- a penalty that forces x_{k+1} to be close to x_{k}, where linearization of g is accurate
- an approximation of the error term in the linearization of g at x_{k}

Generalized proximal gradient method

replace $\frac{1}{2}\|u-x\|_{2}^{2}$ with a generalized distance $d(u, x)$:

$$
x_{k+1}=\underset{u}{\operatorname{argmin}}\left(h(u)+g\left(x_{k}\right)+\nabla g\left(x_{k}\right)^{T}\left(u-x_{k}\right)+\frac{1}{t_{k}} d\left(u, x_{k}\right)\right)
$$

Potential benefits

1. "pre-conditioning": use a more accurate model of $g(u)$ around x, ideally

$$
\frac{1}{t_{k}} d\left(u, x_{k}\right) \approx g(u)-g\left(x_{k}\right)-\nabla g\left(x_{k}\right)^{T}\left(u-x_{k}\right)
$$

2. make the generalized proximal mapping (minimizer u) easier to compute
goal of 1 is to reduce number of iterations; goal of 2 is to reduce cost per iteration

Bregman distance

$$
d(x, y)=\phi(x)-\phi(y)-\nabla \phi(y)^{T}(x-y)
$$

- ϕ is convex and continuously differentiable on $\operatorname{int}(\operatorname{dom} \phi)$
- domain of ϕ may include its boundary or a subset of its boundary
- we define the domain of d as $\operatorname{dom} d=\operatorname{dom} \phi \times \operatorname{int}(\operatorname{dom} \phi)$
- ϕ is called the kernel function or distance-generating function

other properties of ϕ will be required but mentioned explicitly (e.g., strict convexity)

Immediate properties

$$
d(x, y)=\phi(x)-\phi(y)-\nabla \phi(y)^{T}(x-y)
$$

- $d(x, y)$ is convex in x for fixed y
- $d(x, y) \geq 0$, with equality if $x=y$
- if ϕ is strictly convex, then $d(x, y)=0$ only if $x=y$
- $d(x, y) \neq d(y, x)$ in general
to emphasize lack of symmetry, d is also called a directed distance or divergence

Examples

Squared Euclidean distance (with $\operatorname{dom} \phi=\mathbf{R}^{n}$)

$$
\phi(x)=\frac{1}{2} x^{T} x, \quad \nabla \phi(x)=x, \quad d(x, y)=\frac{1}{2}\|x-y\|_{2}^{2}
$$

General quadratic kernel (with $\operatorname{dom} \phi=\mathbf{R}^{n}$)

$$
\phi(x)=\frac{1}{2} x^{T} A x, \quad \nabla \phi(x)=A x, \quad d(x, y)=\frac{1}{2}(x-y)^{T} A(x-y)
$$

- A is symmetric positive definite
- in some applications, A is positive semidefinite, but not positive definite

Examples

Relative entropy (with $\operatorname{dom} \phi=\mathbf{R}_{+}^{n}$)

$$
\begin{gathered}
\phi(x)=\sum_{i=1}^{n} x_{i} \log x_{i}, \quad \nabla \phi(x)=\left[\begin{array}{c}
\log x_{1}+1 \\
\vdots \\
\log x_{n}+1
\end{array}\right] \\
d(x, y)=\sum_{i=1}^{n}\left(x_{i} \log \frac{x_{i}}{y_{i}}-x_{i}+y_{i}\right)
\end{gathered}
$$

Logistic loss divergence (with $\operatorname{dom} \phi=[0,1]^{n}$)

$$
\begin{gathered}
\phi(x)=\sum_{i=1}^{n}\left(x_{i} \log x_{i}+\left(1-x_{i}\right) \log \left(1-x_{i}\right)\right), \quad \nabla \phi(x)=\left[\begin{array}{c}
\log \left(x_{1} /\left(1-x_{1}\right)\right) \\
\vdots \\
\log \left(x_{n} /\left(1-x_{n}\right)\right)
\end{array}\right] \\
d(x, y)=\sum_{i=1}^{n}\left(x_{i} \log \frac{x_{i}}{y_{i}}+\left(1-x_{i}\right) \log \frac{1-x_{i}}{1-y_{i}}\right)
\end{gathered}
$$

