3. Conjugate gradient method

- conjugate gradient method for linear equations
- convergence analysis
- conjugate gradient method as iterative method
- applications in nonlinear optimization
Unconstrained quadratic minimization

minimize \(f(x) = \frac{1}{2} x^T A x - b^T x \)

with \(A \in \mathbb{S}^{++}_n \)

- equivalent to solving linear equation \(Ax = b \)
- residual \(r = b - Ax \) is negative gradient: \(r = -\nabla f(x) \)

Conjugate gradient method (CG)

- invented by Hestenes and Stiefel around 1951
- the most widely used iterative method for solving \(Ax = b \), with \(A \succ 0 \)
- can be extended to non-quadratic unconstrained minimization
Krylov subspaces

Definition: a sequence of nested subspaces \((\mathcal{K}_0 \subseteq \mathcal{K}_1 \subseteq \mathcal{K}_2 \subseteq \cdots)\)

\[
\mathcal{K}_0 = \{0\}, \quad \mathcal{K}_k = \text{span}\{b, Ab, \ldots, A^{k-1}b\} \quad \text{for} \ k \geq 1
\]

if \(\mathcal{K}_{k+1} = \mathcal{K}_k\), then \(\mathcal{K}_i = \mathcal{K}_k\) for all \(i \geq k\)

Key property: \(A^{-1}b \in \mathcal{K}_n\) (even when \(\mathcal{K}_n \neq \mathbb{R}^n\))

- from Cayley-Hamilton theorem,

\[
p(A) = A^n + a_1A^{n-1} + \cdots + a_nI = 0
\]

where \(p(\lambda) = \det(\lambda I - A) = \lambda^n + a_1\lambda^{n-1} + \cdots + a_{n-1}\lambda + a_n\)

- therefore

\[
A^{-1}b = -\frac{1}{a_n} \left(A^{n-1}b + a_1A^{n-2}b + \cdots + a_{n-1}b \right)
\]
Krylov sequence

\[x^{(k)} = \arg\min_{x \in \mathcal{K}_k} f(x), \quad k \geq 0 \]

- from previous page, \(x^{(n)} = A^{-1}b \)
- CG is a recursive method for computing the Krylov sequence \(x^{(0)}, x^{(1)}, \ldots \)
- we will see there is a simple two-term recurrence

\[x^{(k+1)} = x^{(k)} - \alpha_k \nabla f(x^{(k)}) + \gamma_k (x^{(k)} - x^{(k-1)}) \]

Example

\[
A = \begin{bmatrix}
1 & 0 \\
0 & 10
\end{bmatrix}, \quad b = \begin{bmatrix}
10 \\
10
\end{bmatrix}
\]
Residuals of Krylov sequence

- optimality conditions in definition of Krylov sequence:

\[x^{(k)} \in \mathcal{K}_k, \quad \nabla f(x^{(k)}) = Ax^{(k)} - b \in \mathcal{K}^\perp_k \]

- hence, the residual \(r_k = b - Ax^{(k)} \) satisfies

\[r_k \in \mathcal{K}_{k+1}, \quad r_k \in \mathcal{K}^\perp_k \]

(the first property follows from \(b \in \mathcal{K}_1 \) and \(x^{(k)} \in \mathcal{K}_k \))

the (nonzero) residuals form an orthogonal basis for the Krylov subspaces:

\[\mathcal{K}_k = \text{span}\{r_0, r_1, \ldots, r_{k-1}\}, \quad r_i^T r_j = 0 \quad (i \neq j) \]
Conjugate directions

the ‘steps’ \(v_i = x^{(i)} - x^{(i-1)} \) in the Krylov sequence satisfy

\[
v_i^T A v_j = 0 \quad \text{for} \quad i \neq j, \quad v_i^T A v_i = v_i^T r_{i-1}
\]

(proof on next page)

- the vectors \(v_i \) are ‘conjugate’: orthogonal for inner product \(\langle v, w \rangle = v^T A w \)
- in particular, if \(v_i \neq 0 \), it is independent of \(v_1, \ldots, v_{i-1} \)

the (nonzero) vectors \(v_i \) form a ‘conjugate’ basis for the Krylov subspaces:

\[
K_k = \text{span}\{v_1, v_2, \ldots, v_k\}, \quad v_i^T A v_j = 0 \quad (i \neq j)
\]
Proof of properties on page 3-6 (assume $j < i$)

