# **15. Conic optimization**

- conic linear program
- examples
- modeling
- duality

## **Generalized (conic) inequalities**

**Conic inequality:** a constraint  $x \in K$  where K is a convex cone in  $\mathbb{R}^m$ 

we will require that the cone K is **proper**:

- closed
- pointed:  $K \cap (-K) = \{0\}$
- with nonempty interior: int  $K \neq \emptyset$ ; equivalently,  $K + (-K) = \mathbf{R}^m$

**Notation** (for proper K)

$$\begin{array}{lll} x \succeq_{K} y & \iff & x - y \in K \\ x \succ_{K} y & \iff & x - y \in \operatorname{int} K \end{array}$$

## **Inequality notation**

we will use a different convention than in EE236B

Vector inequalities: for  $x, y \in \mathbf{R}^m$ 

- $x > y, x \ge y$  denote componentwise inequality
- $x \succ y, x \succeq y$  denote conic inequality for general (unspecified) proper cone K
- $x \succ_K y, x \succeq_K y$  denote conic inequality for specific K

Matrix inequality: for  $X, Y \in \mathbf{S}^p$ 

 $X \succ Y, \ X \succeq Y$  mean X - Y is positive (semi-)definite

## **Properties of conic inequalities**

preserved by nonnegative linear combinations: if  $x \leq y$  and  $u \leq v$ , then

$$\alpha x + \beta u \preceq \alpha y + \beta v \qquad \forall \alpha, \beta \geq 0$$

#### define a partial order of vectors

- $x \preceq x$
- $x \preceq y \preceq z$  implies  $x \preceq z$
- $x \preceq y$  and  $y \preceq x$  imply y = x

in general, not a *total* order (requires that  $x \leq y$  or  $y \leq x$  for all x, y)

## **Conic linear program**

minimize 
$$c^T x$$
  
subject to  $Ax \preceq b$   
 $Fx = g$ 

•  $A \in \mathbb{R}^{m \times n}$ ,  $F \in \mathbb{R}^{p \times n}$ ; without loss of generality, we can assume

$$\operatorname{\mathbf{rank}}(F) = p, \quad \operatorname{\mathbf{rank}}(\left[\begin{array}{c} A\\ F \end{array}\right]) = n$$

- K is a proper cone in  ${f R}^m$
- for  $K = \mathbf{R}^m_+$ , problem reduces to regular linear program (LP)
- by defining  $K = K_1 \times \cdots \times K_r$ , this can represent multiple conic inequalities

$$A_1 x \preceq_{K_1} b_1, \qquad \dots, \qquad A_r x \preceq_{K_r} b_r$$

## Outline

- conic linear program
- examples
- modeling
- duality

## Norm cones

$$K = \left\{ (x, y) \in \mathbf{R}^{m-1} \times \mathbf{R} \mid ||x|| \le y \right\}$$



for the Euclidean norm this is the second-order cone (notation:  $Q^m$ )

#### Second-order cone program

minimize  $c^T x$ subject to  $\|B_{k0}x + d_{k0}\|_2 \le B_{k1}x + d_{k1}, \quad k = 1, \dots, r$ 

**Conic LP formulation:** express constraints as  $Ax \preceq_K b$ 

$$K = \mathcal{Q}^{m_1} \times \cdots \times \mathcal{Q}^{m_r}, \qquad A = \begin{bmatrix} -B_{10} \\ -B_{11} \\ \vdots \\ -B_{r0} \\ -B_{r1} \end{bmatrix}, \qquad b = \begin{bmatrix} d_{10} \\ d_{11} \\ \vdots \\ d_{r0} \\ d_{r1} \end{bmatrix}$$

(assuming  $B_{k0}$ ,  $d_{k0}$  have  $m_k - 1$  rows)

#### **Vector notation for symmetric matrices**

• vectorized symmetric matrix: for  $U \in \mathbf{S}^p$ 

$$\operatorname{vec}(U) = \sqrt{2} \left( \frac{U_{11}}{\sqrt{2}}, U_{21}, \dots, U_{p1}, \frac{U_{22}}{\sqrt{2}}, U_{32}, \dots, U_{p2}, \dots, \frac{U_{pp}}{\sqrt{2}} \right)$$

