L. Vandenberghe ECE236C (Spring 2022)

13. Conjugate gradient method

e conjugate gradient method for linear equations
e complexity
e conjugate gradient method as iterative method

e applications in nonlinear optimization
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Unconstrained quadratic minimization

minimize f(x) = %xTAx ~bl'x
with A symmetric positive definite and n X n

e equivalent to solving the linear equation Ax = b

e the residual r = b — Ax is the negative gradient: r = -V f(x)

Conjugate gradient method (CG)

e invented by Hestenes and Stiefel around 1951
e the most widely used iterative method for solving Ax = b, with A > 0

e can be extended to non-quadratic unconstrained minimization
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Krylov subspaces

Definition: a sequence of subspaces

Ko = {0}, Ki = span{b, Ab, . .. ,Ak_lb} fork > 1

Properties

e subspaces are nested: Ko C K7 C K C - --
e dimensions increase by at most one: dim Kj,; — dim K}, is zero or one
o if Kiy1 = K, then K; = K foralli > k:

Akp € span{b, Ab, ..., Ak‘lb}

U
A'b € span{b, Ab, ..., A" 1b} fori>k
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Solution of Ax = b

Key property:
A7l € y,

this holds even when %, # R”

e from Cayley—Hamilton theorem,
p(A)=A"+a A"+ +a,l =0
where p(1) =det(Al — A) = A"+ A" ' +-- -+ a,_1A1 +a,

e multiplying on the right with A~'b shows

1
A7lp = —— ( =l gAMb+ an_lb)
dn
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Krylov sequence

Definition
X, = argmin f(x), k=0,1,...
xE?(k

e from previous page, x, = A~!b
e CG method is a recursive method for computing the Krylov sequence xg, x1, ...

e we will see there is a simple two-term recurrence

Xkt = Xk — LV (xk) + sk (xx — xx=1)

Example — ‘ ‘
2, 5

o] 1o ,_| 10 0f - y
10 10 |’ | 10 5l ‘\’9/
_4’7 |

—20 —10 0
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Residuals of Krylov sequence

X, = argmin f(x), k=0,1,...
XE?(k

e optimality conditions in definition of Krylov sequence:

xp € Ko  Vf(xp) =Axg —b e K-

e hence, the residual r, = b — Axj, satisfies
ry € 7(]{4_1, rp € 7(;‘
the first property follows from b € K| and x; € K}

the (nonzero) residuals form an orthogonal basis for the Krylov subspaces:

T
i

Ki = span{ro,ri,...,rp_1} fork > 1, riri=0 fori#j
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Conjugate directions

the “steps” v; = x; — x;_1 in the Krylov sequence (defined fori > 1) satisfy
viTAvj =0 fori# ], viTAvl- = viTr,-_l
(proof on next page)

e the vectors v; are conjugate: orthogonal for inner product (v, w) = v! Aw

e in particular, if v; # 0, it is linearly independent of vy, ..., v;_4

the (nonzero) vectors v; form a conjugate basis for the Krylov subspaces:

Ki = span{vy, vo, ..., v} fork >1, vl-TAvj =0 fori#j
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Proof of properties on page 13.7

e assume j < i; we show that Av; and v; are orthogonal (vl.TAv]- = 0):
Vi =X; —Xj-1 € 7(]' C K1

and
1
Avi = A(x; —x;1) = —ri+ri1 € K_,

T

o the expression v} Av; = v! r;_; follows from the fact that # = 1 minimizes

f(ximy +10) = f(xim1) + 517 (0] Avy) = t(v] ri-1),

since x; = x;_1 + v; minimizes f over the entire subspace K;
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Conjugate vectors
it will be convenient to work with a sequence of scaled vectors p; = v /ay with

@ = U{”k—l
Ire-1113

e the scaling factor a; was chosen to satisfy
T 2
PrTk-1 = ”rk—l”z
e using v; Avg = v, ri—1 (Page 13.7), we can express oy as

Cppre-r k-l

Qg = =
P APk DLADk

e in this notation, the Krylov sequence and residuals satisfy
Xk = Xg—1+QkPk, Tk =Tk-1 — QAP (2)
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Recursion for p;

the vectors p1, po, ..., can be computed recursively as p; = ry,
T
pkArk
Pkl =Tk ———Pk» k=12, (3)
pkApk

(proof on next page)

e this can be further simplified using (1), (2), and ry L rr_1:

Ilrk-1ll3 ri Apk
2 k 2
rk =ri-1——7—Apk — Irelly = ————lri-1ll3
pkApk pkApk

e substituting in the recursion for py.1 gives

Irill3
+—2 pr, k=1,2,...

