15. Conic optimization

- conic linear program
- examples
- modeling
- duality

Generalized (conic) inequalities

Conic inequality: a constraint $x \in K$ where K is a convex cone in \mathbf{R}^{m}
we will require that the cone K is proper:

- closed
- pointed: $K \cap(-K)=\{0\}$
- with nonempty interior: int $K \neq \emptyset$; equivalently, $K+(-K)=\mathbf{R}^{m}$

Notation (for proper K)

$$
\begin{array}{lll}
x \succeq_{K} y & \Longleftrightarrow & x-y \in K \\
x \succ_{K} y & \Longleftrightarrow & x-y \in \operatorname{int} K
\end{array}
$$

Inequality notation

we will use a different convention than in EE236B

Vector inequalities: for $x, y \in \mathbf{R}^{m}$

- $x>y, x \geq y$ denote componentwise inequality
- $x \succ y, x \succeq y$ denote conic inequality for general (unspecified) proper cone K
- $x \succ_{K} y, x \succeq_{K} y$ denote conic inequality for specific K

Matrix inequality: for $X, Y \in \mathbf{S}^{p}$
$X \succ Y, X \succeq Y$ mean $X-Y$ is positive (semi-)definite

Properties of conic inequalities

preserved by nonnegative linear combinations: if $x \preceq y$ and $u \preceq v$, then

$$
\alpha x+\beta u \preceq \alpha y+\beta v \quad \forall \alpha, \beta \geq 0
$$

define a partial order of vectors

- $x \preceq x$
- $x \preceq y \preceq z$ implies $x \preceq z$
- $x \preceq y$ and $y \preceq x$ imply $y=x$
in general, not a total order (requires that $x \preceq y$ or $y \preceq x$ for all x, y)

Conic linear program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \preceq b \\
& F x=g
\end{array}
$$

- $A \in \mathbf{R}^{m \times n}, F \in \mathbf{R}^{p \times n}$; without loss of generality, we can assume

$$
\operatorname{rank}(F)=p, \quad \operatorname{rank}\left(\left[\begin{array}{c}
A \\
F
\end{array}\right]\right)=n
$$

- K is a proper cone in \mathbf{R}^{m}
- for $K=\mathbf{R}_{+}^{m}$, problem reduces to regular linear program (LP)
- by defining $K=K_{1} \times \cdots \times K_{r}$, this can represent multiple conic inequalities

$$
A_{1} x \preceq_{K_{1}} b_{1}, \quad \ldots, \quad A_{r} x \preceq_{K_{r}} b_{r}
$$

Outline

- conic linear program
- examples
- modeling
- duality

Norm cones

$$
K=\left\{(x, y) \in \mathbf{R}^{m-1} \times \mathbf{R} \mid\|x\| \leq y\right\}
$$

for the Euclidean norm this is the second-order cone (notation: \mathcal{Q}^{m})

Second-order cone program

```
minimize \(\quad c^{T} x\)
subject to \(\quad\left\|B_{k 0} x+d_{k 0}\right\|_{2} \leq B_{k 1} x+d_{k 1}, \quad k=1, \ldots, r\)
```

Conic LP formulation: express constraints as $A x \preceq_{K} b$

$$
K=\mathcal{Q}^{m_{1}} \times \cdots \times \mathcal{Q}^{m_{r}}, \quad A=\left[\begin{array}{c}
-B_{10} \\
-B_{11} \\
\vdots \\
-B_{r 0} \\
-B_{r 1}
\end{array}\right], \quad b=\left[\begin{array}{c}
d_{10} \\
d_{11} \\
\vdots \\
d_{r 0} \\
d_{r 1}
\end{array}\right]
$$

(assuming $B_{k 0}, d_{k 0}$ have $m_{k}-1$ rows)