Examples

Hellinger divergence (with $\operatorname{dom} \phi=[-1,1]^{n}$)

$$
\begin{gathered}
\phi(x)=-\sum_{i=1}^{n} \sqrt{1-x_{i}^{2}}, \quad \nabla \phi(x)=\left[\begin{array}{c}
x_{1} / \sqrt{1-x_{1}^{2}} \\
\vdots \\
x_{n} / \sqrt{1-x_{n}^{2}}
\end{array}\right] \\
d(x, y)=\sum_{i=1}^{n}\left(-\sqrt{1-x_{i}^{2}}+\frac{1-x_{i} y_{i}}{\sqrt{1-y_{i}^{2}}}\right)
\end{gathered}
$$

Examples

Logarithmic barrier (with dom $\phi=\mathbf{R}_{++}^{n}$)
$\phi(x)=-\sum_{i=1}^{n} \log x_{i}, \quad \nabla \phi(x)=\left[\begin{array}{c}-1 / x_{1} \\ \vdots \\ -1 / x_{n}\end{array}\right], \quad d(x, y)=\sum_{i=1}^{n}\left(\frac{x_{i}}{y_{i}}-\log \frac{x_{i}}{y_{i}}-1\right)$
$d(x, y)$ is sometimes called Itakura-Saito divergence

Inverse barrier (with dom $\phi=\mathbf{R}_{++}^{n}$)

$$
\phi(x)=\sum_{i=1}^{n} \frac{1}{x_{i}}, \quad \nabla \phi(x)=\left[\begin{array}{c}
-1 / x_{1}^{2} \\
\vdots \\
-1 / x_{n}^{2}
\end{array}\right], \quad d(x, y)=\sum_{i=1}^{n} \frac{1}{y_{i}}\left(\sqrt{\frac{x_{i}}{y_{i}}}-\sqrt{\frac{y_{i}}{x_{i}}}\right)^{2}
$$

Bregman distances for symmetric matrices

$$
d(X, Y)=\phi(X)-\phi(Y)-\operatorname{tr}(\nabla \phi(Y)(X-Y))
$$

- kernel ϕ is a convex function on \mathbf{S}^{n}, differentiable on int $(\operatorname{dom} \phi)$
- domain of d is $\operatorname{dom} d=\operatorname{dom} \phi \times \operatorname{int}(\operatorname{dom} \phi)$

Relative entropy (with dom $\phi=\mathbf{S}_{++}^{n}$)

$$
\begin{aligned}
& \phi(X)=-\log \operatorname{det} X, \quad \nabla \phi(X)=-X^{-1} \\
& d(X, Y)=\operatorname{tr}\left(X Y^{-1}\right)-\log \operatorname{det}\left(X Y^{-1}\right)-n
\end{aligned}
$$

- $d(X, Y)$ is relative entropy between normal distributions $N(0, X)$ and $N(0, Y)$
- also known as Kullback-Leibler divergence

Bregman distances for symmetric matrices

Matrix entropy (with $\operatorname{dom} \phi=\mathbf{S}_{++}^{n}$):

$$
\begin{gathered}
\phi(X)=\operatorname{tr}(X \log X), \quad \nabla \phi(X)=I+\log X \\
d(X, Y)=\operatorname{tr}(X \log X-X \log Y-X+Y)
\end{gathered}
$$

- matrix logarithm $\log X$ is defined as

$$
\log X=\sum_{i=1}^{n}\left(\log \lambda_{i}\right) q_{i} q_{i}^{T}
$$

if X has eigendecomposition $X=\sum_{i} \lambda_{i} q_{i} q_{i}^{T}$

- $d(X, Y)$ is also known as quantum relative entropy

Outline

- Bregman distance
- properties
- Bregman proximal mapping
- mirror descent

Three-point identity

for all $x \in \operatorname{dom} \phi$ and $y, z \in \operatorname{int}(\operatorname{dom} \phi)$,

$$
d(x, z)=d(x, y)+d(y, z)+(\nabla \phi(y)-\nabla \phi(z))^{T}(x-y)
$$

- easily verified by substituting the definition of d
- if d is not symmetric, order of the arguments of d in the identity matters
- generalizes the familiar identity for squared Euclidean distance:

$$
\frac{1}{2}\|x-z\|_{2}^{2}=\frac{1}{2}\|x-y\|_{2}^{2}+\frac{1}{2}\|y-z\|_{2}^{2}+(y-z)^{T}(x-y)
$$

