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Generalized (conic) inequalities

Conic inequality: a constraint x ∈ K whereK is a convex cone in Rm

we will require that the coneK is proper:

• closed

• pointed: K ∩ (−K) = {0}
• with nonempty interior: intK 6= ∅; equivalently,K + (−K) = Rm

Notation (for properK)

x �K y ⇐⇒ x− y ∈ K
x �K y ⇐⇒ x− y ∈ intK
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Inequality notation

we will use a different convention than in EE236B

Vector inequalities: for x, y ∈ Rm

• x > y, x ≥ y denote componentwise inequality

• x � y, x � y denote conic inequality for general (unspecified) proper coneK

• x �K y, x �K y denote conic inequality for specificK

Matrix inequality: for X,Y ∈ Sp

X � Y, X � Y mean X − Y is positive (semi-)definite
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Properties of conic inequalities

preserved by nonnegative linear combinations: if x � y and u � v, then

αx+ βu � αy + βv ∀α, β ≥ 0

define a partial order of vectors

• x � x
• x � y � z implies x � z
• x � y and y � x imply y = x

in general, not a total order (requires that x � y or y � x for all x, y)
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Conic linear program

minimize cTx
subject to Ax � b

Fx = g

• A ∈ Rm×n, F ∈ Rp×n; without loss of generality, we can assume

rank(F ) = p, rank(

[
A
F

]
) = n

• K is a proper cone in Rm

• forK = Rm
+ , problem reduces to regular linear program (LP)

• by definingK = K1 × · · · ×Kr, this can represent multiple conic inequalities

A1x �K1 b1, . . . , Arx �Kr br
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Norm cones

K =
{
(x, y) ∈ Rm−1 ×R | ‖x‖ ≤ y

}
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for the Euclidean norm this is the second-order cone (notation: Qm)

Conic optimization 15-6



Second-order cone program

minimize cTx

subject to ‖Bk0x+ dk0‖2 ≤ Bk1x+ dk1, k = 1, . . . , r

Conic LP formulation: express constraints as Ax �K b

K = Qm1 × · · · × Qmr, A =


−B10

−B11

...
−Br0
−Br1

 , b =


d10

d11
...
dr0

dr1


(assuming Bk0, dk0 havemk − 1 rows)
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Vector notation for symmetric matrices

• vectorized symmetric matrix: for U ∈ Sp

vec(U) =
√
2

(
U11√
2
, U21, . . . , Up1,

U22√
2
, U32, . . . , Up2, . . . ,

Upp√
2

)

• inverse operation: for u = (u1, u2, . . . , un) ∈ Rn with n = p(p+ 1)/2

mat(u) =
1√
2


√
2u1 u2 · · · up
u2

√
2up+1 · · · u2p−1

... ... ...
up u2p−1 · · ·

√
2up(p+1)/2



coefficients
√
2 are added so that standard inner products are preserved:

tr(UV ) = vec(U)T vec(V ), uTv = tr(mat(u)mat(v))
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Positive semidefinite cone

Sp = {vec(X) | X ∈ Sp+} = {x ∈ Rp(p+1)/2 | mat(x) � 0}
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}
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Semidefinite program

minimize cTx
subject to x1A11 + x2A12 + · · ·+ xnA1n � B1

. . .
x1Ar1 + x2Ar2 + · · ·+ xnArn � Br

with Aij, Bi ∈ Spi

Conic LP formulation

K = Sp1 × Sp2 × · · · × Spr

A =


vec(A11) vec(A12) · · · vec(A1n)
vec(A21) vec(A22) · · · vec(A2n)

... ... ...
vec(Ar1) vec(Ar2) · · · vec(Arn)

 , b =


vec(B1)
vec(B2)

...
vec(Br)
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Exponential cone

the epigraph of the perspective of expx is a non-proper cone

K =
{
(x, y, z) ∈ R3 | yex/y ≤ z, y > 0

}
the exponential cone isKexp = clK = K ∪ {(x, 0, z) | x ≤ 0, z ≥ 0}
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Geometric program

minimize cTx

subject to log
ni∑
k=1

exp(aTikx+ bik) ≤ 0, i = 1, . . . , r

Conic LP formulation

minimize cTx

subject to

 aTikx+ bik
1
zik

 ∈ Kexp, k = 1, . . . , ni, i = 1, . . . , r

ni∑
k=1

zik ≤ 1, i = 1, . . . ,m
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Power cone

Definition: for α = (α1, α2, . . . , αm) > 0 and
m∑
i=1

αi = 1

Kα =
{
(x, y) ∈ Rm

+ ×R | |y| ≤ xα1
1 · · ·xαmm

}
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Cones constructed from convex sets