Vector notation for symmetric matrices

- vectorized symmetric matrix: for $U \in \mathbf{S}^{p}$

$$
\operatorname{vec}(U)=\sqrt{2}\left(\frac{U_{11}}{\sqrt{2}}, U_{21}, \ldots, U_{p 1}, \frac{U_{22}}{\sqrt{2}}, U_{32}, \ldots, U_{p 2}, \ldots, \frac{U_{p p}}{\sqrt{2}}\right)
$$

- inverse operation: for $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in \mathbf{R}^{n}$ with $n=p(p+1) / 2$

$$
\operatorname{mat}(u)=\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
\sqrt{2} u_{1} & u_{2} & \cdots & u_{p} \\
u_{2} & \sqrt{2} u_{p+1} & \cdots & u_{2 p-1} \\
\vdots & \vdots & & \vdots \\
u_{p} & u_{2 p-1} & \cdots & \sqrt{2} u_{p(p+1) / 2}
\end{array}\right]
$$

coefficients $\sqrt{2}$ are added so that standard inner products are preserved:

$$
\operatorname{tr}(U V)=\operatorname{vec}(U)^{T} \operatorname{vec}(V), \quad u^{T} v=\operatorname{tr}(\operatorname{mat}(u) \operatorname{mat}(v))
$$

Positive semidefinite cone

$$
\mathcal{S}^{p}=\left\{\operatorname{vec}(X) \mid X \in \mathbf{S}_{+}^{p}\right\}=\left\{x \in \mathbf{R}^{p(p+1) / 2} \mid \operatorname{mat}(x) \succeq 0\right\}
$$

$$
\mathcal{S}^{2}=\left\{(x, y, z) \left\lvert\,\left[\begin{array}{cc}
x & y / \sqrt{2} \\
y / \sqrt{2} & z
\end{array}\right] \succeq 0\right.\right\}
$$

Semidefinite program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} A_{11}+x_{2} A_{12}+\cdots+x_{n} A_{1 n} \preceq B_{1} \\
& \cdots \\
& x_{1} A_{r 1}+x_{2} A_{r 2}+\cdots+x_{n} A_{r n} \preceq B_{r}
\end{array}
$$

with $A_{i j}, B_{i} \in \mathbf{S}^{p_{i}}$

Conic LP formulation

$$
\begin{gathered}
K=\mathcal{S}^{p_{1}} \times \mathcal{S}^{p_{2}} \times \cdots \times \mathcal{S}^{p_{r}} \\
A=\left[\begin{array}{cccc}
\operatorname{vec}\left(A_{11}\right) & \operatorname{vec}\left(A_{12}\right) & \cdots & \operatorname{vec}\left(A_{1 n}\right) \\
\operatorname{vec}\left(A_{21}\right) & \operatorname{vec}\left(A_{22}\right) & \cdots & \operatorname{vec}\left(A_{2 n}\right) \\
\vdots & \vdots & & \vdots \\
\operatorname{vec}\left(A_{r 1}\right) & \operatorname{vec}\left(A_{r 2}\right) & \cdots & \operatorname{vec}\left(A_{r n}\right)
\end{array}\right], \quad b=\left[\begin{array}{c}
\operatorname{vec}\left(B_{1}\right) \\
\operatorname{vec}\left(B_{2}\right) \\
\vdots \\
\operatorname{vec}\left(B_{r}\right)
\end{array}\right]
\end{gathered}
$$

Exponential cone

the epigraph of the perspective of $\exp x$ is a non-proper cone

$$
K=\left\{(x, y, z) \in \mathbf{R}^{3} \mid y e^{x / y} \leq z, y>0\right\}
$$

the exponential cone is $K_{\exp }=\operatorname{cl} K=K \cup\{(x, 0, z) \mid x \leq 0, z \geq 0\}$

Geometric program

$$
\begin{array}{ll}
\text { minimize } & c^{T} x \\
\text { subject to } & \log \sum_{k=1}^{n_{i}} \exp \left(a_{i k}^{T} x+b_{i k}\right) \leq 0, \quad i=1, \ldots, r
\end{array}
$$