• inverse operation: for  $u = (u_1, u_2, \dots, u_n) \in \mathbf{R}^n$  with n = p(p+1)/2

$$mat(u) = \frac{1}{\sqrt{2}} \begin{bmatrix} \sqrt{2}u_1 & u_2 & \cdots & u_p \\ u_2 & \sqrt{2}u_{p+1} & \cdots & u_{2p-1} \\ \vdots & \vdots & & \vdots \\ u_p & u_{2p-1} & \cdots & \sqrt{2}u_{p(p+1)/2} \end{bmatrix}$$

coefficients  $\sqrt{2}$  are added so that standard inner products are preserved:

$$\operatorname{tr}(UV) = \operatorname{vec}(U)^T \operatorname{vec}(V), \qquad u^T v = \operatorname{tr}(\operatorname{mat}(u) \operatorname{mat}(v))$$

#### **Positive semidefinite cone**

$$\mathcal{S}^{p} = \{ \operatorname{vec}(X) \mid X \in \mathbf{S}^{p}_{+} \} = \{ x \in \mathbf{R}^{p(p+1)/2} \mid \operatorname{mat}(x) \succeq 0 \}$$



## Semidefinite program

minimize 
$$c^T x$$
  
subject to  $x_1 A_{11} + x_2 A_{12} + \dots + x_n A_{1n} \preceq B_1$   
 $\dots$   
 $x_1 A_{r1} + x_2 A_{r2} + \dots + x_n A_{rn} \preceq B_r$ 

with  $A_{ij}, B_i \in \mathbf{S}^{p_i}$ 

#### **Conic LP formulation**

$$K = \mathcal{S}^{p_1} \times \mathcal{S}^{p_2} \times \dots \times \mathcal{S}^{p_r}$$
$$A = \begin{bmatrix} \operatorname{vec}(A_{11}) & \operatorname{vec}(A_{12}) & \cdots & \operatorname{vec}(A_{1n}) \\ \operatorname{vec}(A_{21}) & \operatorname{vec}(A_{22}) & \cdots & \operatorname{vec}(A_{2n}) \\ \vdots & \vdots & & \vdots \\ \operatorname{vec}(A_{r1}) & \operatorname{vec}(A_{r2}) & \cdots & \operatorname{vec}(A_{rn}) \end{bmatrix}, \qquad b = \begin{bmatrix} \operatorname{vec}(B_1) \\ \operatorname{vec}(B_2) \\ \vdots \\ \operatorname{vec}(B_r) \end{bmatrix}$$

## **Exponential cone**

the epigraph of the perspective of  $\exp x$  is a non-proper cone

$$K = \left\{ (x, y, z) \in \mathbf{R}^3 \mid y e^{x/y} \le z, \ y > 0 \right\}$$

the exponential cone is  $K_{exp} = \operatorname{cl} K = K \cup \{(x, 0, z) \mid x \leq 0, z \geq 0\}$ 



## **Geometric program**

minimize 
$$c^T x$$
  
subject to  $\log \sum_{k=1}^{n_i} \exp(a_{ik}^T x + b_{ik}) \le 0, \quad i = 1, \dots, r$ 

#### **Conic LP formulation**

minimize 
$$c^T x$$
  
subject to
$$\begin{bmatrix} a_{ik}^T x + b_{ik} \\ 1 \\ z_{ik} \end{bmatrix} \in K_{exp}, \quad k = 1, \dots, n_i, \quad i = 1, \dots, r$$

$$\sum_{k=1}^{n_i} z_{ik} \le 1, \quad i = 1, \dots, m$$

#### **Power cone**

**Definition:** for 
$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m) > 0$$
 and  $\sum_{i=1}^m \alpha_i = 1$ 

$$K_{\alpha} = \left\{ (x, y) \in \mathbf{R}^m_+ \times \mathbf{R} \mid |y| \le x_1^{\alpha_1} \cdots x_m^{\alpha_m} \right\}$$

#### **Examples** for m = 2



Conic optimization

#### **Cones constructed from convex sets**

#### Inverse image of convex set under perspective

$$K = \{(x, y) \in \mathbf{R}^n \times \mathbf{R} \mid y > 0, \ x/y \in C\}$$

- $K \cup \{(0,0)\}$  is a convex cone if C is a convex set
- $\operatorname{cl} K$  is proper if C has nonempty interior, does not contain straight lines

#### Consequence

any convex constraint  $x \in C$  can be represented as a conic inequality

$$x \in C \quad \iff \quad (x,1) \in K$$

(with minor modifications to make K proper)

#### **Cones constructed from functions**

#### Epigraph of perspective of convex function

$$K = \{(x, y, z) \in \mathbf{R}^n \times \mathbf{R} \times \mathbf{R} \mid y > 0, \ yf(x/y) \le z\}$$

- $K \cup \{(0,0,0)\}$  is a convex cone if f is convex
- $\operatorname{cl} K$  is proper if  $\operatorname{int} \operatorname{dom} f \neq \emptyset$ ,  $\operatorname{epi} f$  does not contain straight lines