- $v_i^T A v_j = 0$ because

$$v_j = x^{(j)} - x^{(j-1)} \in K_j \subseteq K_{i-1}$$

and

$$A v_i = A(x^{(i)} - x^{(i-1)}) = -r_i + r_{i-1} \in K_{i-1}^\perp$$

- the expression $v_i^T A v_i = v_i^T r_{i-1}$ follows from the fact that $t = 1$ minimizes

$$f(x^{(i-1)} + tv_i) = f(x^{(i-1)}) + \frac{1}{2} t^2 v_i^T A v_i - t v_i^T r_{i-1}$$

(since $x^{(i)} = x^{(i-1)} + v_i$ minimizes f over the entire subspace K_i)
Conjugate vectors

instead of v_i, we will work a sequence p_i of scaled vectors v_i:

$$p_i = \frac{\|r_{i-1}\|_2^2}{v_i^T r_{i-1}} v_i$$

- scaling factor is chosen to satisfy $r_{i-1}^T p_i = \|r_{i-1}\|_2^2$; equivalently,

$$-\nabla f(x^{(i-1)})^T p_i = \|\nabla f(x^{(i-1)})\|_2^2$$

- using $v_i^T A v_i = v_i^T r_{i-1}$ (page 3-6), we can write the scaling factor as

$$\frac{\|r_{i-1}\|_2^2}{v_i^T r_{i-1}} = \frac{\|r_{i-1}\|_2^2}{v_i^T A v_i} = \frac{p_i^T A p_i}{\|r_{i-1}\|_2^2}$$

- with this notation we can write the update as

$$x^{(i)} = x^{(i-1)} + \alpha p_i, \quad \alpha = \frac{\|r_{i-1}\|_2^2}{p_i^T A p_i}$$
Recursion for p_k

$p_k \in \mathcal{K}_k = \text{span}\{p_1, p_2, \ldots, p_{k-1}, r_{k-1}\}$, so we can express p_k as

$$p_1 = \delta r_0, \quad p_k = \delta r_{k-1} + \beta p_{k-1} + \sum_{i=1}^{k-2} \gamma_i p_i \quad (k > 1)$$

- $\gamma_1 = \cdots = \gamma_{k-2} = 0$: take inner products with $A p_j$ for $j \leq k - 2$, and use

 $$p_j^T A p_i = 0 \quad \text{for } j \neq i, \quad p_j^T A r_{k-1} = 0$$

 (second equality because $A p_j \in \mathcal{K}_{j+1} \subseteq \mathcal{K}_{k-1}$ and $r_{k-1} \in \mathcal{K}_{k-1}^\perp$)

- $\delta = 1$: take inner product with r_{k-1} and use

 $$r_{k-1}^T p_k = \|r_{k-1}\|^2$$

- hence, $p_k = r_{k-1} + \beta p_{k-1}$; inner product with $A p_{k-1}$ shows that

 $$\beta = -\frac{p_{k-1}^T A r_{k-1}}{p_{k-1}^T A p_{k-1}}$$
Basic conjugate gradient algorithm

Initialize: $x^{(0)} = 0, r_0 = b$

For $k = 1, 2, \ldots$

1. if $k = 1$, take $p_k = r_0$; otherwise, take

 $$p_k = r_{k-1} + \beta p_{k-1} \quad \text{where} \quad \beta = -\frac{p_{k-1}^T A r_{k-1}}{p_{k-1}^T A p_{k-1}}$$

2. compute

 $$\alpha = \frac{||r_{k-1}||^2_2}{p_k^T A p_k}, \quad x^{(k)} = x^{(k-1)} + \alpha p_k, \quad r_k = b - A x^{(k)}$$

 if r_k is sufficiently small, return $x^{(k)}$
Improvements

Step 2: compute residual recursively:

\[r_k = r_{k-1} - \alpha A p_k \]

Step 1: simplify the expression for \(\beta \) by using

\[r_{k-1} = r_{k-2} - \frac{\|r_{k-2}\|^2}{p_{k-1}^T A p_{k-1}} A p_{k-1} \]

taking inner product with \(r_{k-1} \) gives

\[\beta = -\frac{p_{k-1}^T A r_{k-1}}{p_{k-1}^T A p_{k-1}} = \frac{\|r_{k-1}\|^2}{\|r_{k-2}\|^2} \]

this reduces number of matrix-vector products to one per iteration (product \(A p_k \))
Conjugate gradient algorithm

Initialize: \(x^{(0)} = 0, r_0 = b \)

For \(k = 1, 2, \ldots \)