Pk+1 =Tk
Irk—1ll5
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Proof of (3): pr+1 € Kis1 = span{p1, p2,..., Pk, Tk}, SO We can express it as
Pk+1 =Y1P1+ "+ Yk-1Pk-1+ Bpi + 07}
e § = 1: take inner product with r; and use

T 2 T T
rePkel = ey, rpr=---=rpe =0 (1 € Ky)

® y1 =--+ =71 = 0: take inner products with Ap; for j < k — 1, and use
pjApi=0 forj#i,  prAr,=0
(second equality because Ap; € K1 € Ky andry € W,j)
e hence, pr+1 =1k + Bpr; inner product with Ap; shows that

Py ATy

8=
PLADK
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Conjugate gradient algorithm

define xo = 0, ro = b, and repeat for k = 0, 1, . . . until r; is sufficiently small:

1. if k =0, take p| = ro; otherwise, take

I3
Pk+1 =Tk +———5 Pk
17 k=1ll5
2. compute
I3
a@=— ., Xk+l =Xk T @Pksl, Tkl =Tk — @APk+1
pk+1Apk+1

main computation per iteration is matrix—vector product Apj+1
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Notation
minimize f(x) = %xTAx —blx
Solution and optimal value
*=AT, = -pTA e = L2

Suboptimality at x
Fx) = f* =4 —x*3

Relative error measure

@ el
FO = > lx*)%

here, ||lul|4 = (ul Au)'/? is A-weighted norm
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Error after k steps

o x; € K =span{b, Ab, ..., A*"1b}, so x; can be expressed as

k
c;A7b = p(A)b

Xk —
=1

where p(1) = Zl’.‘zl c;A'~ 1 is a polynomial of degree k — 1 or less

e x; minimizes f(x) over K}; hence

* _ s 1 * 2 1 -1 2
F) = = inf Hle—xtl = inf 3l(p(4) - A7)l

we now use the eigendecomposition of A to bound this quantity
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Error and spectrum of A

e eigendecomposition of A

n
A=0AQ" => Aiqiq ("0 =1, A=diag(d,...,4,))
i=1

e defined = Qb

the expression on the previous page simplifies to

2(f (xp) = f7)

Conjugate gradient method

inf A) — A~ H p?
st (p(A) ) b4

inf A) — A DH gl
deg}xk 1(p(A) ) d||x
n(Aip(A) = 1) d?

inf Z 1
i

deg p<k i1

noq(A;)?d?

inf Z 1
i

degg<k, q(0)=1 =
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Error bounds

Absolute error

n_ 42
flxp) - f* < (Z j) inf max q(4;)?

i=1 degg<k, q(0)=1 i=1,...n

112 - 2
= 5llx inf max ¢g(A;
2 1l deg g<k, ¢(0)=1 i:1,...,nQ( 2

the equality follows from 3; dl.z//l,- =bTA" D = ||x*||f‘

Relative error

*[12
ek =211
Tk —

i 2
< inf max ¢g(4;)
e*|2 7 degqsk g(0)=1 i=lin
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Convergence rate and spectrum of A

e if A has m distinct eigenvalues vy, ..., vm, CG terminates in m steps:
(=™
q(A) = (A=y1) - (A =Ym)
17" Ym
satisfies degg =m, ¢(0) =1, g(1;) = --- = g(4,) = 0; therefore 7, = 0

e if eigenvalues are clustered in m groups, then 7, is small

can find g(A) of degree m, with ¢g(0) = 1, that is small on spectrum

e if x* is a linear combination of m eigenvectors, CG terminates in m steps

take g of degree m with g(1;) = 0 where d; # 0O; then

" q(A)*d;