#### Consequence

can represent any convex constraint  $f(x) \leq t$  as a conic linear inequality

$$f(x) \le t \qquad \Longleftrightarrow \qquad (x, 1, t) \in K$$

(with minor modifications to make K proper)

## Outline

- conic linear program
- examples
- modeling
- duality

## **Modeling software**

#### Modeling packages for convex optimization

- CVX, YALMIP (MATLAB)
- CVXPY, PICOS (Python)
- MOSEK Fusion (different platforms)

assist in formulating convex problems by automating two tasks:

- verifying convexity from convex calculus rules
- transforming problem in input format required by standard solvers

#### **Related packages**

general-purpose optimization modeling: AMPL, GAMS

## Modeling and conic optimization

#### **Convex modeling systems**

- convert problems stated in standard mathematical notation to conic LPs
- in principle, any convex problem can be represented as a conic LP
- in practice, a small set of primitive cones is used ( $\mathbf{R}^{n}_{+}, \mathcal{Q}^{p}, \mathcal{S}^{p}$ )
- choice of cones is limited by available algorithms and solvers (see later)

modeling systems implement set of rules for expressing constraints

$$f(x) \le t$$

as conic inequalities for the implemented cones

#### **Examples of second-order cone representable functions**

• convex quadratic

$$f(x) = x^T P x + q^T x + r \qquad (P \succeq 0)$$

• quadratic-over-linear function

$$f(x,y) = \frac{x^T x}{y}$$
 with dom  $f = \mathbf{R}^n \times \mathbf{R}_+$  (assume  $0/0 = 0$ )

convex powers with rational exponent

$$f(x) = |x|^{\alpha}, \qquad f(x) = \begin{cases} x^{\beta} & x > 0\\ +\infty & x \le 0 \end{cases}$$

for rational  $\alpha \geq 1$  and  $\beta \leq 0$ 

• p-norm  $f(x) = ||x||_p$  for rational  $p \ge 1$ 

#### Conic optimization

#### **Examples of SD cone representable functions**

• matrix-fractional function

 $f(X,y) = y^T X^{-1} y \quad \text{with dom } f = \{ (X,y) \in \mathbf{S}^n_+ \times \mathbf{R}^n \mid y \in \mathcal{R}(X) \}$ 

- maximum eigenvalue of symmetric matrix
- maximum singular value  $f(X) = ||X||_2 = \sigma_1(X)$

$$||X||_2 \le t \quad \Longleftrightarrow \quad \left[ \begin{array}{cc} tI & X\\ X^T & tI \end{array} \right] \succeq 0$$

• nuclear norm  $f(X) = \|X\|_* = \sum_i \sigma_i(X)$ 

$$\|X\|_* \le t \quad \Longleftrightarrow \quad \exists U, V : \begin{bmatrix} U & X \\ X^T & V \end{bmatrix} \succeq 0, \quad \frac{1}{2}(\operatorname{tr} U + \operatorname{tr} V) \le t$$

## Functions representable with exponential and power cone

#### **Exponential cone**

- exponential and logarithm
- entropy  $f(x) = x \log x$

#### **Power cone**

- increasing power of absolute value:  $f(x) = |x|^p$  with  $p \ge 1$
- decreasing power:  $f(x) = x^q$  with  $q \leq 0$  and domain  $\mathbf{R}_{++}$

• p-norm: 
$$f(x) = \|x\|_p$$
 with  $p \ge 1$ 

## Outline

- conic linear program
- examples
- modeling
- duality

## **Dual cone**

$$K^* = \{ y \mid x^T y \ge 0 \text{ for all } x \in K \}$$

**Properties** (if *K* is a proper cone)

- $K^*$  is a proper cone
- $(K^*)^* = K$

• int 
$$K^* = \{y \mid x^T y > 0 \text{ for all } x \in K, x \neq 0\}$$

**Dual inequality:**  $x \succeq_* y$  means  $x \succeq_{K^*} y$  for generic proper cone K

Note: dual cone depends on choice of inner product

## **Examples**

- $\mathbf{R}^{p}_{+}, \mathcal{Q}^{p}, \mathcal{S}^{p}$  are self-dual:  $K = K^{*}$
- dual of norm cone is norm cone for dual norm
- dual of exponential cone

$$K_{\exp}^* = \left\{ (u, v, w) \in \mathbf{R}_- \times \mathbf{R} \times \mathbf{R}^+ \mid -u \log(-u/w) + u - v \le 0 \right\}$$

(with  $0\log(0/w) = 0$  if  $w \ge 0$ )