1. if \(k = 1 \), take \(p_k = r_0 \); otherwise, take

\[
p_k = r_{k-1} + \beta p_{k-1} \quad \text{where} \quad \beta = \frac{\| r_{k-1} \|^2_2}{\| r_{k-2} \|^2_2}
\]

2. compute

\[
\alpha = \frac{\| r_{k-1} \|^2_2}{p_k^T A p_k}, \quad x^{(k)} = x^{(k-1)} + \alpha p_k, \quad r_k = r_{k-1} - \alpha A p_k
\]

if \(r_k \) is sufficiently small, return \(x^{(k)} \)
Outline

- conjugate gradient method for linear equations

- convergence analysis

- conjugate gradient method as iterative method

- applications in nonlinear optimization
Notation

minimize \(f(x) = \frac{1}{2} x^T A x - b^T x \)

Optimal value

\[f(x^*) = -\frac{1}{2} b^T A^{-1} b = -\frac{1}{2} \|x^*\|^2_A \]

Suboptimality at \(x \)

\[f(x) - f^* = \frac{1}{2} \|x - x^*\|^2_A \]

Relative error measure

\[\tau = \frac{f(x) - f^*}{f(0) - f^*} = \frac{\|x - x^*\|^2_A}{\|x^*\|^2_A} \]

here, \(\|u\|_A = (u^T A u)^{1/2} \) is \(A \)-weighted norm
Error after k steps

- $x^{(k)} \in \mathcal{K}_k = \text{span}\{b, Ab, A^2b, \ldots, A^{k-1}b\}$, so $x^{(k)}$ can be expressed as

$$x^{(k)} = \sum_{i=1}^{k} c_i A^{i-1}b = p(A)b$$

where $p(\lambda) = \sum_{i=1}^{k} c_i \lambda^{i-1}$ is some polynomial of degree $k - 1$ or less

- $x^{(k)}$ minimizes $f(x)$ over \mathcal{K}_k; hence

$$2(f(x^{(k)}) - f^*) = \inf_{x \in \mathcal{K}_k} \|x - x^*\|^2_A = \inf_{\deg p < k} \|(p(A) - A^{-1})b\|^2_A$$

we now use the eigenvalue decomposition of A to bound this quantity
Error and spectrum of A

- eigenvalue decomposition of A

\[
A = Q\Lambda Q^T = \sum_{i=1}^{n} \lambda_i q_i q_i^T \quad (Q^T Q = I, \quad \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n))
\]

- define $d = Q^T b$

expression on previous page simplifies to

\[
2(f(x^{(k)}) - f^*) = \inf_{\deg p < k} \| (p(A) - A^{-1})b \|_A^2
\]

\[
= \inf_{\deg p < k} \| (p(\Lambda) - \Lambda^{-1}) d \|_{\Lambda}^2
\]

\[
= \inf_{\deg p < k} \sum_{i=1}^{n} \frac{(\lambda_ip(\lambda_i) - 1)^2}{\lambda_i} d_i^2
\]

\[
= \inf_{\deg q \leq k, \quad q(0)=1} \sum_{i=1}^{n} \frac{q(\lambda_i)^2}{\lambda_i} d_i^2
\]
Error bounds

Absolute error

\[f(x^{(k)}) - f^* \leq \left(\sum_{i=1}^{n} \frac{d_i^2}{2\lambda_i} \right) \inf_{\text{deg } q \leq k, \, q(0)=1} \left(\max_{i=1, \ldots, n} q(\lambda_i)^2 \right) = \frac{1}{2} \|x^*\|_A^2 \inf_{\text{deg } q \leq k, \, q(0)=1} \left(\max_{i=1, \ldots, n} q(\lambda_i)^2 \right) \]

(equality follows from \(\sum_i d_i^2 / \lambda_i = b^T A^{-1} b = \|x^*\|_A^2 \))

Relative error

\[\tau_k = \frac{\|x^{(k)} - x^*\|_A^2}{\|x^*\|_A^2} \leq \inf_{\text{deg } q \leq k, \, q(0)=1} \left(\max_{i=1, \ldots, n} q(\lambda_i)^2 \right) \]

Conjugate gradient method
Convergence rate and spectrum of A

- if A has m distinct eigenvalues $\gamma_1, \ldots, \gamma_m$, CG terminates in m steps:

$$q(\lambda) = \frac{(-1)^m}{\gamma_1 \cdots \gamma_m} (\lambda - \gamma_1) \cdots (\lambda - \gamma_m)$$

satisfies $\deg q = m$, $q(0) = 1$, $q(\lambda_1) = \cdots = q(\lambda_n) = 0$; therefore $\tau_m = 0$

