13. Conjugate gradient method

- conjugate gradient method for linear equations
- complexity
- conjugate gradient method as iterative method
- applications in nonlinear optimization
Unconstrained quadratic minimization

\[
\text{minimize } \quad f(x) = \frac{1}{2} x^T A x - b^T x
\]

with \(A \) symmetric positive definite and \(n \times n \)

- equivalent to solving the linear equation \(A x = b \)
- the residual \(r = b - A x \) is the negative gradient: \(r = -\nabla f(x) \)

Conjugate gradient method (CG)

- invented by Hestenes and Stiefel around 1951
- the most widely used iterative method for solving \(A x = b \), with \(A > 0 \)
- can be extended to non-quadratic unconstrained minimization
Krylov subspaces

Definition: a sequence of subspaces

\[\mathcal{K}_0 = \{0\}, \quad \mathcal{K}_k = \text{span}\{b, Ab, \ldots, A^{k-1}b\} \quad \text{for } k \geq 1 \]

Properties

- subspaces are nested: \(\mathcal{K}_0 \subseteq \mathcal{K}_1 \subseteq \mathcal{K}_2 \subseteq \cdots \)
- dimensions increase by at most one: \(\dim \mathcal{K}_{k+1} - \dim \mathcal{K}_k \) is zero or one
- if \(\mathcal{K}_{k+1} = \mathcal{K}_k \), then \(\mathcal{K}_i = \mathcal{K}_k \) for all \(i \geq k \):

\[A^k b \in \text{span}\{b, Ab, \ldots, A^{k-1}b\} \implies A^i b \in \text{span}\{b, Ab, \ldots, A^{k-1}b\} \quad \text{for } i > k \]
Solution of $Ax = b$

Key property:

$$A^{-1} b \in \mathcal{K}_n$$

this holds even when $\mathcal{K}_n \neq \mathbb{R}^n$

- from Cayley–Hamilton theorem,

$$p(A) = A^n + a_1 A^{n-1} + \cdots + a_n I = 0$$

where $p(\lambda) = \det(\lambda I - A) = \lambda^n + a_1 \lambda^{n-1} + \cdots + a_{n-1} \lambda + a_n$

- multiplying on the right with $A^{-1} b$ shows

$$A^{-1} b = -\frac{1}{a_n} \left(A^{n-1} b + a_1 A^{n-2} b + \cdots + a_{n-1} b \right)$$
Krylov sequence

\[x_k = \arg\min_{x \in K_k} f(x), \quad k = 0, 1, \ldots \]

- from previous page, \(x_n = A^{-1} b \)
- CG method is a recursive method for computing the Krylov sequence \(x_0, x_1, \ldots \)
- we will see there is a simple two-term recurrence

\[x_{k+1} = x_k - t_k \nabla f(x_k) + s_k (x_k - x_{k-1}) \]

Example

\[A = \begin{bmatrix} 1 & 0 \\ 0 & 10 \end{bmatrix}, \quad b = \begin{bmatrix} 10 \\ 10 \end{bmatrix} \]
Residuals of Krylov sequence

\[x_k = \arg\min_{x \in \mathcal{K}_k} f(x), \quad k = 0, 1, \ldots \]

- optimality conditions in definition of Krylov sequence:

\[x_k \in \mathcal{K}_k, \quad \nabla f(x_k) = Ax_k - b \in \mathcal{K}_k^\perp \]

- hence, the residual \(r_k = b - Ax_k \) satisfies

\[r_k \in \mathcal{K}_{k+1}, \quad r_k \in \mathcal{K}_k^\perp \]

the first property follows from \(b \in \mathcal{K}_1 \) and \(x_k \in \mathcal{K}_k \)

the (nonzero) residuals form an orthogonal basis for the Krylov subspaces:

\[\mathcal{K}_k = \text{span}\{r_0, r_1, \ldots, r_{k-1}\}, \quad r_i^T r_j = 0 \quad \text{for} \ i \neq j \]
Conjugate directions

the "steps" $v_i = x_i - x_{i-1}$ in the Krylov sequence (defined for $i \geq 1$) satisfy

$$v_i^T Av_j = 0 \quad \text{for } i \neq j, \quad v_i^T Av_i = v_i^T r_{i-1}$$

(proof on next page)

