L. Vandenberghe ECE236C (Spring 2022)

# 18. Generalized proximal gradient method

- proximal gradient method with Bregman distance
- accelerated proximal gradient method

# Generalized proximal gradient method

- we extend the proximal gradient method of lecture 4 to Bregman distances
- the method applies to convex optimization problems with differentiable term g:

minimize 
$$f(x) = g(x) + h(x)$$

**Algorithm:** start at  $x_0 \in \text{dom } f \cap \text{int}(\text{dom } \phi)$  and repeat

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left( g(x_k) + \nabla g(x_k)^T (x - x_k) + h(x) + \frac{1}{t_k} d(x, x_k) \right)$$
$$= \underset{t_k}{\operatorname{prox}} d_{t_k}(x_k, t_k \nabla g(x_k))$$

 $t_k$  is a positive step size, fixed or selected by line search

# **Assumptions**

minimize 
$$f(x) = g(x) + h(x)$$

• h is convex and  $\operatorname{prox}_{th}^d$  is well defined: for every  $x \in \operatorname{int} (\operatorname{dom} \phi)$  and every a,

minimize 
$$h(u) + a^T u + \frac{1}{t} d(u, x)$$

has a unique solution  $\operatorname{prox}_{th}^d(x, ta) \in \operatorname{int} (\operatorname{dom} \phi)$ 

- g is convex and differentiable with  $dom \phi \subseteq dom g$
- the function  $L\phi g$  is convex, for some L > 0; equivalently,

$$g(x) \le g(y) + \nabla g(y)^T (x - y) + Ld(x, y)$$
 for all  $(x, y) \in \text{dom } d$  (1)

this is sometimes called *relative smoothness* 

• the optimal value  $f^*$  is finite and attained at  $x^* \in \text{dom } \phi$ 

#### Consequence of relative smoothness

• the following inequality holds if  $0 < t_k \le 1/L$ :

$$g(x_{k+1}) \le g(x_k) + \nabla g(x_k)^T (x_{k+1} - x_k) + \frac{1}{t_k} d(x_{k+1}, x_k)$$
 (2)

• if this inequality holds, then for all  $x \in \text{dom } f \cap \text{dom } \phi$ ,

$$f(x_{k+1}) \leq g(x_k) + \nabla g(x_k)^T (x_{k+1} - x_k) + h(x_{k+1}) + \frac{1}{t_k} d(x_{k+1}, x_k)$$

$$\leq g(x_k) + \nabla g(x_k)^T (x - x_k) + h(x) + \frac{1}{t_k} (d(x, x_k) - d(x, x_{k+1}))$$

$$\leq f(x) + \frac{1}{t_k} (d(x, x_k) - d(x, x_{k+1}))$$
(3)

2nd line is optimality condition for  $\operatorname{prox}_{t_k h}^d$  on p.17.21; 3rd line is convexity of g

#### **Descent properties**

• substituting  $x = x_k$  in (3) shows that

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{t_k} d(x_k, x_{k+1})$$
  
$$\leq f(x_k)$$

strict inequality holds if  $x_k \neq x_{k+1}$  and the kernel  $\phi$  is strictly convex

• substituting  $x = x^*$  in (3) shows that

$$d(x^*, x_{k+1}) - d(x^*, x_k) \le t_k (f^* - f(x_{k+1}))$$
< 0

### **Convergence of function values**

suppose (2) holds at every iteration

$$(\sum_{i=0}^{k-1} t_i)(f(x_k) - f^*) \leq \sum_{i=1}^{k} t_{i-1}(f(x_i) - f^*)$$

$$\leq \sum_{i=1}^{k} (d(x^*, x_{i-1}) - d(x^*, x_i))$$

$$= d(x^*, x_0) - d(x^*, x_k)$$

$$\leq d(x^*, x_0)$$

- first inequality holds because function values  $f(x_i)$  are non-increasing
- second inequality is (4)