- if eigenvalues are clustered in m groups, then τ_m is small

 can find $q(\lambda)$ of degree m, with $q(0) = 1$, that is small on spectrum

- if x^* is a linear combination of m eigenvectors, CG terminates in m steps

 take q of degree m with $q(\lambda_i) = 0$ where $d_i \neq 0$; then

$$\sum_{i=1}^{n} \frac{q(\lambda_i)^2 d_i^2}{\lambda_i} = 0$$
Other bounds

we omit the proofs of the following results

- in terms of condition number $\kappa = \lambda_{\text{max}} / \lambda_{\text{min}}$

 $\tau_k \leq 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^k$

 derived by taking for q a Chebyshev polynomial on $[\lambda_{\text{min}}, \lambda_{\text{max}}]$

- in terms of sorted eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$

 $\tau_k \leq \left(\frac{\lambda_k - \lambda_n}{\lambda_k + \lambda_n} \right)^2$

 derived by taking q with roots at $\lambda_1, \ldots, \lambda_{k-1}$ and $(\lambda_1 + \lambda_n)/2$
Outline

• conjugate gradient method for linear equations

• convergence analysis

• conjugate gradient method as iterative method

• applications in nonlinear optimization
Conjugate gradient method as iterative method

In exact arithmetic

- CG was originally proposed as a direct (non-iterative) method
- in theory, terminates in at most n steps

In practice

- due to rounding errors, CG method can take many more than n steps (or fail)
- CG is now used as an iterative method
- with luck (good spectrum of A), good approximation in small number of steps
- attractive if matrix-vector products are inexpensive
Preconditioning

• make change of variables $y = Bx$ with B nonsingular, and apply CG to

$$B^{-T}AB^{-1}y = B^{-T}b$$

• if spectrum of $B^{-T}AB^{-1}$ is clustered, PCG converges fast

• trade-off between enhanced convergence, cost of extra computation

• the matrix $C = B^TB$ is called the preconditioner

Examples

• diagonal $C = \text{diag}(A_{11}, A_{22}, \ldots, A_{nn})$

• incomplete or approximate Cholesky factorization of A

• good preconditioners are often application-dependent
Naive implementation

define $\tilde{A} = B^{-T}AB^{-1}$ and apply algorithm of page 3-12 to $\tilde{A}y = B^{-T}b$

Initialize: $y^{(0)} = 0, \tilde{r}_0 = B^{-T}b$

For $k = 1, 2, \ldots$

1. if $k = 1$, take $\tilde{p}_k = \tilde{r}_0$; otherwise, take

 $$\tilde{p}_k = \tilde{r}_{k-1} + \beta \tilde{p}_{k-1} \quad \text{where} \quad \beta = \frac{||\tilde{r}_{k-1}||^2_2}{||\tilde{r}_{k-2}||^2_2}$$

2. define $\tilde{A} = B^{-T}AB^{-1}$ and compute

 $$\alpha = \frac{||\tilde{r}_{k-1}||^2_2}{\tilde{p}^T_k \tilde{A} \tilde{p}_k}, \quad y^{(k)} = y^{(k-1)} + \alpha \tilde{p}_k, \quad \tilde{r}_k = \tilde{r}_{k-1} - \alpha \tilde{A} \tilde{p}_k$$

 if \tilde{r}_k is sufficiently small, return $B^{-1}y^{(k)}$
Improvements

• instead of \(y^{(k)} \), \(\tilde{p}_k \) compute iterates and steps in original coordinates

\[
x^{(k)} = B^{-1} y^{(k)}, \quad p_k = B^{-1} \tilde{p}_k,
\]

• compute residuals in original coordinates:

\[
r_k = B^T \tilde{r}_k = b - A x^{(k)}
\]

• compute squared residual norms as

\[
\| \tilde{r}_{k-1} \|_2^2 = r_{k-1}^T C^{-1} r_{k-1}
\]

• extra work per iteration is solving one equation to compute \(C^{-1} r_{k-1} \)
Preconditioned conjugate gradient algorithm

Initialize: \(x^{(0)} = 0, r_0 = b \)

For \(k = 1, 2, \ldots \)

1. solve the equation \(Cs_k = r_{k-1} \)

