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Motivation: proximal gradient method

proximal gradient step for minimizing f(x) = g(x) + h(x) (page 4.4):

Xk+1 = pl”OX;kh(xk - thg(xk))
. 1
= argmin [ A(u) + g(xz) + Vg (xp)! (u — xp) + 2—tk||1/t - Xk”%
u

Interpretation: quadratic term represents

e a penalty that forces xj1 to be close to x;, where linearization of g is accurate

e an approximation of the error term in the linearization of g at x;,
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Generalized proximal gradient method

replace %llu — x||§ with a generalized distance d(u, x):

: 1
xgy1 = argmin | 7(u) + g (xg) + Vg (xp)” (u = xp) + Ed(u,xk)
u

Potential benefits

1. “pre-conditioning”: use a more accurate model of g(u) around x, ideally

1

Ed(u,xk) ~ g(u) — g(xi) — Vg(xk)T(” - Xk)

2. make the generalized proximal mapping (minimizer u) easier to compute

goal of 1 is to reduce number of iterations; goal of 2 is to reduce cost per iteration
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Bregman distance

d(x,y) = ¢(x) — ¢(y) = Vo) (x - y)

e ¢ is convex and continuously differentiable on int(dom ¢)
e domain of ¢ may include its boundary or a subset of its boundary
e we define the domain of d as dom d = dom ¢ X int(dom ¢)

e ¢ is called the kernel function or distance-generating function

other properties of ¢ will be required but mentioned explicitly (e.g., strict convexity)
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Immediate properties

d(x,y) = ¢(x) — p(y) = Vo) (x - y)

e d(x,y) is convex in x for fixed y
e d(x,y) > 0, with equality if x = y
e if ¢ is strictly convex, then d(x,y) =0onlyifx =y

e d(x,y) # d(y,x) in general

to emphasize lack of symmetry, d is also called a directed distance or divergence
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Examples

Squared Euclidean distance (with dom ¢ = R")

1 1
B(x) = ox'x, Vé(x) = x, d(x.y) =5 lx = yl3

General quadratic kernel (with dom ¢ = R")
1 7 1 T
$(x) = 5x" Ax, V(x) = Ax, d(x,y) =5(x=y) Alx-y)

e A is symmetric positive definite

e in some applications, A is positive semidefinite, but not positive definite
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Examples

Relative entropy (with dom ¢ = R)

[ logx;+1 |

#(x) = D xilogxi,  Vo(x) =
i=1

| logx, +1 |

n x:
d(x,y) = > (xi 10gy—l_ — Xi +yi)
i=1 i

Logistic loss divergence (with dom ¢ = [0, 1]")

- log(x1/(1-x1))

¢(x) = > (xilogxi+ (1 —x) log(1 —x;)),  Ve(x) = :
i=1 I log(x, /(1 —xz)) ]

n

X; 1 —x;
d(x,y):Z x,-log—l.+(1—xi)log1 l'

i=1 Yi Yi
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Examples

Hellinger divergence (with dom ¢ = [-1, 1]")

. x1/ 1—x% -
b)) == \1-x7  Vé(x) =
= Xp/All — x2
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Examples

Logarithmic barrier (with dom ¢ = R’ )

n —1/x n
d(x) =— Zlogxi, Vo(x) = ; : d(x,y) = Z (y_ — log— — 1)
i=1

| _1/.Xn ] i= 1

d(x,y) is sometimes called ltakura—Saito divergence

Inverse barrier (with dom ¢ = R’.,)

n_1 _ —1/)6% — n
¢()C) = ZX_, V¢(X) = : s d(x’ y) -
i=1 "1

| —1/x2 | i=1

-

2 |-
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Bregman distances for symmetric matrices
d(X,Y) = ¢(X) —¢(Y) —tr(Vo(Y)(X - Y))

e kernel ¢ is a convex function on S”, differentiable on int (dom ¢)

e domain of d is domd = dom ¢ X int (dom ¢)

Relative entropy (with dom ¢ = S”.)
#(X) =—logdetX, V¢(X)=-X"!
d(X,Y) = tr(XY™1) = logdet(XY™)) = n

e d(X,Y) is relative entropy between normal distributions N(0, X) and N(0,Y)

e also known as Kullback—Leibler divergence
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Bregman distances for symmetric matrices
Matrix entropy (with dom ¢ = S%.):
d(X) =tr(X log X), Vo(X) =1+1logX

d(X,Y)=tr(XlogX — XlogY —X+7)

e matrix logarithm log X is defined as

n
log X = > (log A)qiq;
i=1

if X has eigendecomposition X = ; 4iqiq;

e d(X,Y) is also known as quantum relative entropy
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Three-point identity

for all x € dom ¢ and y, z € int(dom ¢),

d(x,2) =d(x,y) +d(y,2) + (Vo(y) = Vo(2)) (x — y)

e casily verified by substituting the definition of d
e if d is not symmetric, order of the arguments of d in the identity matters

e generalizes the familiar identity for squared Euclidean distance:

1

1 1
Sl =zlly = Sl =yl +Slly = 2l + (v = )" (v = )
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Strongly convex kernel

we will sometimes assume that ¢ is strongly convex (page 1.19):
u
cmm2¢00+WMwWX<W+§W>wW

e 1 > 0 is strong convexity constant of ¢ for the norm || - ||

e for twice differentiable ¢, this is equivalent to
vTV2¢(x)v > ,u||v||2 for all x € int(dom ¢) and v

(see page 1.18)

e strong convexity of ¢ implies that

$(x) = 9(3) = Vo) (x =)
H 2
=l

d(x,y)

\Y
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Regularization with Bregman distance

for given y € int(dom ¢) and convex f, consider
minimize f(x)+d(x,y)
e equivalently, minimize f(x) + ¢(x) — Vo(y) x
e feasible setis dom f N dom ¢
Optimality condition: X € dom f N int(dom ¢) is optimal if and only if

f(x)+d(x,y) > f(X)+d(R,y)+d(x,x) forallx edom fNndom¢ (1)

Equivalent optimality condition: £ € dom f N int(dom ¢) is optimal if and only if
Vo(y) = Vo(X) € 0 f(X) (2)
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Proof: we derive optimality conditions for the problem
minimize g(x) + ¢(x) (3)
with g convex, and apply the results to g(x) = f(x) — Vo (y) x
e optimality condition: X € dom g N int (dom ¢) is optimal for (3) if and only if
g(x) > g(®) = Vop(®) (x —=%) forall x € domg N dom ¢ (4)
combined with the 3-point identity this gives the optimality condition (1)
e equivalent optimality condition: X € dom g N int (dom ¢) is optimal if and only if
— V(%) € 0g(%) (5)

applied to g(x) = f(x) — Vo(y)! x this gives the optimality condition (2)
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Proof- optimality of X

7\
(4) <= (5)

e implication a follows from convexity of ¢: if (4) holds, then for all feasible x,

g(x) +¢(x) 2 g(£) + (x) - Vo) (x = %) = (&) + ¢(%)
e implication b: by definition of subgradient, (5) can be written as
g(x) > g(®) = Vo((®) (x —=%) forallx € domg

e we prove ¢ by contradiction: suppose that for some x € dom g

g(x) < g(®) = V(D' (x - %)
define v = x — X; for small positive ¢, by convexity of g and Taylor’s theorem,
gx+m)+oo(x+rv) < gX)+t(g(x) —g(X)) + (X +1v)

= g(A) + (%) +1(g(x) — g(R) + Vo(£) v) + O(+*)
< &%) +9¢(X)
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Bregman proximal mapping

for convex f and Bregman kernel ¢, define

proxjf(y, a) = argmin (f(x) +alx +d(x, y))

X

= argmin /(x) + (a = V9(3))"x + 6(x))

e first argument y must be in int (dom ¢)
e second argument a can take any value

e we'll use this only if for every y and a, a unique minimizer x € int(dom ¢) exists
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Example: quadratic kernel

1 1
$(x) = §|IXII§, d(x,y) = Ellx - yl3

Bregman proximal mapping can be expressed in terms of standard prox Iz

proxjf(y, a) = argmin (f(x) +al x +d(x, y))

X

1
= argmin (f(x) +alx+ §||x — )’||§)

X

PTOXf(y —a)

closedness of f ensures existence and uniqueness (see page 6.2)
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Example: relative entropy

¢(x) = D xilogx;,  d(x,y) =D (x;log(xi/yi) — xi+yi)

i:l l:1

e we take f = dp, the indicator of hyperplane H = {x | 11x = 1}

e Bregman proximal mapping is

n
proxjf(y, a) argmin (a'x + Z x;log(x;/vi))

lT.le =1
1 F yle_a[1 —
= - i_a
-21 yie % | yne "
1=

e for every y > 0 and a, minimizer in the definition exists, is unique, and positive
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Example: relative entropy

Contour lines of ¢(x) Contour lines of d(x, y)

(0,0,1)