this shows that

$$f(x_k) - f^* \le \frac{d(x^*, x_0)}{\sum_{i=0}^{k-1} t_i}$$

### Step size selection

**Fixed step size:** for  $t_i = 1/L$ , the upper bound on the previous page is

$$f(x_k) - f^* \le \frac{Ld(x^*, x_0)}{k}$$

**Line search:** start at  $t_k = \hat{t}$ , backtrack ( $t_k := \beta t_k$ , with  $\beta \in (0, 1)$ ) until (2) holds

• since (2) holds for  $t_k \leq 1/L$ , the selected step size satisfies

$$t_k \ge t_{\min} = \min\{\hat{t}, \beta/L\}$$

• the upper bound on the previous page implies that

$$f(x_k) - f^* \le \frac{d(x^*, x_0)}{kt_{\min}}$$

#### **Outline**

- proximal gradient method with Bregman distance
- accelerated proximal gradient method

### Accelerated proximal gradient method

we discuss a Bregman distance variant of FISTA (p. 7.8) for the problem on p. 18.2

**Algorithm:** start at  $x_0 = v_0 \in \text{dom } f \cap \text{int}(\text{dom } \phi)$ , and repeat for  $k = 0, 1, \ldots$ :

$$y_{k+1} = x_k + \theta_k(v_k - x_k)$$

$$v_{k+1} = \underset{v}{\operatorname{argmin}} (h(v) + \nabla g(y_{k+1})^T v + \frac{1}{\tau_k} d(v, v_k))$$

$$x_{k+1} = x_k + \theta_k(v_{k+1} - x_k)$$

- step 2 can be written as  $v_{k+1} = \text{prox}_{\tau_k h}^d(v_k, \tau_k \nabla g(y_{k+1}))$
- choice of parameters  $\theta_k \in (0, 1]$ ,  $\tau_k > 0$  will be discussed on page 18.16
- known as the improved interior gradient algorithm (Auslender & Teboulle, 2006)
- Bregman extension of a gradient projection method by Nesterov (1988)

# Feasibility of the iterates

step 2 requires that  $\nabla g(y_{k+1})$  exists and that  $v_k \in \operatorname{int}(\operatorname{dom} \phi)$ 

$$y_{k+1} = \theta_k v_k + (1 - \theta_k) x_k$$

$$v_{k+1} = \underset{v}{\operatorname{argmin}} (h(v) + \nabla g(y_{k+1})^T v + \frac{1}{\tau_k} d(v, v_k))$$

$$x_{k+1} = \theta_k v_{k+1} + (1 - \theta_k) x_k$$

suppose  $x_0 = v_0 \in \text{dom } f \cap \text{int}(\text{dom } \phi)$  and  $\text{dom } \phi \subseteq \text{dom } g$ 

- step 1:  $y_{k+1}$  is a convex combination of  $v_k$  and  $x_k$
- step 2:  $v_{k+1} \in \text{dom } h \cap \text{int}(\text{dom } \phi)$ , by assumption that  $\text{prox}_{\tau_k h}^d$  is well defined
- step 3:  $x_{k+1}$  is a convex combination of  $v_{k+1}$  and  $x_k$

hence, the sequences  $y_k$ ,  $v_k$ ,  $x_k$  remain in dom  $f \cap \operatorname{int}(\operatorname{dom} \phi)$ 

#### **Quadratic kernel**

for the quadratic distance  $d(x, y) = \frac{1}{2}||x - y||_2^2$  the algorithm can be written as

$$y_{k+1} = x_k + \theta_k(v_k - x_k) \tag{5a}$$

$$v_{k+1} = \operatorname{prox}_{\tau_k h}(v_k - \tau_k \nabla g(y_{k+1}))$$
 (5b)

$$x_{k+1} = x_k + \theta_k(v_{k+1} - x_k)$$
 (5c)

