L. Vandenberghe ECE236C (Spring 2022)

18. Generalized proximal gradient method

e proximal gradient method with Bregman distance

e accelerated proximal gradient method
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Generalized proximal gradient method

e we extend the proximal gradient method of lecture 4 to Bregman distances

e the method applies to convex optimization problems with differentiable term g:

minimize f(x) = g(x) + h(x)

Algorithm: start at xy € dom f N int(dom ¢) and repeat

. 1
Xks1 = argmin [g(xx) + Vg (xp)! (x — xz) + h(x) + Ed(x,Xk)
X

= prox?, (xk, 1cVg(xx))

11 is a positive step size, fixed or selected by line search
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Assumptions

minimize f(x) = g(x) + h(x)

d

@ is well defined: for every x € int (dom ¢) and every a,

e /1 is convex and prox

1
Ty + ;d(u,x)

minimize h(u) +a
has a unique solution proxfh (x,ta) € int (dom @)
e g is convex and differentiable with dom ¢ C dom g
e the function L¢ — g is convex, for some L > 0; equivalently,
g(x) <g(») +Vg() ' (x—y)+Ld(x,y) forall (x,y) €edomd (1)

this is sometimes called relative smoothness

e the optimal value f* is finite and attained at x* € dom ¢
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Consequence of relative smoothness

e the following inequality holds if 0 < #;, < 1/L:

1
g(xke1) < g(xx) + Vg (xp)! (opar —xx) + Ed(xkﬂaxk) (2)

e if this inequality holds, then for all x € dom f N dom ¢,

Fxre) < glx) + Vg () (a1 = x) + h(xgqr) + %d(XkH,Xk)
< glx) + Vo)  (x - xp) + h(x) + %(doc,xk) (% x)

< f)+ %(du,xk) (% xpa) )

2nd line is optimality condition for proxih on p.17.21; 3rd line is convexity of g
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Descent properties

e substituting x = xj in (3) shows that
f(xk1) <0 flxw) - %d(Xk,an)
< fxx)
strict inequality holds if x; # x;4+1 and the kernel ¢ is strictly convex
e substituting x = x* in (3) shows that

d(x*, xps1) — d(x*, xp)

IA

te(f* = f(Xks1))
0

IA
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Convergence of function values

suppose (2) holds at every iteration

k—1 k
O (fx) =% < Ditimi(f ) — %)
i=0 i=1
k
< (d(x*,x,-_l) — d(x*,x,-))
i=1
= d(x*, xg) —d(x*,xg)
< dx*, x9)

e first inequality holds because function values f(x;) are non-increasing

e second inequality is (4)

this shows that a( N )
X, X0

f(xk) _ f* < k—1
2= li
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Step size selection

Fixed step size: for t; = 1/L, the upper bound on the previous page is

d(x*,
Fla) - < FE0

Line search: start at 7, = 7, backtrack (¢4 := Bz, with 8 € (0, 1)) until (2) holds

e since (2) holds for ;, < 1/L, the selected step size satisfies

tx > tmin = min{7, 8/L}

e the upper bound on the previous page implies that

d(x*, xp)
ktmin

flxg) — f* <
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Outline

e proximal gradient method with Bregman distance

e accelerated proximal gradient method



Accelerated proximal gradient method

we discuss a Bregman distance variant of FISTA (p. 7.8) for the problem on p. 18.2

Algorithm: start at x) = vgp € dom f N int(dom ¢), and repeat for k =0, 1, .. ..

i+l = Xk +0r(vg —xp)
: 1
vee1 = argmin (h(0) + Vg(yrs1) v+ T—kd(v, Uk))
D
Xkl = Xk + 0k (Vk+1 — Xxk)

e step 2 can be written as vy, = proxfkh(vk, % Ve(Vis1))
e choice of parameters 6; € (0, 1], 7 > 0 will be discussed on page 18.16
e known as the improved interior gradient algorithm (Auslender & Teboulle, 2006)

e Bregman extension of a gradient projection method by Nesterov (1988)
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Feasibility of the iterates

step 2 requires that Vg(yy,1) exists and that v; € int(dom ¢)