- the vectors v_i are conjugate: orthogonal for inner product $\langle v, w \rangle = v^T A w$
- in particular, if $v_i \neq 0$, it is linearly independent of v_1, \ldots, v_{i-1}

the (nonzero) vectors v_i form a conjugate basis for the Krylov subspaces:

$$\mathcal{K}_k = \text{span}\{v_1, v_2, \ldots, v_k\}, \quad v_i^T Av_j = 0 \quad \text{for } i \neq j$$
Proof of properties on page 13.7

• assume \(j < i \); we show that \(A v_i \) and \(v_j \) are orthogonal \((v_i^T A v_j = 0)\):

\[
v_j = x_j - x_{j-1} \in \mathcal{K}_j \subseteq \mathcal{K}_{i-1}
\]

and

\[
A v_i = A (x_i - x_{i-1}) = -r_i + r_{i-1} \in \mathcal{K}_{i-1}^\perp
\]

• the expression \(v_i^T A v_i = v_i^T r_{i-1} \) follows from the fact that \(t = 1 \) minimizes

\[
f(x_{i-1} + t v_i) = f(x_{i-1}) + \frac{1}{2} t^2 (v_i^T A v_i) - t (v_i^T r_{i-1}),
\]

since \(x_i = x_{i-1} + v_i \) minimizes \(f \) over the entire subspace \(\mathcal{K}_i \)
Conjugate vectors

it will be convenient to work with a sequence of scaled vectors \(p_k = v_k / \alpha_k \) with

\[
\alpha_k = \frac{v_k^T r_{k-1}}{\|r_{k-1}\|^2_2}
\]

- the scaling factor \(\alpha_k \) was chosen to satisfy

\[
p_k^T r_{k-1} = \|r_{k-1}\|^2_2
\]

- using \(v_k^T A v_k = v_k^T r_{k-1} \) (page 13.7), we can express \(\alpha_k \) as

\[
\alpha_k = \frac{p_k^T r_{k-1}}{p_k^T A p_k} = \frac{\|r_{k-1}\|^2_2}{p_k^T A p_k}
\]

- in this notation, the Krylov sequence and residuals satisfy

\[
x_k = x_{k-1} + \alpha_k p_k, \quad r_k = r_{k-1} - \alpha_k A p_k
\]
Recursion for p_k

the vectors p_1, p_2, \ldots, can be computed recursively as $p_1 = r_0$,

$$p_{k+1} = r_k - \frac{p_k^T A r_k}{p_k^T A p_k} p_k, \quad k = 1, 2, \ldots \quad (1)$$

(proof on next page)

• this can be further simplified using

$$r_k = r_{k-1} - \frac{\|r_{k-1}\|_2^2}{p_k^T A p_k} A p_k \quad \Rightarrow \quad \|r_k\|_2^2 = -\frac{r_k^T A p_k}{p_k^T A p_k} \|r_{k-1}\|_2^2$$

• substituting in the recursion for p_{k+1} gives

$$p_{k+1} = r_k + \frac{\|r_k\|_2^2}{\|r_{k-1}\|_2^2} p_k, \quad k = 1, 2, \ldots$$
Proof of (1): \(p_{k+1} \in \mathcal{K}_{k+1} = \text{span}\{p_1, p_2, \ldots, p_k, r_k\} \), so we can express it as

\[
p_{k+1} = \gamma_1 p_1 + \cdots + \gamma_{k-1} p_{k-1} + \beta p_k + \delta r_k
\]

- \(\delta = 1 \): take inner product with \(r_k \) and use

\[
 r_k^T p_{k+1} = \|r_k\|_2^2, \quad r_k^T p_1 = \cdots = r_k^T p_{k} = 0 \quad (r_k \in \mathcal{K}_k^\perp)
\]

- \(\gamma_1 = \cdots = \gamma_{k-1} = 0 \): take inner products with \(Ap_j \) for \(j \leq k - 1 \), and use

\[
 p_j^T Ap_i = 0 \quad \text{for} \ j \neq i, \quad p_j^T Ar_k = 0
\]

