L. Vandenberghe EE236C (Spring 2016)

15. Conic optimization

e conic linear program
e examples
e modeling

e duality
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Generalized (conic) inequalities

Conic inequality: a constraint x € K where K is a convex cone in R™

we will require that the cone K is proper:

e closed
e pointed: K N (—K) = {0}
e with nonempty interior: int K # (J; equivalently, K + (—K) = R™

Notation (for proper K)

T =K Y = r—yeK
T =K Y — r—1y €int K

Conic optimization
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Inequality notation

we will use a different convention than in EE236B

Vector inequalities: for z,y € R™

e r > vy, x > y denote componentwise inequality
e = > y, x >~ y denote conic inequality for general (unspecified) proper cone K

e r > Y, * =k Yy denote conic inequality for specific K

Matrix inequality: for X,Y € SP

X =Y, X >Y mean X — Y is positive (semi-)definite
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Properties of conic inequalities

preserved by nonnegative linear combinations: if x < y and u =< v, then

ar+ fu 2 ay+ v Va,5 >0

define a partial order of vectors

o r =<
o r <y =Xzimpliesx =Xz

e xr Xyandy Xz implyy ==

in general, not a fotal order (requires that xt < y or y < x for all z, y)
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Conic linear program

minimize c¢lx

subjectto Ax <b
Fr=g

o Ac R "™ F € RP*™; without loss of generality, we can assume

rank(F) = p. rank([ A ]) —n

e K is a proper cone in R™
e for K = R, problem reduces to regular linear program (LP)
e by defining K = K1 x --- X K., this can represent multiple conic inequalities

Ala: jKl bl, NP Arw jKT br

Conic optimization 15-5



conic linear program
examples
modeling

duality

Outline



Norm cones

. \\\\|||I

v

K={(z,y) e R" "xR| |z <y}
//
0_"1” ) | 0

for the Euclidean norm this is the second-order cone (notation: Q™)
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Second-order cone program

minimize c¢lx

subjectto || Brox + dioll, < Briz +di1, k=1,...,r

Conic LP formulation: express constraints as Ax <g b

—Bio d1g

—Bi11 d11
K=9m x ... x Q™M A= s : b=

— By dro

— B dr1

(assuming Big, dio have my — 1 rows)
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Vector notation for symmetric matrices

e vectorized symmetric matrix: for U € SP

U U U
vec(U) = V2 (i Ust, ..., Upt, —=, Usz, ..., Upa, ... ﬂ)

V2 V2 V2
e inverse operation: for u = (uy, usg,...,uy) € R" withn =p(p+1)/2
i \/§U1 U9 s Up |
mat(u) = 1 u2 \/§up+1 o U2p—1
V2 ; ; ;
| Up Uzp—-1 - \@up(p+1)/2 i

coefficients v/2 are added so that standard inner products are preserved:

tr(UV) = vec(U)? vec(V), w’'v = tr(mat(u) mat(v))
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Semidefinite program

minimize ¢l x

subject to r1A11 + 10A19+ -+ 2,41, = By

xlArl + 332147“2 R ZUnArn j Br
with Aij) B, € SPi

Conic LP formulation

K:Sp1x8p2><...><8pr

vec(A11) vec(Az) -+ vec(Ain)
vec(As1) vec(Ags) -+ vec(Aay)
A= : : : ! b=
I VeC(Arl) VGC(AM) T VeC(Arn) i _

Conic optimization

vec(B)
Vec(.Bz)

VeC(.BT)
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Exponential cone

the epigraph of the perspective of exp x is a non-proper cone
-KZ{@WJOERﬂyﬁwézwnﬂﬂ

the exponential cone is Koxp = cl K = K U {(x,0,2) | z <0,z > 0}
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Geometric program

minimize ¢l x

subjectto log i exp(abx+by) <0, i=1,...,r
k=1

Conic LP formulation

minimize ¢’z
-7 _
;3T + ik
subject to 1 € Kexp, k=1,...,n4, 1=1,...
U2
sz;gl, izl,...,m
k=1

Conic optimization
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Power cone