Z A =0

i=1
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Other bounds

we omit the proofs of the following results

e in terms of condition number x = Amax/Amin

7 < 2(@1)]{

derived by taking for ¢ a Chebyshev polynomial on [Amin, Amax]

e interms of sorted eigenvalues 4; > A, > --- > 4,

2
Tk < Ak = An
A + A4y,

derived by taking g with roots at Ay, ..., Ay_; and (4] + 4;)/2
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Conjugate gradient method as iterative method

In exact arithmetic

e CG was originally proposed as a direct (non-iterative) method

e in theory, terminates in at most n steps

In practice

e due to rounding errors, CG method can take many more than n steps (or fail)
e CG is now used as an iterative method
e with luck (good spectrum of A), good approximation in small number of steps

e attractive if matrix—vector products are inexpensive
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Preconditioning

e make change of variables y = Bx with B nonsingular, and apply CG to

BTAB 'y =B7Th
e if spectrum of B~ AB~! is clustered, preconditioned CG converges fast

e trade-off between enhanced convergence, cost of extra computation

e the matrix C = B! B is called the preconditioner

Examples

e diagonal C =diag(A;1, A2, ..., Au)
e incomplete or approximate Cholesky factorization of A

e good preconditioners are often application-dependent

Conjugate gradient method
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Naive implementation
apply algorithm of page 13.12t0 Ay = b where A= B TAB ' and b = B~ Tb

Algorithm

define yg = 0, 7y = b, and repeat for k = 0, 1, . .. until 7 is sufficiently small:

1. if k =0, take p| = 7p; otherwise, take

R
Pk+1 =Tk + — > Pk
17r-1l15
2. compute
173 ) L
¥= "= Yi+l = Yk T @Pk+1, P+l =Tk — @AP g+l
pk+1Apk+1
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Improvements

e instead of y, pr compute iterates and steps in original coordinates

xx = By, px = B~ p;

e compute residuals in original coordinates:

ri = BTfk =b — Axy

e compute squared residual norms as

~ 112 T ~—1
17elly = 7 € i

e extra work per iteration is solving one equation to compute Clry
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Preconditioned conjugate gradient algorithm

define xo = 0, ro = b, and repeat for k = 0, 1, . .. until r; is sufficiently small:

1. solve the equation Cs; =1y

2. if k=0, take p1 = sg; otherwise, take

T

r Sk
Pk+1 = Sk T —F Pk
Fe—1%k-1
3. compute
sy
a@=— , Xk4l = X+ APrsds Fk+l =Tk — @APk4]
pk+1Apk+1
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Applications in optimization

Inexact and truncated Newton methods

e use conjugate gradient method to compute (approximate) Newton step

e |ess reliable than exact Newton methods, but handle very large problems

Nonlinear conjugate gradient methods

e extend linear CG method to nonquadratic functions
e local convergence similar to linear CG

e limited global convergence theory
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Nonlinear conjugate gradient

minimize  f(x)

f convex and differentiable

Modifications needed to extend linear CG algorithm of page 13.12
e replace r;y = b — Axy with =V f(xy)

e determine step size «a by line search
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Fletcher—Reeves CG algorithm

CG algorithm of page 13.12 modified to minimize non-quadratic convex f

Algorithm

choose xq and repeat for k =0, 1, ... until V f(x;) is sufficiently small:

1. if k =0, take p; = =V f(x(); otherwise, take

IV £ (xx) 112
Pi+1 =~V [f(xk) + Brpr Where By = ||Vf(xk_1)ﬁ§

2. update xy41 = x; + @ pr+1 Where

aj = argmin f(Xg + @pg+1)
a
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Some observations

Interpretation
e first iteration is a gradient step
e general update is gradient step with momentum term

07951
O)—1

Xk+l =Xp — i Vf(xg) + (Xk — Xk-1)

e it is common to restart the algorithm periodically by taking a gradient step

Line search
e with exact line search, reduces to linear CG for quadratic f
e exact line search in computation of a4_; implies that V £ (xx)! px = 0

e therefore pj.1 is a descent direction at xy:

~IVfxll3 + BiVf () pi

— IV £ xi)ll
< 0
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Variations

Polak—Ribiére: compute §; from

_ V) (VF(xr) = VF(xr-1))
||Vf(xk—1)||§

B

Hestenes—-Stiefel: compute B from

_ V)" (V) = Vf (g-1)
py (Vf(xx) = Vf(xg-1))

B

formulas are equivalent for quadratic f and exact line search
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