(second equality because \(Ap_j \in \mathcal{K}_{j+1} \subseteq \mathcal{K}_k \) and \(r_k \in \mathcal{K}_k^\perp \))

- hence, \(p_{k+1} = r_k + \beta p_k \); inner product with \(Ap_k \) shows that

\[
\beta = -\frac{p_k^T Ar_k}{p_k^T Ap_k}
\]
Conjugate gradient algorithm

define $x_0 = 0$, $r_0 = b$, and repeat for $k = 0, 1, \ldots$ until r_k is sufficiently small:

1. if $k = 0$, take $p_1 = r_0$; otherwise, take

 $$p_{k+1} = r_k + \frac{\|r_k\|^2_2}{\|r_{k-1}\|^2_2} p_k$$

2. compute

 $$\alpha = \frac{\|r_k\|^2_2}{p_{k+1}^T A p_{k+1}}, \quad x_{k+1} = x_k + \alpha p_{k+1}, \quad r_{k+1} = r_k - \alpha A p_{k+1}$$

main computation per iteration is matrix–vector product $A p_{k+1}$
Outline

- conjugate gradient method for linear equations
- complexity
- conjugate gradient method as iterative method
- applications in nonlinear optimization
Notation

minimize \(f(x) = \frac{1}{2} x^T A x - b^T x \)

Optimal value

\[f(x^\star) = -\frac{1}{2} b^T A^{-1} b = -\frac{1}{2} \| x^\star \|_A^2 \]

Suboptimality at \(x \)

\[f(x) - f^\star = \frac{1}{2} \| x - x^\star \|_A^2 \]

Relative error measure

\[\tau = \frac{f(x) - f^\star}{f(0) - f^\star} = \frac{\| x - x^\star \|_A^2}{\| x^\star \|_A^2} \]

here, \(\| u \|_A = (u^T A u)^{1/2} \) is \(A \)-weighted norm
Error after k steps

- $x_k \in \mathcal{K}_k = \text{span}\{b, Ab, \ldots, A^{k-1}b\}$, so x_k can be expressed as

$$x_k = \sum_{i=1}^{k} c_i A^{i-1}b = p(A)b$$

where $p(\lambda) = \sum_{i=1}^{k} c_i \lambda^{i-1}$ is a polynomial of degree $k - 1$ or less

- x_k minimizes $f(x)$ over \mathcal{K}_k; hence

$$2(f(x_k) - f^*) = \inf_{x \in \mathcal{K}_k} \|x - x^*\|^2_A = \inf_{\deg p < k} \|(p(A) - A^{-1})b\|^2_A$$

we now use the eigenvalue decomposition of A to bound this quantity
Error and spectrum of A

- eigenvalue decomposition of A

$$A = QΛQ^T = \sum_{i=1}^{n} \lambda_i q_i q_i^T \quad (Q^T Q = I, \quad Λ = \text{diag}(λ_1, \ldots, λ_n))$$

- define $d = Q^T b$

the expression on the previous page simplifies to

$$2(f(x_k) - f^*) = \inf_{\text{deg } p < k} \|p(A) - A^{-1}) b\|_A^2$$

$$= \inf_{\text{deg } p < k} \|p(Λ) - Λ^{-1}) d\|_Λ^2$$

$$= \inf_{\text{deg } p < k} \sum_{i=1}^{n} \frac{(λ_i p(λ_i) - 1)^2 d_i^2}{λ_i}$$

$$= \inf_{\text{deg } q \leq k, q(0)=1} \sum_{i=1}^{n} \frac{q(λ_i)^2 d_i^2}{λ_i}$$
Error bounds

Absolute error

\[f(x_k) - f^* \leq \left(\sum_{i=1}^{n} \frac{d_i^2}{2\lambda_i} \right) \inf_{\text{deg } q \leq k, \ q(0)=1} \max_{i=1,\ldots,n} q(\lambda_i)^2 \]

\[= \frac{1}{2} \|x^*\|^2_A \inf_{\text{deg } q \leq k, \ q(0)=1} \max_{i=1,\ldots,n} q(\lambda_i)^2 \]

the equality follows from \(\sum_i d_i^2 / \lambda_i = b^T A^{-1} b = \|x^*\|^2_A \)