Conic LP formulation

$$
\begin{array}{ll}
\text { minimize } & c^{T} x \\
\text { subject to } & {\left[\begin{array}{c}
a_{i k}^{T} x+b_{i k} \\
1 \\
z_{i k}
\end{array}\right] \in K_{\exp }, \quad k=1, \ldots, n_{i}, \quad i=1, \ldots, r} \\
& \sum_{k=1}^{n_{i}} z_{i k} \leq 1, \quad i=1, \ldots, m
\end{array}
$$

Power cone

Definition: for $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)>0$ and $\sum_{i=1}^{m} \alpha_{i}=1$

$$
K_{\alpha}=\left\{(x, y) \in \mathbf{R}_{+}^{m} \times \mathbf{R}| | y \mid \leq x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}}\right\}
$$

Examples for $m=2$

Cones constructed from convex sets

Inverse image of convex set under perspective

$$
K=\left\{(x, y) \in \mathbf{R}^{n} \times \mathbf{R} \mid y>0, x / y \in C\right\}
$$

- $K \cup\{(0,0)\}$ is a convex cone if C is a convex set
- $\mathrm{cl} K$ is proper if C has nonempty interior, does not contain straight lines

Consequence

any convex constraint $x \in C$ can be represented as a conic inequality

$$
x \in C \quad \Longleftrightarrow \quad(x, 1) \in K
$$

(with minor modifications to make K proper)

Cones constructed from functions

Epigraph of perspective of convex function

$$
K=\left\{(x, y, z) \in \mathbf{R}^{n} \times \mathbf{R} \times \mathbf{R} \mid y>0, y f(x / y) \leq z\right\}
$$

- $K \cup\{(0,0,0)\}$ is a convex cone if f is convex
- cl K is proper if int $\operatorname{dom} f \neq \emptyset$, epi f does not contain straight lines

Consequence

can represent any convex constraint $f(x) \leq t$ as a conic linear inequality

$$
f(x) \leq t \quad \Longleftrightarrow \quad(x, 1, t) \in K
$$

(with minor modifications to make K proper)

Outline

- conic linear program
- examples
- modeling
- duality

Modeling software

Modeling packages for convex optimization

- CVX, YALMIP (MATLAB)
- CVXPY, PICOS (Python)
- MOSEK Fusion (different platforms)
assist in formulating convex problems by automating two tasks:
- verifying convexity from convex calculus rules
- transforming problem in input format required by standard solvers

Related packages

general-purpose optimization modeling: AMPL, GAMS

Modeling and conic optimization

Convex modeling systems

- convert problems stated in standard mathematical notation to conic LPs
- in principle, any convex problem can be represented as a conic LP
- in practice, a small set of primitive cones is used $\left(\mathbf{R}_{+}^{n}, \mathcal{Q}^{p}, \mathcal{S}^{p}\right)$
- choice of cones is limited by available algorithms and solvers (see later)
modeling systems implement set of rules for expressing constraints

$$
f(x) \leq t
$$

as conic inequalities for the implemented cones

Examples of second-order cone representable functions

- convex quadratic

$$
f(x)=x^{T} P x+q^{T} x+r \quad(P \succeq 0)
$$

- quadratic-over-linear function

$$
f(x, y)=\frac{x^{T} x}{y} \quad \text { with } \operatorname{dom} f=\mathbf{R}^{n} \times \mathbf{R}_{+} \quad(\text { assume } 0 / 0=0)
$$

- convex powers with rational exponent

$$
f(x)=|x|^{\alpha}, \quad f(x)= \begin{cases}x^{\beta} & x>0 \\ +\infty & x \leq 0\end{cases}
$$

for rational $\alpha \geq 1$ and $\beta \leq 0$

- p-norm $f(x)=\|x\|_{p}$ for rational $p \geq 1$

Examples of SD cone representable functions

- matrix-fractional function

$$
f(X, y)=y^{T} X^{-1} y \quad \text { with } \operatorname{dom} f=\left\{(X, y) \in \mathbf{S}_{+}^{n} \times \mathbf{R}^{n} \mid y \in \mathcal{R}(X)\right\}
$$