Strongly convex kernel

we will sometimes assume that ϕ is strongly convex (page 1.19):

$$
\phi(x) \geq \phi(y)+\nabla \phi(y)^{T}(x-y)+\frac{\mu}{2}\|x-y\|^{2}
$$

- $\mu>0$ is strong convexity constant of ϕ for the norm $\|\cdot\|$
- for twice differentiable ϕ, this is equivalent to

$$
v^{T} \nabla^{2} \phi(x) v \geq \mu\|v\|^{2} \quad \text { for all } x \in \operatorname{int}(\operatorname{dom} \phi) \text { and } v
$$

(see page 1.18)

- strong convexity of ϕ implies that

$$
\begin{aligned}
d(x, y) & =\phi(x)-\phi(y)-\nabla \phi(y)^{T}(x-y) \\
& \geq \frac{\mu}{2}\|x-y\|^{2}
\end{aligned}
$$

Regularization with Bregman distance

for given $y \in \operatorname{int}(\operatorname{dom} \phi)$ and convex f, consider

$$
\operatorname{minimize} \quad f(x)+d(x, y)
$$

- equivalently, minimize $f(x)+\phi(x)-\nabla \phi(y)^{T} x$
- feasible set is $\operatorname{dom} f \cap \operatorname{dom} \phi$

Optimality condition: $\hat{x} \in \operatorname{dom} f \cap \operatorname{int}(\operatorname{dom} \phi)$ is optimal if and only if

$$
\begin{equation*}
f(x)+d(x, y) \geq f(\hat{x})+d(\hat{x}, y)+d(x, \hat{x}) \quad \text { for all } x \in \operatorname{dom} f \cap \operatorname{dom} \phi \tag{1}
\end{equation*}
$$

Equivalent optimality condition: $\hat{x} \in \operatorname{dom} f \cap \operatorname{int}(\operatorname{dom} \phi)$ is optimal if and only if

$$
\begin{equation*}
\nabla \phi(y)-\nabla \phi(\hat{x}) \in \partial f(\hat{x}) \tag{2}
\end{equation*}
$$

Proof: we derive optimality conditions for the problem

$$
\begin{equation*}
\text { minimize } g(x)+\phi(x) \tag{3}
\end{equation*}
$$

with g convex, and apply the results to $g(x)=f(x)-\nabla \phi(y)^{T} x$

- optimality condition: $\hat{x} \in \operatorname{dom} g \cap \operatorname{int}(\operatorname{dom} \phi)$ is optimal for (3) if and only if

$$
\begin{equation*}
g(x) \geq g(\hat{x})-\nabla \phi(\hat{x})^{T}(x-\hat{x}) \quad \text { for all } x \in \operatorname{dom} g \cap \operatorname{dom} \phi \tag{4}
\end{equation*}
$$

combined with the 3-point identity this gives the optimality condition (1)

- equivalent optimality condition: $\hat{x} \in \operatorname{dom} g \cap \operatorname{int}(\operatorname{dom} \phi)$ is optimal if and only if

$$
\begin{equation*}
-\nabla \phi(\hat{x}) \in \partial g(\hat{x}) \tag{5}
\end{equation*}
$$

applied to $g(x)=f(x)-\nabla \phi(y)^{T} x$ this gives the optimality condition (2)

Proof:

$$
\text { optimality of } \hat{x}
$$

- implication a follows from convexity of ϕ : if (4) holds, then for all feasible x,

$$
g(x)+\phi(x) \geq g(\hat{x})+\phi(x)-\nabla \phi(\hat{x})^{T}(x-\hat{x}) \geq g(\hat{x})+\phi(\hat{x})
$$

- implication b: by definition of subgradient, (5) can be written as

$$
g(x) \geq g(\hat{x})-\nabla \phi(\hat{x})^{T}(x-\hat{x}) \quad \text { for all } x \in \operatorname{dom} g
$$

- we prove c by contradiction: suppose that for some $x \in \operatorname{dom} g$

$$
g(x)<g(\hat{x})-\nabla \phi(\hat{x})^{T}(x-\hat{x})
$$

define $v=x-\hat{x}$; for small positive t, by convexity of g and Taylor's theorem,

$$
\begin{aligned}
g(\hat{x}+t v)+\phi(\hat{x}+t v) & \leq g(\hat{x})+t(g(x)-g(\hat{x}))+\phi(\hat{x}+t v) \\
& =g(\hat{x})+\phi(\hat{x})+t\left(g(x)-g(\hat{x})+\nabla \phi(\hat{x})^{T} v\right)+O\left(t^{2}\right) \\
& <g(\hat{x})+\phi(\hat{x})
\end{aligned}
$$