Viel = Orvp + (1= 60p)xx
: 1
vpr1 = argmin (h(v) + Vg (yre1) v+ T—kd(v, Vk))
)]
Xkl = Opvger + (1 = 0p)xy

suppose xg = vy € dom f Nint(dom ¢) and dom ¢ C dom g

e step 1: yi41 is a convex combination of v, and xj

d

is well defined
Tkh

e step 2: vi41 € dom & N int(dom ¢), by assumption that prox

e step 3: x;41 is a convex combination of v, 1 and xj

hence, the sequences yy, vy, x; remain in dom f N int(dom ¢)
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Quadratic kernel

for the quadratic distance d(x, y) = %llx — y||§ the algorithm can be written as

YViel = Xp+0r(vr —xi) (5a)
Vk+1 = ProxXg (v — 7% Vg(yk+1)) (5b)
Xkl = Xk + Ok (Vk+1 — Xk) (5¢)

e compare with FISTA (page 7.8): same y-update, different x-, v-updates

YVi+l = Xk +0r(vr —xi) (6a)

Xeel = ProXy (Ve — 16 Vg (Yi+1)) (6b)
1

Vk+l = Xp+ H_k(xk” — Xk) (6¢)

e if n =0 andt;, = 6,71, the two methods are equivalent

o if 1 # 0, points vy, yi in (6) may be outside dom 4 (in contrast to method (5)
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Assumptions

minimize f(x) = g(x) + h(x)

we make the same assumptions as on page 18.3 with one difference

e Vg is L-Lipschitz continuous for some norm || - ||
T L 2
g8(x) <g(y)+Vg(y) (x —y)+Zllx —ylI* forallx,y e domg
e the Bregman kernel ¢ is 1-strongly convex with respect to the same norm:

1
d(x,) 2 5 llx - y||> forall (x,y) € domd

these two assumptions replace the relative smoothness assumption on page 18.3:

g(x) < g(y) + Ve ' (x —y) + Ld(x,y)
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Consequence of Lipschitz continuity of gradient

e the following inequality holds if 0 < 7, < 1/(L6y):

g(xrs1) < (1 —04)g(xp)

1
+ 0k |8 (Vir1) + VE(ka)” (Va1 — Yiw1) + ;d(vkﬂa Uk ) (7)
e if this inequality holds, then for all x € dom f N dom ¢,
5 ([ (xkan) = () + d(x, )
< =0 (£ xp) - £00) + dn) ®

(proofs on next pages)
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Proof: we show that the inequality (7) holds for 7, = 1/(L68y)

e we use notation x* = xy41, X =Xk, UV = Uks1, V= 0Vk, V= Visl, 0 =0

e from the Lipschitz continuity of Vg:

L
(") < g(») + V(' (x" = y) + " - yII”
e from steps 1 and 2 in the algorithm, 8(v™ — v) = x™ — y:

L6?

g(x") < g(») + Vg (xt —y) + —lIo* - ||

e from strong convexity of the Bregman kernel:
g(x) < g(») + Vg (x* - y) + Lo*d(v*,v)
e from step 3 in the algorithm, x™ = (1 — 8)x + Ov™:
g(x") <g(+(1-0)Ve() (x—y) +0Ve(») (v - y) + LO°d(v*,0)

e inequality (7) now follows from g(y) + Vg(y)! (x — y) < g(x) (convexity of g)
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Proof: we show that (7) implies that (8) holds for all x € dom f N dom ¢

e the optimality condition for the prox evaluation in step 2 of the algorithm is

h(oes1) < h(0) + Vg (yen) T (x = vgar) +7lk (d(x, 00) = d(x, vksr) = d(var, 00))

e from Jensen’s inequality and x;41 = (1 — O )xg + OrVk41:
h(xg+1) < (1= 0)h(xi)