- maximum eigenvalue of symmetric matrix
- maximum singular value $f(X)=\|X\|_{2}=\sigma_{1}(X)$

$$
\|X\|_{2} \leq t \quad \Longleftrightarrow\left[\begin{array}{cc}
t I & X \\
X^{T} & t I
\end{array}\right] \succeq 0
$$

- nuclear norm $f(X)=\|X\|_{*}=\sum_{i} \sigma_{i}(X)$

$$
\|X\|_{*} \leq t \quad \Longleftrightarrow \quad \exists U, V:\left[\begin{array}{cc}
U & X \\
X^{T} & V
\end{array}\right] \succeq 0, \quad \frac{1}{2}(\operatorname{tr} U+\operatorname{tr} V) \leq t
$$

Functions representable with exponential and power cone

Exponential cone

- exponential and logarithm
- entropy $f(x)=x \log x$

Power cone

- increasing power of absolute value: $f(x)=|x|^{p}$ with $p \geq 1$
- decreasing power: $f(x)=x^{q}$ with $q \leq 0$ and domain \mathbf{R}_{++}
- p-norm: $f(x)=\|x\|_{p}$ with $p \geq 1$

Outline

- conic linear program
- examples
- modeling
- duality

Dual cone

$$
K^{*}=\left\{y \mid x^{T} y \geq 0 \text { for all } x \in K\right\}
$$

Properties (if K is a proper cone)

- K^{*} is a proper cone
- $\left(K^{*}\right)^{*}=K$
- $\operatorname{int} K^{*}=\left\{y \mid x^{T} y>0\right.$ for all $\left.x \in K, x \neq 0\right\}$

Dual inequality: $x \succeq_{*} y$ means $x \succeq_{K^{*}} y$ for generic proper cone K

Note: dual cone depends on choice of inner product

Examples

- $\mathbf{R}_{+}^{p}, \mathcal{Q}^{p}, \mathcal{S}^{p}$ are self-dual: $K=K^{*}$
- dual of norm cone is norm cone for dual norm
- dual of exponential cone

$$
K_{\exp }^{*}=\left\{(u, v, w) \in \mathbf{R}_{-} \times \mathbf{R} \times \mathbf{R}^{+} \mid-u \log (-u / w)+u-v \leq 0\right\}
$$

(with $0 \log (0 / w)=0$ if $w \geq 0$)

- dual of power cone is

$$
K_{\alpha}^{*}=\left\{(u, v) \in \mathbf{R}_{+}^{m} \times \mathbf{R}| | v \mid \leq\left(u_{1} / \alpha_{1}\right)^{\alpha_{1}} \cdots\left(u_{m} / \alpha_{m}\right)^{\alpha_{m}}\right\}
$$

Primal and dual conic LP

Primal (optimal value p^{\star})

$$
\begin{array}{ll}
\text { minimize } & c^{T} x \\
\text { subject to } & A x \preceq b
\end{array}
$$

Dual (optimal value d^{\star})

$$
\begin{array}{ll}
\operatorname{maximize} & -b^{T} z \\
\text { subject to } & A^{T} z+c=0 \\
& z \succeq_{*} 0
\end{array}
$$

Weak duality: $p^{\star} \geq d^{\star}$ (without exception)

Strong duality

Main theorem: $p^{\star}=d^{\star}$ if primal or dual problem is strictly feasible

Other implications of strict feasibility

- if primal is strictly feasible, then dual optimum is attained (if d^{\star} is finite)
- if dual is strictly feasible then primal optimum is attained (if p^{\star} is finite)

Compare with linear programming duality ($K=\mathbf{R}_{+}^{m}$)

- for an LP, only exception to strong duality is $p^{\star}=+\infty, d^{\star}=-\infty$
- strong duality holds if primal or dual is feasible
- if optimal value is finite then it is attained (in primal and dual)