Outline

- Bregman distance
- properties
- Bregman proximal mapping
- mirror descent

Bregman proximal mapping

for convex f and Bregman kernel ϕ, define

$$
\begin{aligned}
\operatorname{prox}_{f}^{d}(y, a) & =\underset{x}{\operatorname{argmin}}\left(f(x)+a^{T} x+d(x, y)\right) \\
& =\underset{x}{\operatorname{argmin}}\left(f(x)+(a-\nabla \phi(y))^{T} x+\phi(x)\right)
\end{aligned}
$$

- first argument y must be in int $(\operatorname{dom} \phi)$
- second argument a can take any value
- we'll use this only if for every y and a, a unique minimizer $x \in \operatorname{int}(\operatorname{dom} \phi)$ exists

Example: quadratic kernel

$$
\phi(x)=\frac{1}{2}\|x\|_{2}^{2}, \quad d(x, y)=\frac{1}{2}\|x-y\|_{2}^{2}
$$

Bregman proximal mapping can be expressed in terms of standard prox $_{f}$:

$$
\begin{aligned}
\operatorname{prox}_{f}^{d}(y, a) & =\underset{x}{\operatorname{argmin}}\left(f(x)+a^{T} x+d(x, y)\right) \\
& =\underset{x}{\operatorname{argmin}}\left(f(x)+a^{T} x+\frac{1}{2}\|x-y\|_{2}^{2}\right) \\
& =\operatorname{prox}_{f}(y-a)
\end{aligned}
$$

closedness of f ensures existence and uniqueness (see page 6.2)

Example: relative entropy

$$
\phi(x)=\sum_{i=1}^{n} x_{i} \log x_{i}, \quad d(x, y)=\sum_{i=1}^{n}\left(x_{i} \log \left(x_{i} / y_{i}\right)-x_{i}+y_{i}\right)
$$

- we take $f=\delta_{H}$, the indicator of hyperplane $H=\left\{x \mid \mathbf{1}^{T} x=1\right\}$
- Bregman proximal mapping is

$$
\begin{aligned}
\operatorname{prox}_{f}^{d}(y, a) & =\underset{\mathbf{1}^{T} x=1}{\operatorname{argmin}}\left(a^{T} x+\sum_{i=1}^{n} x_{i} \log \left(x_{i} / y_{i}\right)\right) \\
& =\frac{1}{\sum_{i=1}^{n} y_{i} e^{-a_{i}}}\left[\begin{array}{c}
y_{1} e^{-a_{1}} \\
\vdots \\
y_{n} e^{-a_{n}}
\end{array}\right]
\end{aligned}
$$

- for every $y>0$ and a, minimizer in the definition exists, is unique, and positive

Example: relative entropy

Contour lines of $\phi(x)$

Contour lines of $d(x, y)$

right-hand figure shows

$$
\hat{x}=\operatorname{prox}_{f}^{d}(y, a)=\operatorname{argmin}\left(a^{T} x+d(x, y)\right)
$$

for $y=(0.1,0.3,0.6)$ and $a=(-0.540,0.585,-0.045)$

Optimality condition

apply the optimality conditions for Bregman-regularized problem (page 17.14) to

$$
\operatorname{prox}_{f}^{d}(y, a)=\underset{x}{\operatorname{argmin}}\left(f(x)+a^{T} x+d(x, y)\right)
$$

suppose $\hat{x} \in \operatorname{dom} f \cap \operatorname{int}(\operatorname{dom} \phi)$

- first condition: $\hat{x}=\operatorname{prox}_{f}^{d}(y, a)$ if and only if

$$
f(x)+a^{T} x+d(x, y) \geq f(\hat{x})+a^{T} \hat{x}+d(\hat{x}, y)+d(x, \hat{x})
$$

for all $x \in \operatorname{dom} f \cap \operatorname{dom} \phi$

- second condition: $\hat{x}=\operatorname{prox}_{f}^{d}(y, a)$ if and only if

$$
\nabla \phi(y)-\nabla \phi(\hat{x})-a \in \partial f(\hat{x})
$$

Outline

- Bregman distance
- properties
- Bregman proximal mapping
- mirror descent

Mirror descent

minimize	$f(x)$
subject to	$x \in C$

- f is a convex function, C is a convex subset of $\operatorname{dom} f$
- we assume f is subdifferentiable on C