• dual of power cone is

$$K_{\alpha}^* = \left\{ (u, v) \in \mathbf{R}_+^m \times \mathbf{R} \mid |v| \le (u_1/\alpha_1)^{\alpha_1} \cdots (u_m/\alpha_m)^{\alpha_m} \right\}$$

#### Primal and dual conic LP

**Primal** (optimal value  $p^*$ )

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \preceq b \end{array}$ 

**Dual** (optimal value  $d^*$ )

maximize 
$$-b^T z$$
  
subject to  $A^T z + c = 0$   
 $z \succeq_* 0$ 

Weak duality:  $p^{\star} \geq d^{\star}$  (without exception)

## **Strong duality**

**Main theorem:**  $p^{\star} = d^{\star}$  if primal *or* dual problem is strictly feasible

#### Other implications of strict feasibility

- if primal is strictly feasible, then dual optimum is attained (if  $d^{\star}$  is finite)
- if dual is strictly feasible then primal optimum is attained (if  $p^*$  is finite)

#### Compare with linear programming duality ( $K = \mathbf{R}^m_+$ )

- for an LP, only exception to strong duality is  $p^{\star}=+\infty,\,d^{\star}=-\infty$
- strong duality holds if primal or dual is feasible
- if optimal value is finite then it is attained (in primal and dual)

#### Example with finite nonzero duality gap



optimal value  $p^{\star}=0$ 

Dual problem  
maximize 
$$-z$$
  
subject to  $\begin{bmatrix} Z_{11} & Z_{12} \\ Z_{12} & Z_{22} \end{bmatrix} \succeq 0, \quad z \ge 0$   
 $2Z_{12} + z = 1, \quad Z_{22} = 0$ 

optimal value  $d^{\star} = -1$ 

## **Optimality conditions**

if strong duality holds, then x and z are optimal if and only if

$$\begin{bmatrix} 0\\ s \end{bmatrix} = \begin{bmatrix} 0 & A^T\\ -A & 0 \end{bmatrix} \begin{bmatrix} x\\ z \end{bmatrix} + \begin{bmatrix} c\\ b \end{bmatrix}$$
(1)  
$$s \succeq 0, \qquad z \succeq_* 0, \qquad z^T s = 0$$

**Primal feasibility:** block 2 of (1) and  $s \succeq 0$ 

**Dual feasibility:** block 1 of (1) and  $z \succeq_* 0$ 

**Zero duality gap:** inner product of (x, z) and (0, s) gives

$$z^T s = c^T x + b^T z$$

## Strong theorems of alternative

#### Strict primal feasibility

exactly one of the following two systems is solvable

1. 
$$Ax \prec b$$

**2.**  $A^T z = 0, z \neq 0, z \succeq_* 0, b^T z \le 0$ 

#### Strict dual feasibility

if  $c \in \mathcal{R}(A^T)$ , exactly one of the following two systems is solvable 1.  $Ax \preceq_K 0$ ,  $Ax \neq 0$ ,  $c^T x \leq 0$ 2.  $A^T z + c = 0$ ,  $z \succ_{K^*} 0$ 

solution of one system is a certificate of infeasibility of the other system

## Weak theorems of alternative

#### **Primal feasibility**

at most one of the following two systems is solvable

- 1.  $Ax \leq b$
- **2.**  $A^T z = 0$ ,  $z \succeq_* 0$ ,  $b^T z < 0$

#### **Dual feasibility**

at most one of the following two systems is solvable

- 1.  $Ax \leq 0$ ,  $c^T x < 0$
- **2.**  $A^T z + c = 0, z \succeq_* 0$

these are strong alternatives if a constraint qualification holds

## Self-dual embeddings

#### Idea

embed primal, dual conic LPs into a single (self-dual) conic LP, so that:

- embedded problem is feasible, with known feasible points
- from the solution of the embedded problem, primal and dual solutions of original problem can be constructed, or certificates of primal or dual infeasibility

**Purpose:** a feasible algorithm applied to the embedded problem

- can detect infeasibility in original problem
- does not require a phase I to find initial feasible points

used by some interior-point solvers

#### **Basic self-dual embedding**

$$\begin{array}{ll} \text{minimize} & 0 \\ \text{subject to} & \begin{bmatrix} 0 \\ s \\ \kappa \end{bmatrix} = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix} \begin{bmatrix} x \\ z \\ \tau \end{bmatrix} \\ s \succeq 0, \quad \kappa \ge 0, \quad z \succeq_* 0, \quad \tau \ge 0 \end{array}$$