Example with finite nonzero duality gap

Primal problem

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1} \\
\text { subject to } & {\left[\begin{array}{cc}
0 & x_{1} \\
x_{1} & x_{2}
\end{array}\right] \succeq 0} \\
& x_{1} \geq-1
\end{array}
$$

optimal value $p^{\star}=0$

Dual problem

$$
\begin{aligned}
\text { maximize } & -z \\
\text { subject to } & {\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{12} & Z_{22}
\end{array}\right] \succeq 0, \quad z \geq 0 } \\
& 2 Z_{12}+z=1, \quad Z_{22}=0
\end{aligned}
$$

optimal value $d^{\star}=-1$

Optimality conditions

if strong duality holds, then x and z are optimal if and only if

$$
\begin{gather*}
{\left[\begin{array}{l}
0 \\
s
\end{array}\right]=\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]+\left[\begin{array}{l}
c \\
b
\end{array}\right]} \tag{1}\\
s \succeq 0, \quad z \succeq_{*} 0, \quad z^{T} s=0
\end{gather*}
$$

Primal feasibility: block 2 of (1) and $s \succeq 0$

Dual feasibility: block 1 of (1) and $z \succeq_{*} 0$

Zero duality gap: inner product of (x, z) and $(0, s)$ gives

$$
z^{T} s=c^{T} x+b^{T} z
$$

Strong theorems of alternative

Strict primal feasibility

exactly one of the following two systems is solvable

1. $A x \prec b$
2. $A^{T} z=0, \quad z \neq 0, \quad z \succeq_{*} 0, \quad b^{T} z \leq 0$

Strict dual feasibility

if $c \in \mathcal{R}\left(A^{T}\right)$, exactly one of the following two systems is solvable

1. $A x \preceq_{K} 0, \quad A x \neq 0, \quad c^{T} x \leq 0$
2. $A^{T} z+c=0, \quad z \succ_{K^{*}} 0$
solution of one system is a certificate of infeasibility of the other system

Weak theorems of alternative

Primal feasibility

at most one of the following two systems is solvable

1. $A x \preceq b$
2. $A^{T} z=0, \quad z \succeq_{*} 0, \quad b^{T} z<0$

Dual feasibility

at most one of the following two systems is solvable

1. $A x \preceq 0, \quad c^{T} x<0$
2. $A^{T} z+c=0, \quad z \succeq_{*} 0$
these are strong alternatives if a constraint qualification holds

Self-dual embeddings

Idea

embed primal, dual conic LPs into a single (self-dual) conic LP, so that:

- embedded problem is feasible, with known feasible points
- from the solution of the embedded problem, primal and dual solutions of original problem can be constructed, or certificates of primal or dual infeasibility

Purpose: a feasible algorithm applied to the embedded problem

- can detect infeasibility in original problem
- does not require a phase I to find initial feasible points
used by some interior-point solvers

Basic self-dual embedding

minimize 0

$$
\begin{aligned}
\text { subject to } & {\left[\begin{array}{c}
0 \\
s \\
\kappa
\end{array}\right]=\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z \\
\tau
\end{array}\right] } \\
& s \succeq 0, \quad \kappa \geq 0, \quad z \succeq_{*} 0, \quad \tau \geq 0
\end{aligned}
$$

- a self-dual conic LP
- has a trivial solution (all variables zero)
- $z^{T} s+\tau \kappa=0$ for all feasible points (follows from equality constraint)
- hence, problem is not strictly feasible

Optimality condition for embedded problem

$$
\begin{gathered}
{\left[\begin{array}{l}
0 \\
s \\
\kappa
\end{array}\right]=\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z \\
\tau
\end{array}\right]} \\
s \succeq 0, \quad \kappa \geq 0, \quad z \succeq * 0, \quad \tau \geq 0 \\
z^{T} s+\tau \kappa=0
\end{gathered}
$$