2. if \(k = 1 \), take \(p_k = s_k \); otherwise, take

\[
p_k = s_k + \beta p_{k-1} \quad \text{where} \quad \beta = \frac{r_{k-1}^T s_k}{r_{k-2}^T s_{k-1}}
\]

3. compute

\[
\alpha = \frac{r_{k-1}^T s_k}{p_k^T A p_k}, \quad x^{(k)} = x^{(k-1)} + \alpha p_k, \quad r_k = r_{k-1} - \alpha A p_k
\]

if \(r_k \) is sufficiently small, return \(x^{(k)} \)
Outline

• conjugate gradient method for linear equations
• convergence analysis
• conjugate gradient method as iterative method
• applications in nonlinear optimization
Applications in optimization

Nonlinear conjugate gradient methods

- extend linear CG method to nonquadratic functions
- local convergence similar to linear CG
- limited global convergence theory

Inexact and truncated Newton methods

- use conjugate gradient method to compute (approximate) Newton step
- less reliable than exact Newton methods, but handle very large problems
Nonlinear conjugate gradient

minimize \(f(x) \)

\((f \text{ convex and differentiable})\)

Modifications needed to extend linear CG algorithm of page 3-12

- replace \(r_k = b - Ax^{(k)} \) with \(-\nabla f(x^{(k)}) \)
- determine \(\alpha \) by line search
Fletcher-Reeves CG algorithm

CG algorithm of page 3-12 modified to minimize non-quadratic convex f

Initialize: choose $x^{(0)}$

For $k = 1, 2, \ldots$

1. if $k = 1$, take $p_1 = -\nabla f(x^{(0)})$; otherwise, take

$$p_k = -\nabla f(x^{(k-1)}) + \beta_k p_{k-1}$$

where

$$\beta_k = \frac{\| \nabla f(x^{(k-1)}) \|^2_2}{\| \nabla f(x^{(k-2)}) \|^2_2}$$

2. update $x^{(k)} = x^{(k-1)} + \alpha_k p_k$ where

$$\alpha_k = \arg\min_{\alpha} f(x^{(k-1)} + \alpha p_k)$$

if $\nabla f(x^{(k)})$ is sufficiently small, return $x^{(k)}$
Some observations

Interpretation

• first iteration is a gradient step

• general update is gradient step with momentum term

\[x^{(k)} = x^{(k-1)} - \alpha_k \nabla f(x^{(k-1)}) + \frac{\alpha_k \beta_k}{\alpha_{k-1}} (x^{(k-1)} - x^{(k-2)}) \]

• it is common to restart the algorithm periodically by taking a gradient step

Line search

• with exact line search, reduces to linear CG for quadratic \(f \)

• exact line search in step 2 implies \(\nabla f (x^{(k)})^T p_k = 0 \)

• therefore in step 1, \(p_k \) is a descent direction at \(x^{(k-1)} \):

\[\nabla f (x^{(k-1)})^T p_k = -\| \nabla f (x^{(k-1)}) \|_2^2 < 0 \]
Variations

Polak-Ribière: in step 1, compute β from

$$\beta = \frac{\nabla f(x^{(k-1)})^T (\nabla f(x^{(k-1)}) - \nabla f(x^{(k-2)}))}{\|\nabla f(x^{(k-2)})\|_2^2}$$

Hestenes-Stiefel

$$\beta = \frac{\nabla f(x^{(k-1)})^T (\nabla f(x^{(k-1)}) - \nabla f(x^{(k-2)}))}{p_{k-1}^T (\nabla f(x^{(k-1)}) - \nabla f(x^{(k-2)}))}$$

formulas are equivalent for quadratic f and exact line search
Interpretation as restarted BFGS method

BFGS update (page 2-5) with $H_{k-1} = I$:

$$H_k^{-1} = I + (1 + \frac{y^T y}{s^T y}) \frac{ss^T}{y^T s} - \frac{ys^T + sy^T}{y^T s}$$

where $y = \nabla f(x^{(k)}) - \nabla f(x^{(k-1)})$ and $s = x^{(k)} - x^{(k-1)}$

- $\nabla f(x^{(k)})^T s = 0$ if $x^{(k)}$ is determined by exact line search
- quasi-Newton step in iteration k is

$$-H_k^{-1} \nabla f(x^{(k)}) = -\nabla f(x^{(k)}) + \frac{y^T \nabla f(x^{(k)})}{y^T s} s$$

this is the Hestenes-Stiefel update

nonlinear CG can be interpreted as L-BFGS with $m = 1$
References

- S. Boyd, Lecture notes for EE364b, Convex Optimization II.