/‘

<+ —a

(1,0,0) (0, 1,0)

right-hand figure shows
X = proxjf(y, a) = argmin (a'x +d(x,y))

for y = (0.1, 0.3, 0.6) and a = (=0.540, 0.585, —0.045)
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Optimality condition
apply the optimality conditions for Bregman-regularized problem (page 17.14) to

prolep(y, a) = argmin (f(x) +alx+d(x, y))

suppose X € dom f N int (dom @)
e first condition: £ = proxjf(y, a) if and only if
fx)+a'x+d(x,y) = fR) +a' £ +d(%,y) +d(x, %)

for all x € dom f N dom ¢

e second condition: £ = proxjf(y, a) if and only if

Vo(y) = Vo(X) —a € df (%)
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Mirror descent

minimize  f(x)
subjectto x € C

e f is a convex function, C is a convex subset of dom f

e we assume f is subdifferentiable on C

Algorithm: choose xg € C N int(dom ¢) and repeat

Xk4+] = argmin (tkggx + d(x,xk)), k=0,1,...
xeC

g1 is any subgradient of f at x;

update can be written as x;, 1 = proxglc(xk, t12r) Where o¢ is indicator of C
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Mirror descent with quadratic kernel

Xk4] = argmin (tkggx + d(x,xk))
xeC

ford(x,y) = %llx — yllg, this is the projected subgradient method:

- r. 1 >
Xk4l = argmin (tkgkx + Ellx — xk||2)
xeC
1 )
= argmin = ||x — x + 1, gkll5
xeC

= Pc(xp —tr8k)

where P is Euclidean projection on C
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Assumptions

e problem on page 17.22 has optimal value f*, optimal solution x* € C N dom ¢

e f is Lipschitz continuous on C with respect to some norm || - ||

| f(x) = fW]| <Gllx—yl forallx,yeC

this is equivalent to ||g||« < G forallx € C and g € 0 f (x)

(proof extends proof for Euclidean norm on page 3.4)

e ¢ is 1-strongly convex on C, with respect to the same norm || - ||:

1
d(x,y) > §||x — y||2 forallx e dom¢ N C and y € int(dom ¢) N C
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Analysis

e apply optimality condition on page 17.21 with x = x*, y = x;, £ = x;41:

d(x*,xi41) < d%x) —d(xig1, %) + gl (xi — xi41) +tigh (XX — x;)
< d(x*,x;) — d(xig1, x0) + tigillellxien — xill + tig) (6 = x;)
1 1
< d(x*,x) —d(xip,xi) + §||Xi+1 —x|1* + 5”%‘8:‘”3 +tig] (x* - x;)

last step is arithmetic—geometric mean inequality

e apply strong convexity of kernel and definition of subgradient:

1
d(x*, xir1) < d(x*,x;) + §||figi||>% +5:(f* = f(x)

o define fpes x = min;—g . x f(x;) and combine inequalities fori =0, ..., k:

,,,,,

k k
1
O 1) (frestk — 7)< d(x*,x0) — d(x*, xp41) + 7 > tigill:

IA

1 Kk
d(x*,x0) + 5 > ligill:
i=0
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Step size selection

> lligill >3 12
1;9; 1:
f P d(x*, xp) 4 i=0 Sl - d(x*, xp) L =0 :
best, k = K K = A A
2L 22t 2t 22t
i=0 i=0 i=0 i=0

e diminishing step size: fhestx — f™ if

(see page 3.7)

e optimal step size for fixed number of iterations k, if we know d(x*, xg) < D:

t V2D ; < GV2D
= ) best,k — =
gl Ve + 1 = Vi +1

(see page 3.10)
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Entropic mirror descent

minimize  f(x)
subjectto x >0
1'x=1

e apply mirror descent with relative entropy distance and C = {x e R* | 11x = 1}

e constraints x > 0 are enforced by domain of relative entropy distance

Algorithm: choose x¢ > 0, 1 xy = 1, and repeat

1
Xk+l = —F (s oxr) where s = (e_t"g"’l, e e_t"gk’”)
ST Xk

® g is any subgradient of f at xj

e o denotes component-wise vector product
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Convergence

in the analysis on page 17.26

e if we choose xg = (1/n)1, then we can take D = log n:

n
d(x*,x0) =logn+ > x’logx’ <logn
i=1

o H(x) = Zx, log x; is 1-strongly convex for || - ||; on C: by Cauchy—Schwarz,

n_ 2
o' V(v =D L > pllf  ifx>0, 1Tx=1

=1 i

e with optimal step size for k iterations,

G+/2logn
Vk + 1

where G is Lipschitz constant of f for || - ||{-norm

fbest,k - f* <

Generalized distances and mirror descent 17.28



Example

minimize  ||Ax — b||;
subjectto x>0, 1lx=1

e subgradient g = ATsign(Ax — D), s0 ||gllo £ G =max; X; |A;j]

e example with randomly generated A € R1000x500 4, ¢ R1000

(fbest,k - f*)/f*

107! ¢ w w w :
— 1 =0.01/Vk + 1
— 1, =01/(k+1) |

1072 |

1073

1074

0 200 400 ) 600 800 1000
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