• compare with FISTA (page 7.8): same y-update, different x-, v-updates

$$y_{k+1} = x_k + \theta_k(v_k - x_k) \tag{6a}$$

$$x_{k+1} = \text{prox}_{t_k h}(y_{k+1} - t_k \nabla g(y_{k+1}))$$
 (6b)

$$v_{k+1} = x_k + \frac{1}{\theta_k}(x_{k+1} - x_k)$$
 (6c)

- if h = 0 and  $t_k = \theta_k \tau_k$ , the two methods are equivalent
- if  $h \neq 0$ , points  $v_k$ ,  $y_k$  in (6) may be outside dom h (in contrast to method (5)

# **Assumptions**

minimize 
$$f(x) = g(x) + h(x)$$

we make the same assumptions as on page 18.3 with one difference

•  $\nabla g$  is L-Lipschitz continuous for some norm  $\|\cdot\|$ :

$$g(x) \le g(y) + \nabla g(y)^T (x - y) + \frac{L}{2} ||x - y||^2$$
 for all  $x, y \in \text{dom } g$ 

• the Bregman kernel  $\phi$  is 1-strongly convex with respect to the same norm:

$$d(x, y) \ge \frac{1}{2} ||x - y||^2$$
 for all  $(x, y) \in \text{dom } d$ 

these two assumptions replace the relative smoothness assumption on page 18.3:

$$g(x) \le g(y) + \nabla g(y)^T (x - y) + Ld(x, y)$$

### **Consequence of Lipschitz continuity of gradient**

• the following inequality holds if  $0 < \tau_k \le 1/(L\theta_k)$ :

$$g(x_{k+1}) \leq (1 - \theta_k)g(x_k) + \theta_k \left( g(y_{k+1}) + \nabla g(y_{k+1})^T (v_{k+1} - y_{k+1}) + \frac{1}{\tau_k} d(v_{k+1}, v_k) \right)$$
(7)

• if this inequality holds, then for all  $x \in \text{dom } f \cap \text{dom } \phi$ ,

$$\frac{\tau_{k}}{\theta_{k}} \left( f(x_{k+1}) - f(x) \right) + d(x, v_{k+1}) 
\leq \frac{\tau_{k} (1 - \theta_{k})}{\theta_{k}} \left( f(x_{k}) - f(x) \right) + d(x, v_{k})$$
(8)

(proofs on next pages)

*Proof:* we show that the inequality (7) holds for  $\tau_k = 1/(L\theta_k)$ 

- we use notation  $x^+ = x_{k+1}$ ,  $x = x_k$ ,  $v^+ = v_{k+1}$ ,  $v = v_k$ ,  $y = y_{k+1}$ ,  $\theta = \theta_k$
- from the Lipschitz continuity of  $\nabla g$ :

$$g(x^{+}) \le g(y) + \nabla g(y)^{T} (x^{+} - y) + \frac{L}{2} ||x^{+} - y||^{2}$$

• from steps 1 and 2 in the algorithm,  $\theta(v^+ - v) = x^+ - y$ :

$$g(x^{+}) \le g(y) + \nabla g(y)^{T} (x^{+} - y) + \frac{L\theta^{2}}{2} ||v^{+} - v||^{2}$$

from strong convexity of the Bregman kernel:

$$g(x^{+}) \leq g(y) + \nabla g(y)^{T}(x^{+} - y) + L\theta^{2}d(v^{+}, v)$$

• from step 3 in the algorithm,  $x^+ = (1 - \theta)x + \theta v^+$ :

$$g(x^{+}) \le g(y) + (1 - \theta)\nabla g(y)^{T}(x - y) + \theta\nabla g(y)^{T}(v^{+} - y) + L\theta^{2}d(v^{+}, v)$$

• inequality (7) now follows from  $g(y) + \nabla g(y)^T (x - y) \le g(x)$  (convexity of g)

*Proof:* we show that (7) implies that (8) holds for all  $x \in \text{dom } f \cap \text{dom } \phi$ 