- a self-dual conic LP
- has a trivial solution (all variables zero)
- $z^T s + \tau \kappa = 0$  for all feasible points (follows from equality constraint)
- hence, problem is not strictly feasible

## **Optimality condition for embedded problem**

$$\begin{bmatrix} 0\\s\\\kappa \end{bmatrix} = \begin{bmatrix} 0 & A^T & c\\-A & 0 & b\\-c^T & -b^T & 0 \end{bmatrix} \begin{bmatrix} x\\z\\\tau \end{bmatrix}$$
$$s \succeq 0, \quad \kappa \ge 0, \quad z \succeq 0, \quad \tau \ge 0$$
$$z^T s + \tau \kappa = 0$$

- follows from self-dual property
- a (mixed) linear complementarity problem

#### **Classification of nonzero solution**

let  $s, \kappa, x, z, \tau$  be a nonzero solution of the self-dual embedding

**Case 1:**  $\tau > 0$ ,  $\kappa = 0$ 

$$\hat{s} = s/\tau, \qquad \hat{x} = x/\tau, \qquad \hat{z} = z/\tau$$

are primal and dual solutions of the conic LPs, *i.e.*, satisfy

$$\begin{bmatrix} 0\\ \hat{s} \end{bmatrix} = \begin{bmatrix} 0 & A^T\\ -A & 0 \end{bmatrix} \begin{bmatrix} \hat{x}\\ \hat{z} \end{bmatrix} + \begin{bmatrix} c\\ b \end{bmatrix}$$
$$\hat{s} \succeq 0, \quad \hat{z} \succeq_* 0, \quad \hat{s}^T \hat{z} = 0$$

#### **Classification of nonzero solution**

Case 2:  $\tau = 0, \kappa > 0$ ; this implies  $c^T x + b^T z < 0$ 

• if  $b^T z < 0$ , then  $\hat{z} = z/(-b^T z)$  is a proof of primal infeasibility:

$$A^T \hat{z} = 0, \qquad b^T \hat{z} = -1, \qquad \hat{z} \succeq_* 0$$

• if  $c^T x < 0$ , then  $\hat{x} = x/(-c^T x)$  is a proof of dual infeasibility:

$$A\hat{x} \leq 0, \qquad c^T\hat{x} = -1$$

**Case 3:**  $\tau = \kappa = 0$ ; no conclusion can be made about the original problem

#### **Extended self-dual embedding**

$$\begin{array}{ll} \text{minimize} & \theta \\ \\ \text{subject to} & \begin{bmatrix} 0 \\ s \\ \kappa \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & A^T & c & q_x \\ -A & 0 & b & q_z \\ -c^T & -b^T & 0 & q_\tau \\ -q_x^T & -q_z^T & -q_\tau & 0 \end{bmatrix} \begin{bmatrix} x \\ z \\ \tau \\ \theta \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \\ \\ s \succeq 0, \quad \kappa \ge 0, \quad z \succeq_* 0, \quad \tau \ge 0 \end{array}$$

•  $q_x$ ,  $q_z$ ,  $q_\tau$  chosen so that

$$(s, \kappa, x, z, \tau, \theta) = (s_0, 1, x_0, z_0, 1, z_0^T s_0 + 1)$$

is feasible, for some given  $s_0 \succ 0, x_0, z_0 \succ_* 0$ 

• a self-dual conic LP

## **Optimality condition**

$$\begin{bmatrix} 0\\s\\\kappa\\0 \end{bmatrix} = \begin{bmatrix} 0 & A^T & c & q_x\\-A & 0 & b & q_z\\-c^T & -b^T & 0 & q_\tau\\-q_x^T & -q_z^T & -q_\tau & 0 \end{bmatrix} \begin{bmatrix} x\\z\\\tau\\\theta \end{bmatrix} + \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$
$$s \succeq 0, \quad \kappa \ge 0, \quad z \succeq 0, \quad \tau \ge 0$$
$$z^T s + \tau \kappa = 0$$

- follows from self-dual property
- a (mixed) linear complementarity problem

## **Properties of extended self-dual embedding**

- problem is strictly feasible by construction
- if  $s, \kappa, x, z, \tau, \theta$  satisfy equality constraint, then

$$\theta = s^T z + \kappa \tau$$

(take inner product with  $(x, z, \tau, \theta)$  of each side of the equality)

- at optimum,  $\theta = 0$  and problem reduces to the embedding on p.15-30
- classification of p.15-32 also applies to solutions of extended embedding

## Reference

A. Ben-Tal and A. Nemirovski, *Lectures on Modern Convex Optimization. Analysis, Algorithms, and Engineering Applications*, (2001).