Algorithm: choose $x_{0} \in C \cap \operatorname{int}(\operatorname{dom} \phi)$ and repeat

$$
x_{k+1}=\underset{x \in C}{\operatorname{argmin}}\left(t_{k} g_{k}^{T} x+d\left(x, x_{k}\right)\right), \quad k=0,1, \ldots
$$

g_{k} is any subgradient of f at x_{k}
update can be written as $x_{k+1}=\operatorname{prox}_{\delta_{C}}^{d}\left(x_{k}, t_{k} g_{k}\right)$ where δ_{C} is indicator of C

Mirror descent with quadratic kernel

$$
x_{k+1}=\underset{x \in C}{\operatorname{argmin}}\left(t_{k} g_{k}^{T} x+d\left(x, x_{k}\right)\right)
$$

for $d(x, y)=\frac{1}{2}\|x-y\|_{2}^{2}$, this is the projected subgradient method:

$$
\begin{aligned}
x_{k+1} & =\underset{x \in C}{\operatorname{argmin}}\left(t_{k} g_{k}^{T} x+\frac{1}{2}\left\|x-x_{k}\right\|_{2}^{2}\right) \\
& =\underset{x \in C}{\operatorname{argmin}} \frac{1}{2}\left\|x-x_{k}+t_{k} g_{k}\right\|_{2}^{2} \\
& =P_{C}\left(x_{k}-t_{k} g_{k}\right)
\end{aligned}
$$

where P_{C} is Euclidean projection on C

Assumptions

- problem on page 17.22 has optimal value f^{\star}, optimal solution $x^{\star} \in C \cap \operatorname{dom} \phi$
- f is Lipschitz continuous on C with respect to some norm \| $\cdot \|$

$$
|f(x)-f(y)| \leq G\|x-y\| \quad \text { for all } x, y \in C
$$

this is equivalent to $\|g\|_{*} \leq G$ for all $x \in C$ and $g \in \partial f(x)$
(proof extends proof for Euclidean norm on page 3.4)

- ϕ is 1 -strongly convex on C, with respect to the same norm $\|\cdot\|$:

$$
d(x, y) \geq \frac{1}{2}\|x-y\|^{2} \quad \text { for all } x \in \operatorname{dom} \phi \cap C \text { and } y \in \operatorname{int}(\operatorname{dom} \phi) \cap C
$$

Analysis

- apply optimality condition on page 17.21 with $x=x^{\star}, y=x_{i}, \hat{x}=x_{i+1}$:

$$
\begin{aligned}
d\left(x^{\star}, x_{i+1}\right) & \leq d\left(x^{\star}, x_{i}\right)-d\left(x_{i+1}, x_{i}\right)+t_{i} g_{i}^{T}\left(x_{i}-x_{i+1}\right)+t_{i} g_{i}^{T}\left(x^{\star}-x_{i}\right) \\
& \leq d\left(x^{\star}, x_{i}\right)-d\left(x_{i+1}, x_{i}\right)+\left\|t_{i} g_{i}\right\|_{*}\left\|x_{i+1}-x_{i}\right\|+t_{i} g_{i}^{T}\left(x^{\star}-x_{i}\right) \\
& \leq d\left(x^{\star}, x_{i}\right)-d\left(x_{i+1}, x_{i}\right)+\frac{1}{2}\left\|x_{i+1}-x_{i}\right\|^{2}+\frac{1}{2}\left\|t_{i} g_{i}\right\|_{*}^{2}+t_{i} g_{i}^{T}\left(x^{\star}-x_{i}\right)
\end{aligned}
$$

last step is arithmetic-geometric mean inequality

- apply strong convexity of kernel and definition of subgradient:

$$
d\left(x^{\star}, x_{i+1}\right) \leq d\left(x^{\star}, x_{i}\right)+\frac{1}{2}\left\|t_{i} g_{i}\right\|_{*}^{2}+t_{i}\left(f^{\star}-f\left(x_{i}\right)\right)
$$

- define $f_{\text {best }, k}=\min _{i=0, \ldots, k} f\left(x_{i}\right)$ and combine inequalities for $i=0, \ldots, k$:

$$
\begin{aligned}
\left(\sum_{i=0}^{k} t_{i}\right)\left(f_{\mathrm{best}, k}-f^{\star}\right) & \leq d\left(x^{\star}, x_{0}\right)-d\left(x^{\star}, x_{k+1}\right)+\frac{1}{2} \sum_{i=0}^{k}\left\|t_{i} g_{i}\right\|_{*}^{2} \\
& \leq d\left(x^{\star}, x_{0}\right)+\frac{1}{2} \sum_{i=0}^{k}\left\|t_{i} g_{i}\right\|_{*}^{2}
\end{aligned}
$$