Definition: for o = (a1, a2,...,a4,) > 0and ) «a; =1
i=1

Ko = {(ZC,y) ERTXR| |y| Sx?l...x%m}

Examples for m = 2

~~
PN[9N
e

~

i)
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Cones constructed from convex sets

Inverse image of convex set under perspective
K={(z,y) e R" xR |y>0, z/yecC}

e K U{(0,0)}is aconvexconeif C'is a convex set

e cl K is proper if C' has nonempty interior, does not contain straight lines

Consequence

any convex constraint x € (' can be represented as a conic inequality
reC = (x,1) e K

(with minor modifications to make K proper)

Conic optimization
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Cones constructed from functions

Epigraph of perspective of convex function
K={(z,y,2) e R" xR xR |y>0, yf(z/y) <z}

e KU{(0,0,0)}is aconvex cone if f is convex

e cl K is proper if int dom f # (), epi f does not contain straight lines

Consequence

can represent any convex constraint f(x) < t as a conic linear inequality
flx) <t = (x,1,t) € K

(with minor modifications to make K proper)

Conic optimization
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Modeling software

Modeling packages for convex optimization

e CVX, YALMIP (MATLAB)
e CVXPY, PICOS (Python)
e MOSEK Fusion (different platforms)

assist in formulating convex problems by automating two tasks:
e verifying convexity from convex calculus rules

e transforming problem in input format required by standard solvers

Related packages

general-purpose optimization modeling: AMPL, GAMS

Conic optimization
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Modeling and conic optimization

Convex modeling systems

e convert problems stated in standard mathematical notation to conic LPs
e in principle, any convex problem can be represented as a conic LP
e in practice, a small set of primitive cones is used (R}, 9P, SP)

e choice of cones is limited by available algorithms and solvers (see later)

modeling systems implement set of rules for expressing constraints

flz) <t

as conic inequalities for the implemented cones

Conic optimization
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Examples of second-order cone representable functions

e convex quadratic

fl)=a'Pr+q¢'z+r (P>=0)

e quadratic-over-linear function

ZIZTZE'

flx,y) = o withdom f = R" x Ry (assume 0/0 = 0)

e convex powers with rational exponent

f@)=lal s ={ T, 220
for rationala > 1land 5 <0

e p-norm f(z) = ||x||,, for rational p > 1
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Examples of SD cone representable functions

e maitrix-fractional function

f(X,y) =y X'y withdom f = {(X,y) € ST x R" | y € R(X)}

e maximum eigenvalue of symmetric matrix

e maximum singular value f(X) = || X||2 = 01(X)

tI X
Xl <t <= [XT tl]to

e nuclear norm f(X) = || X ||« =), 0:(X)

1
=0, -(trU+trV) <t

X, <t <« HU,V:[ v X]_, :

Xt v

Conic optimization 15-19



Functions representable with exponential and power cone

Exponential cone

e exponential and logarithm

e entropy f(z) = xlogx

Power cone

e increasing power of absolute value: f(z) = |z|P withp > 1
e decreasing power: f(x) = x? with ¢ < 0 and domain R, 1

e p-norm: f(x) = ||z||, withp > 1
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Dual cone

K*={y|z'y>0foralz € K}

Properties (if K is a proper cone)

e K™ is a proper cone
e int K*={y|xly >0forallz € K,z # 0}

Dual inequality: « =, y means x > g+ y for generic proper cone K

Note: dual cone depends on choice of inner product

Conic optimization
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Examples

° Rﬁ, QP SP are self-dual; K = K*
e dual of norm cone is norm cone for dual norm

e dual of exponential cone

K, ={(u,v,w) e R_ x R x R" | —ulog(—u/w) + u—v <0}

exp

(with 0log(0/w) = 0'if w > 0)

e dual of power cone is

Ky = {(u,0) € R x R | [v] < (wr/an)™ - (g /om)*™ }

o
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Primal and dual conic LP

Primal (optimal value p*)

minimize c¢lx

subjectto Ax <b

Dual (optimal value d*)

maximize —blz
subjectto Alz+c¢=0

Weak duality: p* > d* (without exception)
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Strong duality

Main theorem: p* = d* if primal or dual problem is strictly feasible

Other implications of strict feasibility

e if primal is strictly feasible, then dual optimum is attained (if d* is finite)

e if dual is strictly feasible then primal optimum is attained (if p* is finite)