Relative error

\[\tau_k = \frac{\|x_k - x^*\|^2_A}{\|x^*\|^2_A} \leq \inf_{\text{deg } q \leq k, \ q(0)=1} \max_{i=1,\ldots,n} q(\lambda_i)^2 \]
Convergence rate and spectrum of A

- if A has m distinct eigenvalues $\gamma_1, \ldots, \gamma_m$, CG terminates in m steps:

 $$q(\lambda) = \frac{(-1)^m}{\gamma_1 \cdots \gamma_m} (\lambda - \gamma_1) \cdots (\lambda - \gamma_m)$$

 satisfies $\text{deg } q = m$, $q(0) = 1$, $q(\lambda_1) = \cdots = q(\lambda_n) = 0$; therefore $\tau_m = 0$

- if eigenvalues are clustered in m groups, then τ_m is small

 can find $q(\lambda)$ of degree m, with $q(0) = 1$, that is small on spectrum

- if x^* is a linear combination of m eigenvectors, CG terminates in m steps

 take q of degree m with $q(\lambda_i) = 0$ where $d_i \neq 0$; then

 $$\sum_{i=1}^{n} \frac{q(\lambda_i)^2 d_i^2}{\lambda_i} = 0$$
Other bounds

we omit the proofs of the following results

- in terms of condition number \(\kappa = \lambda_{\text{max}} / \lambda_{\text{min}} \)

\[
\tau_k \leq 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^k
\]

derived by taking for \(q \) a Chebyshev polynomial on \([\lambda_{\text{min}}, \lambda_{\text{max}}]\)

- in terms of sorted eigenvalues \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \)

\[
\tau_k \leq \left(\frac{\lambda_k - \lambda_n}{\lambda_k + \lambda_n} \right)^2
\]

derived by taking \(q \) with roots at \(\lambda_1, \ldots, \lambda_{k-1} \) and \((\lambda_1 + \lambda_n)/2\)
Outline

• conjugate gradient method for linear equations

• complexity

• conjugate gradient method as iterative method

• applications in nonlinear optimization
Conjugate gradient method as iterative method

In exact arithmetic

- CG was originally proposed as a direct (non-iterative) method
- in theory, terminates in at most n steps

In practice

- due to rounding errors, CG method can take many more than n steps (or fail)
- CG is now used as an iterative method
- with luck (good spectrum of A), good approximation in small number of steps
- attractive if matrix–vector products are inexpensive
Preconditioning

• make change of variables $y = Bx$ with B nonsingular, and apply CG to

$$B^{-T}AB^{-1}y = B^{-T}b$$

• if spectrum of $B^{-T}AB^{-1}$ is clustered, PCG converges fast

• trade-off between enhanced convergence, cost of extra computation

• the matrix $C = B^T B$ is called the *preconditioner*

Examples

• diagonal $C = \text{diag}(A_{11}, A_{22}, \ldots, A_{nn})$

• incomplete or approximate Cholesky factorization of A

• good preconditioners are often application-dependent
Naive implementation

apply algorithm of page 13.12 to $\tilde{A}y = \tilde{b}$ where $\tilde{A} = B^{-T}AB^{-1}$ and $\tilde{b} = B^{-T}b$

Algorithm:

define $y_0 = 0$, $\tilde{r}_0 = \tilde{b}$, and repeat for $k = 0, 1, \ldots$ until \tilde{r}_k is sufficiently small:

1. if $k = 0$, take $\tilde{p}_1 = \tilde{r}_0$; otherwise, take

 $\tilde{p}_{k+1} = \tilde{r}_k + \frac{||\tilde{r}_k||^2}{||\tilde{r}_{k-1}||^2} \tilde{p}_k$

2. compute

 $\alpha = \frac{||\tilde{r}_k||^2}{\tilde{p}_{k+1}^T \tilde{A} \tilde{p}_{k+1}}$, $y_{k+1} = y_k + \alpha \tilde{p}_{k+1}$, $\tilde{r}_{k+1} = \tilde{r}_k - \alpha \tilde{A} \tilde{p}_{k+1}$
Improvements