+ 6 (h(x) +Vg(yra1)! (X = vge1) + T—lk (d(x,vr) —d(x,vp41) — d(Vk41, vk)))

e combine this with (7):
S (Xke1) < (1= 6k) f(xk)
+ 0y (h(x) +8(yk+1) + VE(ra) (X = yia1) + Tik(d(x, vk) — d(x, vk+1)))
e from convexity of g:

fxia1) < (1 =0) f(xx) + 0 | f(x) + le(d(x, vg) — d(x, Uk+1)))
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Parameter selection

e the parameters 0, € (0, 1], 7 > 0 will be chosen to satisfy (7) and

T (1 = 6) < Tkl

fork > 1 (9)
Ok Ok-1

e this allows us to combine the inequalities (8) at x = x* recursively to obtain

Tl f ) = %) + A2, 00) < ;—g(f (1) = F(x*)) + d(x*, 1)

Or-1
< DU (ag) - £ + dt
= d(*x0)
hence, 0
fae) = f* < Z=d(x* x0) (10)
Tk—1
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Fixed step size

if L is known, we choose 7, = 1/(L#6;) and 6 that satisfies

H%
6o = 1, > 0% . fork > 1
0 1 -6, k-1

e a simple choiceis 6 =2/(k +2)

e alternatively, find the smallest allowable 6}, by solving 62 /(1= 0p) =

\/9 +492

bo=1, 6

with these choices the bound (10) implies l/k2 convergence:

AL
(k 1)2

f(xp) = f* d(x*, x0)
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Variable step size

if L is unknown, we take 1 = 1 /6y, where t; is estimate of 1/L, and solve 6, from

tr(1-26 fr_
Op =1, K k):g fork > 1

e to find ty, we start at 7, = 7; and backtrack (7; := Btx) until (7) holds

e for each tentative 7, we need to recompute yi.1, Vr+1, Xk+1 t0 evaluate (7)

e since (7) holds for 7, < 1/(L8},), the selected ¢ satisfies 7, > min {7y, B8/L}
e it was shown in lecture 7, equation (3), that
92 1 k—1 4
—= = [_1(1—-9) s k—1 2
(2vio + 2,2, Vi)

[k—1

e if fmin = min {min; #;, B/L} > 0, the bound (10) shows 1/k? convergence:

4/tmin
(k+1)?
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Example

Primal problem (variable x € R")
minimize  f(x) + Amax (A (x) + B)

e f is strongly convex
e A maps n-vector x to m X m symmetric matrix A(x) = x1A1 + - + X, A,

e coefficient matrices Ay, ..., A,, B are symmetric m X m matrices

Dual problem (variable X € §™)
maximize tr(BX) — f*(-A (X))

subjectto tr(X) =1
X>0

A maps symmetric matrix X to n-vector A (X) = (tr(A;X), ..., tr(4,X))
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Bregman proximal mapping

we’'ll apply the generalized proximal gradient method to the dual problem

e kernel is matrix entropy (page 17.11): ¢(X) = tr(X log X) with dom ¢ = S"",

d(X,Y)=tr(XlogX — XlogY —X+7)

e proximal mapping of indicator 6y of the set H = {X | tr(X) =1} is

—A +logY
argmin (tr(AX) +d(X,Y)) = exp(=A +log¥)
tr(X)=1 tr(exp(—A +logY))

exponential and logarithm of symmetric matrix are defined as

logU = > (logA)qiq;,  expU = > (expi)qiq]
i i

where U = }; /l,-q,-qiT is eigendecomposition of U
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Example

minimize % ||x[12 + Amax (A (x) + B) maximize tr(BX) — || A (X)]|?
subjectto tr(X)=1, X >0

e randomly generated data with m = 200, n = 100

e basic and accelerated method, with the same, fixed step size

— Bregman prox. gradient ||
— accelerated method |
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