- follows from self-dual property
- a (mixed) linear complementarity problem

Classification of nonzero solution

let s, κ, x, z, τ be a nonzero solution of the self-dual embedding

Case 1: $\tau>0, \kappa=0$

$$
\hat{s}=s / \tau, \quad \hat{x}=x / \tau, \quad \hat{z}=z / \tau
$$

are primal and dual solutions of the conic LPs, i.e., satisfy

$$
\begin{gathered}
{\left[\begin{array}{c}
0 \\
\hat{s}
\end{array}\right]=\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
\hat{x} \\
\hat{z}
\end{array}\right]+\left[\begin{array}{l}
c \\
b
\end{array}\right]} \\
\hat{s} \succeq 0, \quad \hat{z} \succeq_{*} 0, \quad \hat{s}^{T} \hat{z}=0
\end{gathered}
$$

Classification of nonzero solution

Case 2: $\tau=0, \kappa>0$; this implies $c^{T} x+b^{T} z<0$

- if $b^{T} z<0$, then $\hat{z}=z /\left(-b^{T} z\right)$ is a proof of primal infeasibility:

$$
A^{T} \hat{z}=0, \quad b^{T} \hat{z}=-1, \quad \hat{z} \succeq_{*} 0
$$

- if $c^{T} x<0$, then $\hat{x}=x /\left(-c^{T} x\right)$ is a proof of dual infeasibility:

$$
A \hat{x} \preceq 0, \quad c^{T} \hat{x}=-1
$$

Case 3: $\tau=\kappa=0$; no conclusion can be made about the original problem

Extended self-dual embedding

minimize $\quad \theta$

$$
\begin{aligned}
\text { subject to } & {\left[\begin{array}{c}
0 \\
s \\
\kappa \\
0
\end{array}\right]=\left[\begin{array}{cccc}
0 & A^{T} & c & q_{x} \\
-A & 0 & b & q_{z} \\
-c^{T} & -b^{T} & 0 & q_{\tau} \\
-q_{x}^{T} & -q_{z}^{T} & -q_{\tau} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z \\
\tau \\
\theta
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] } \\
& s \succeq 0, \quad \kappa \geq 0, \quad z \succeq_{*} 0, \quad \tau \geq 0
\end{aligned}
$$

- q_{x}, q_{z}, q_{τ} chosen so that

$$
(s, \kappa, x, z, \tau, \theta)=\left(s_{0}, 1, x_{0}, z_{0}, 1, z_{0}^{T} s_{0}+1\right)
$$

is feasible, for some given $s_{0} \succ 0, x_{0}, z_{0} \succ_{*} 0$

- a self-dual conic LP

Optimality condition

$$
\begin{gathered}
{\left[\begin{array}{c}
0 \\
s \\
\kappa \\
0
\end{array}\right]=\left[\begin{array}{cccc}
0 & A^{T} & c & q_{x} \\
-A & 0 & b & q_{z} \\
-c^{T} & -b^{T} & 0 & q_{\tau} \\
-q_{x}^{T} & -q_{z}^{T} & -q_{\tau} & 0
\end{array}\right]\left[\begin{array}{c}
x \\
z \\
\tau \\
\theta
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]} \\
s \succeq 0, \quad \kappa \geq 0, \quad z \succeq * 0, \quad \tau \geq 0 \\
z^{T} s+\tau \kappa=0
\end{gathered}
$$

- follows from self-dual property
- a (mixed) linear complementarity problem

Properties of extended self-dual embedding

- problem is strictly feasible by construction
- if $s, \kappa, x, z, \tau, \theta$ satisfy equality constraint, then

$$
\theta=s^{T} z+\kappa \tau
$$

(take inner product with (x, z, τ, θ) of each side of the equality)

- at optimum, $\theta=0$ and problem reduces to the embedding on p.15-30
- classification of p.15-32 also applies to solutions of extended embedding

Reference

A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization. Analysis, Algorithms, and Engineering Applications, (2001).