• instead of y_k, \tilde{p}_k compute iterates and steps in original coordinates

$$x_k = B^{-1}y_k, \quad p_k = B^{-1}\tilde{p}_k$$

• compute residuals in original coordinates:

$$r_k = B^T\tilde{r}_k = b - Ax_k$$

• compute squared residual norms as

$$\|\tilde{r}_k\|_2^2 = r_k^T C^{-1}r_k$$

• extra work per iteration is solving one equation to compute $C^{-1}r_k$
Preconditioned conjugate gradient algorithm

define $x_0 = 0$, $r_0 = b$, and repeat for $k = 0, 1, \ldots$ until r_k is sufficiently small:

1. solve the equation $Cs_k = r_k$

2. if $k = 0$, take $p_1 = s_0$; otherwise, take

$$ p_{k+1} = s_k + \frac{r_k^T s_k}{r_{k-1}^T s_{k-1}} p_k $$

3. compute

$$ \alpha = \frac{r_k^T s_k}{p_{k+1}^T A p_{k+1}}, \quad x_{k+1} = x_k + \alpha p_{k+1}, \quad r_{k+1} = r_k - \alpha A p_{k+1} $$
Outline

• conjugate gradient method for linear equations
• complexity
• conjugate gradient method as iterative method
• applications in nonlinear optimization
Applications in optimization

Inexact and truncated Newton methods

- use conjugate gradient method to compute (approximate) Newton step
- less reliable than exact Newton methods, but handle very large problems

Nonlinear conjugate gradient methods

- extend linear CG method to nonquadratic functions
- local convergence similar to linear CG
- limited global convergence theory
Nonlinear conjugate gradient

minimize $f(x)$

f convex and differentiable

Modifications needed to extend linear CG algorithm of page 13.12

- replace $r_k = b - Ax_k$ with $-\nabla f(x_k)$

- determine step size α by line search
Fletcher–Reeves CG algorithm

CG algorithm of page 13.12 modified to minimize non-quadratic convex f

Algorithm: choose x_0 and repeat for $k = 0, 1, \ldots$ until $\nabla f(x_k)$ is sufficiently small:

1. if $k = 0$, take $p_1 = -\nabla f(x_0)$; otherwise, take

 $$p_{k+1} = -\nabla f(x_k) + \beta_k p_k$$

 where

 $$\beta_k = \frac{\|\nabla f(x_k)\|^2}{\|\nabla f(x_k-1)\|^2}$$

2. update $x_{k+1} = x_k + \alpha_k p_{k+1}$ where

 $$\alpha_k = \arg\min_\alpha f(x_k + \alpha p_{k+1})$$
Some observations

Interpretation

- first iteration is a gradient step
- general update is gradient step with momentum term

\[x_{k+1} = x_k - \alpha_k \nabla f(x_k) + \frac{\alpha_k \beta_k}{\alpha_{k-1}} (x_k - x_{k-1}) \]

- it is common to restart the algorithm periodically by taking a gradient step

Line search

- with exact line search, reduces to linear CG for quadratic \(f \)
- exact line search in computation of \(\alpha_{k-1} \) implies that \(\nabla f(x_k)^T p_k = 0 \)
- therefore \(p_{k+1} \) is a descent direction at \(x_k \):

\[
\nabla f(x_k)^T p_{k+1} = -\| \nabla f(x_k) \|_2^2 + \beta_k \nabla f(x_k)^T p_k \\
= -\| \nabla f(x_k) \|_2^2 < 0
\]
Variations

Polak–Ribièreme: compute β_k from

$$\beta_k = \frac{\nabla f(x_k)^T (\nabla f(x_k) - \nabla f(x_{k-1}))}{\|\nabla f(x_{k-1})\|_2^2}$$

Hestenes–Stiefel: compute β_k from

$$\beta_k = \frac{\nabla f(x_k)^T (\nabla f(x_k) - \nabla f(x_{k-1}))}{p_k^T (\nabla f(x_k) - \nabla f(x_{k-1}))}$$

formulas are equivalent for quadratic f and exact line search
References