Compare with linear programming duality (/X = R')
e for an LP, only exception to strong duality is p* = +o00, d* = —o0
e strong duality holds if primal or dual is feasible

e if optimal value is finite then it is attained (in primal and dual)
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Example with finite nonzero duality gap

Primal problem
minimize xy

subject to [ 0 o ] ~ 0
X1 X2
1 Z —1

optimal value p* = 0

Dual problem
maximize —z

. Z11 L2
subject to > 0, > ()
J [ ACINAY: ] - °=

2Z10+2z2=1, Zyy =0
optimal value d* = —1

Conic optimization
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Optimality conditions

if strong duality holds, then x and z are optimal if and only if

BEEEHE O

Primal feasibility: block 2 of (1) and s =~ 0
Dual feasibility: block 1 of (1) and z =, 0
Zero duality gap: inner product of (x, z) and (0, s) gives

As=clp+ply
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Strong theorems of alternative

Strict primal feasibility

exactly one of the following two systems is solvable

1. Az < b
2. ATz =0, 2#£0, 27,0, bz <0

Strict dual feasibility

if c € R(A1), exactly one of the following two systems is solvable
1. Az < 0, Az #0, clz<0
2. ATz 4+¢=0, 2>k« 0

solution of one system is a certificate of infeasibility of the other system
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Weak theorems of alternative

Primal feasibility

at most one of the following two systems is solvable
1. Az <b

2. AT =0, 2+,0, bIz2<0

Dual feasibility

at most one of the following two systems is solvable
1. Az <0, cl'z <0

2. ATz24¢=0, 2,0

these are strong alternatives if a constraint qualification holds
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Self-dual embeddings

Idea

embed primal, dual conic LPs into a single (self-dual) conic LP, so that:

e embedded problem is feasible, with known feasible points

e from the solution of the embedded problem, primal and dual solutions of
original problem can be constructed, or certificates of primal or dual infeasibility

Purpose: a feasible algorithm applied to the embedded problem

e can detect infeasibility in original problem

e does not require a phase | to find initial feasible points

used by some interior-point solvers
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Basic self-dual embedding

minimize

subject to

e a self-dual conic LP

0

X »w O

e has a trivial solution (all variables zero)

o 2''s 4+ 7Kk = 0 for all feasible points (follows from equality constraint)

e hence, problem is not strictly feasible

Conic optimization

AT ¢

0 b

b 0
z =4 0,
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Optimality condition for embedded problem

w
|
|
I
-
S
N

—c' —pt" 0 T

e follows from self-dual property

e a (mixed) linear complementarity problem
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Classification of nonzero solution

let s, k, x, z, T be a nonzero solution of the self-dual embedding

Case1: 7>0,k=0

Conic optimization
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Classification of nonzero solution

Case 2: 7 =0, k > 0; this implies ¢’z + b7z < 0

o if b1z < 0, then 2 = z/(—bl 2) is a proof of primal infeasibility:

Atz=0, blz=-1, 2+,0

Case 3: 7 = k = 0; no conclusion can be made about the original problem
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Extended self-dual embedding

minimize 6

0 0 AT c Qg x 0

. s| | A O b q, 2 0

subject to P el R A S i + 0
|0 g5 —qf —¢- 0 ][0 [1_

® q., q., g- chosen so that
(87 K, T, 2, T, (9) — (807 ]-7 L0y 20, 17 2(1;30 + 1)
is feasible, for some given sg > 0, xg, 29 =« 0

e a self-dual conic LP
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Optimality condition

—A 0 b q.
| = bt 0 g,

i _qg _qg —dqr 0

_ o O O

S »w O
=T RS

s~0, k=20, 2=,0, 720

As+16=0

e follows from self-dual property

e a (mixed) linear complementarity problem
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Properties of extended self-dual embedding

e problem is strictly feasible by construction
e if s, kK, x, 2z, T, O satisfy equality constraint, then

0 =s'z+ kT

(take inner product with (x, z, 7, 0) of each side of the equality)
e at optimum, 8 = 0 and problem reduces to the embedding on p.15-30

e classification of p.15-32 also applies to solutions of extended embedding
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