• the optimality condition for the prox evaluation in step 2 of the algorithm is

$$h(v_{k+1}) \le h(x) + \nabla g(y_{k+1})^T (x - v_{k+1}) + \frac{1}{\tau_k} \left( d(x, v_k) - d(x, v_{k+1}) - d(v_{k+1}, v_k) \right)$$

• from Jensen's inequality and  $x_{k+1} = (1 - \theta_k)x_k + \theta_k v_{k+1}$ :

$$h(x_{k+1}) \le (1 - \theta_k)h(x_k)$$

$$+ \theta_k \left( h(x) + \nabla g(y_{k+1})^T (x - v_{k+1}) + \frac{1}{\tau_k} \left( d(x, v_k) - d(x, v_{k+1}) - d(v_{k+1}, v_k) \right) \right)$$

• combine this with (7):

$$f(x_{k+1}) \le (1 - \theta_k) f(x_k)$$

$$+ \theta_k \left( h(x) + g(y_{k+1}) + \nabla g(y_{k+1})^T (x - y_{k+1}) + \frac{1}{\tau_k} (d(x, v_k) - d(x, v_{k+1})) \right)$$

• from convexity of g:

$$f(x_{k+1}) \le (1 - \theta_k)f(x_k) + \theta_k \left( f(x) + \frac{1}{\tau_k} (d(x, v_k) - d(x, v_{k+1})) \right)$$

#### **Parameter selection**

• the parameters  $\theta_k \in (0, 1]$ ,  $\tau_k > 0$  will be chosen to satisfy (7) and

$$\theta_0 = 1, \qquad \frac{\tau_k(1 - \theta_k)}{\theta_k} \le \frac{\tau_{k-1}}{\theta_{k-1}} \quad \text{for } k \ge 1$$
 (9)

• this allows us to combine the inequalities (8) at  $x = x^*$  recursively to obtain

$$\frac{\tau_{k-1}}{\theta_{k-1}}(f(x_k) - f(x^*)) + d(x^*, v_k) \leq \frac{\tau_0}{\theta_0}(f(x_1) - f(x^*)) + d(x^*, v_1) 
\leq \frac{\tau_0(1 - \theta_0)}{\theta_0}(f(x_0) - f(x^*)) + d(x^*, v_0) 
= d(x^*, x_0))$$

hence,

$$f(x_k) - f^{\star} \le \frac{\theta_{k-1}}{\tau_{k-1}} d(x^{\star}, x_0) \tag{10}$$

### Fixed step size

if L is known, we choose  $\tau_k = 1/(L\theta_k)$  and  $\theta_k$  that satisfies

$$\theta_0 = 1,$$
  $\frac{\theta_k^2}{1 - \theta_k} \ge \theta_{k-1}^2$  for  $k \ge 1$ 

- a simple choice is  $\theta_k = 2/(k+2)$
- alternatively, find the smallest allowable  $\theta_k$  by solving  $\theta_k^2/(1-\theta_k)=\theta_{k-1}^2$ :

$$\theta_0 = 1, \qquad \theta_k = \frac{-\theta_{k-1}^2 + \sqrt{\theta_{k-1}^4 + 4\theta_{k-1}^2}}{2}, \quad k \ge 1$$

with these choices the bound (10) implies  $1/k^2$  convergence:

$$f(x_k) - f^* \le \frac{4L}{(k+1)^2} d(x^*, x_0)$$

#### Variable step size

if L is unknown, we take  $\tau_k = t_k/\theta_k$ , where  $t_k$  is estimate of 1/L, and solve  $\theta_k$  from

$$\theta_0 = 1,$$
  $\frac{t_k(1 - \theta_k)}{\theta_k^2} = \frac{t_{k-1}}{\theta_{k-1}^2}$  for  $k \ge 1$ 