Step size selection

$$
f_{\text {best }, k}-f^{\star} \leq \frac{d\left(x^{\star}, x_{0}\right)}{\sum_{i=0}^{k} t_{i}}+\frac{\sum_{i=0}^{k}\left\|t_{i} g_{i}\right\|_{*}^{2}}{2 \sum_{i=0}^{k} t_{i}} \leq \frac{d\left(x^{\star}, x_{0}\right)}{\sum_{i=0}^{k} t_{i}}+\frac{G^{2} \sum_{i=0}^{k} t_{i}^{2}}{2 \sum_{i=0}^{k} t_{i}}
$$

- diminishing step size: $f_{\text {best }, k} \rightarrow f^{\star}$ if

$$
t_{i} \rightarrow 0, \quad \sum_{i=0}^{\infty} t_{i}=\infty
$$

(see page 3.7)

- optimal step size for fixed number of iterations k, if we know $d\left(x^{\star}, x_{0}\right) \leq D$:

$$
t_{i}=\frac{\sqrt{2 D}}{\left\|g_{i}\right\|_{*} \sqrt{k+1}}, \quad f_{\text {best }, k}-f^{\star} \leq \frac{G \sqrt{2 D}}{\sqrt{k+1}}
$$

(see page 3.10)

Entropic mirror descent

minimize	$f(x)$
subject to	$x \geq 0$
	$\mathbf{1}^{T} x=1$

- apply mirror descent with relative entropy distance and $C=\left\{x \in \mathbf{R}^{n} \mid \mathbf{1}^{T} x=1\right\}$
- constraints $x \geq 0$ are enforced by domain of relative entropy distance

Algorithm: choose $x_{0}>0, \mathbf{1}^{T} x_{0}=1$, and repeat

$$
x_{k+1}=\frac{1}{s^{T} x_{k}}\left(s \circ x_{k}\right) \quad \text { where } s=\left(e^{-t_{k} g_{k, 1}}, \ldots, e^{-t_{k} g_{k, n}}\right)
$$

- g_{k} is any subgradient of f at x_{k}
- o denotes component-wise vector product

Convergence

in the analysis on page 17.26

- if we choose $x_{0}=(1 / n) \mathbf{1}$, then we can take $D=\log n$:

$$
d\left(x^{\star}, x_{0}\right)=\log n+\sum_{i=1}^{n} x_{i}^{\star} \log x_{i}^{\star} \leq \log n
$$

- $\phi(x)=\sum_{i} x_{i} \log x_{i}$ is 1-strongly convex for $\|\cdot\|_{1}$ on C : by Cauchy-Schwarz,

$$
v^{T} \nabla^{2} \phi(x) v=\sum_{i=1}^{n} \frac{v_{i}^{2}}{x_{i}} \geq\|v\|_{1}^{2} \quad \text { if } x>0, \quad \mathbf{1}^{T} x=1
$$

- with optimal step size for k iterations,

$$
f_{\text {best }, k}-f^{\star} \leq \frac{G \sqrt{2 \log n}}{\sqrt{k+1}}
$$

where G is Lipschitz constant of f for $\|\cdot\|_{1}$-norm

Example

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|_{1} \\
\text { subject to } & x \geq 0, \quad \mathbf{1}^{T} x=1
\end{array}
$$

- subgradient $g=A^{T} \operatorname{sign}(A x-b)$, so $\|g\|_{\infty} \leq G=\max _{j} \sum_{i}\left|A_{i j}\right|$
- example with randomly generated $A \in \mathbf{R}^{1000 \times 500}, b \in \mathbf{R}^{1000}$

References

Generalized distances

- Y. Censor and S. A. Zenios, Parallel Optimization: Theory, Algorithms, and Applications (1997).
- M. Basseville, Distance measures for statistical data processing-An annotated bibliography, Signal Processing (2013).

Mirror descent

- A. S. Nemirovsky and D. B. Yudin, Problem Complexity and Method Efficiency in Optimization (1983).
- A. Beck and M. Teboulle, Mirror descent and nonlinear projected subgradient methods for convex optimization, Operations Research Letters (2003).
- A. Juditsky and A. Nemirovski, First-order methods for nonsmooth convex large-scale optimization, I: General-purpose methods. In S. Sra, S. Nowozin, S. J. Wright, editors, Optimization for Machine Learning (2012).
- A. Beck, First-Order Methods in Optimization (2017), chapter 9.