- to find  $t_k$ , we start at  $t_k = \hat{t}_k$  and backtrack  $(t_k := \beta t_k)$  until (7) holds
- for each tentative  $t_k$ , we need to recompute  $y_{k+1}$ ,  $v_{k+1}$ ,  $x_{k+1}$  to evaluate (7)
- since (7) holds for  $\tau_k \leq 1/(L\theta_k)$ , the selected  $t_k$  satisfies  $t_k \geq \min\{\hat{t}_k, \beta/L\}$
- it was shown in lecture 7, equation (3), that

$$\frac{\theta_{k-1}^2}{t_{k-1}} = \frac{1}{t_0} \prod_{i=1}^{k-1} (1 - \theta_i) \le \frac{4}{(2\sqrt{t_0} + \sum_{i=1}^{k-1} \sqrt{t_i})^2}$$

• if  $t_{\min} = \min \{ \min_i \hat{t}_i, \beta/L \} > 0$ , the bound (10) shows  $1/k^2$  convergence:

$$f(x_k) - f^* \le \frac{4/t_{\min}}{(k+1)^2} d(x^*, x_0)$$

### **Example**

#### **Primal problem** (variable $x \in \mathbb{R}^n$ )

minimize 
$$f(x) + \lambda_{\max}(\mathcal{A}(x) + B)$$

- *f* is strongly convex
- $\mathcal{A}$  maps n-vector x to  $m \times m$  symmetric matrix  $\mathcal{A}(x) = x_1 A_1 + \cdots + x_n A_n$
- coefficient matrices  $A_1, \ldots, A_n, B$  are symmetric  $m \times m$  matrices

#### **Dual problem** (variable $X \in \mathbf{S}^m$ )

maximize 
$$\operatorname{tr}(BX) - f^*(-\mathcal{A}^{\operatorname{adj}}(X))$$
  
subject to  $\operatorname{tr}(X) = 1$   
 $X \ge 0$ 

 $\mathcal{A}^{\mathrm{adj}}$  maps symmetric matrix X to n-vector  $\mathcal{A}^{\mathrm{adj}}(X) = (\mathrm{tr}(A_1X), \dots, \mathrm{tr}(A_nX))$ 

### **Bregman proximal mapping**

we'll apply the generalized proximal gradient method to the dual problem

• kernel is matrix entropy (page 17.11):  $\phi(X) = \operatorname{tr}(X \log X)$  with  $\operatorname{dom} \phi = \mathbf{S}_+^m$ ,

$$d(X,Y) = \operatorname{tr}(X \log X - X \log Y - X + Y)$$

• proximal mapping of indicator  $\delta_H$  of the set  $H = \{X \mid \operatorname{tr}(X) = 1\}$  is

$$\underset{\operatorname{tr}(X)=1}{\operatorname{argmin}} \left( \operatorname{tr}(AX) + d(X, Y) \right) = \frac{\exp(-A + \log Y)}{\operatorname{tr}(\exp(-A + \log Y))}$$

exponential and logarithm of symmetric matrix are defined as

$$\log U = \sum_{i} (\log \lambda_i) q_i q_i^T, \qquad \exp U = \sum_{i} (\exp \lambda_i) q_i q_i^T$$

where  $U = \sum_{i} \lambda_{i} q_{i} q_{i}^{T}$  is eigendecomposition of U

#### **Example**

minimize 
$$\frac{1}{2}||x||_2^2 + \lambda_{\max}(\mathcal{A}(x) + B)$$

maximize 
$$\operatorname{tr}(BX) - \frac{1}{2} \|\mathcal{A}^{\operatorname{adj}}(X)\|_2^2$$
  
subject to  $\operatorname{tr}(X) = 1, \ X \ge 0$ 

- randomly generated data with m = 200, n = 100
- basic and accelerated method, with the same, fixed step size



#### References

- A. Auslender and M. Teboulle, *Interior gradient and proximal methods for convex and cone optimization*, SIAM J. Optim. (2006).
- P. Tseng, On accelerated proximal gradient methods for convex-concave optimization (2008). The algorithm on page 18.8 is Algorithm 1 in Tseng's paper.