Inverse image of convex set under perspective

K = {(x, y) ∈ Rn ×R | y > 0, x/y ∈ C}

• K ∪ {(0, 0)} is a convex cone if C is a convex set

• clK is proper if C has nonempty interior, does not contain straight lines

Consequence

any convex constraint x ∈ C can be represented as a conic inequality

x ∈ C ⇐⇒ (x, 1) ∈ K

(with minor modifications to makeK proper)
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Cones constructed from functions

Epigraph of perspective of convex function

K = {(x, y, z) ∈ Rn ×R×R | y > 0, yf(x/y) ≤ z}

• K ∪ {(0, 0, 0)} is a convex cone if f is convex

• clK is proper if int dom f 6= ∅, epi f does not contain straight lines

Consequence

can represent any convex constraint f(x) ≤ t as a conic linear inequality

f(x) ≤ t ⇐⇒ (x, 1, t) ∈ K

(with minor modifications to makeK proper)
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Modeling software

Modeling packages for convex optimization

• CVX, YALMIP (MATLAB)

• CVXPY, PICOS (Python)

• MOSEK Fusion (different platforms)

assist in formulating convex problems by automating two tasks:

• verifying convexity from convex calculus rules

• transforming problem in input format required by standard solvers

Related packages

general-purpose optimization modeling: AMPL, GAMS

Conic optimization 15-16



Modeling and conic optimization

Convex modeling systems

• convert problems stated in standard mathematical notation to conic LPs

• in principle, any convex problem can be represented as a conic LP

• in practice, a small set of primitive cones is used (Rn
+, Qp, Sp)

• choice of cones is limited by available algorithms and solvers (see later)

modeling systems implement set of rules for expressing constraints

f(x) ≤ t

as conic inequalities for the implemented cones
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Examples of second-order cone representable functions

• convex quadratic

f(x) = xTPx+ qTx+ r (P � 0)

• quadratic-over-linear function

f(x, y) =
xTx

y
with dom f = Rn ×R+ (assume 0/0 = 0)

• convex powers with rational exponent

f(x) = |x|α, f(x) =

{
xβ x > 0
+∞ x ≤ 0

for rational α ≥ 1 and β ≤ 0

• p-norm f(x) = ‖x‖p for rational p ≥ 1

Conic optimization 15-18



Examples of SD cone representable functions

• matrix-fractional function

f(X, y) = yTX−1y with dom f = {(X, y) ∈ Sn+ ×Rn | y ∈ R(X)}

• maximum eigenvalue of symmetric matrix

• maximum singular value f(X) = ‖X‖2 = σ1(X)

‖X‖2 ≤ t ⇐⇒
[

tI X
XT tI

]
� 0

• nuclear norm f(X) = ‖X‖∗ =
∑
i σi(X)

‖X‖∗ ≤ t ⇐⇒ ∃U, V :

[
U X
XT V

]
� 0,

1

2
(trU + trV ) ≤ t
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Functions representable with exponential and power cone

Exponential cone

• exponential and logarithm

• entropy f(x) = x log x

Power cone

• increasing power of absolute value: f(x) = |x|p with p ≥ 1

• decreasing power: f(x) = xq with q ≤ 0 and domain R++

• p-norm: f(x) = ‖x‖p with p ≥ 1
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Dual cone

K∗ = {y | xTy ≥ 0 for all x ∈ K}

Properties (ifK is a proper cone)

• K∗ is a proper cone

• (K∗)∗ = K

• intK∗ = {y | xTy > 0 for all x ∈ K, x 6= 0}

Dual inequality: x �∗ y means x �K∗ y for generic proper coneK

Note: dual cone depends on choice of inner product
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Examples

• Rp
+, Qp, Sp are self-dual: K = K∗

• dual of norm cone is norm cone for dual norm

• dual of exponential cone

K∗
exp =

{
(u, v, w) ∈ R− ×R×R+ | −u log(−u/w) + u− v ≤ 0

}
(with 0 log(0/w) = 0 if w ≥ 0)

• dual of power cone is

K∗
α =

{
(u, v) ∈ Rm

+ ×R | |v| ≤ (u1/α1)
α1 · · · (um/αm)αm

}
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Primal and dual conic LP

Primal (optimal value p?)

minimize cTx
subject to Ax � b

Dual (optimal value d?)

maximize −bTz
subject to ATz + c = 0

z �∗ 0

Weak duality: p? ≥ d? (without exception)
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Strong duality

Main theorem: p? = d? if primal or dual problem is strictly feasible

Other implications of strict feasibility

• if primal is strictly feasible, then dual optimum is attained (if d? is finite)

• if dual is strictly feasible then primal optimum is attained (if p? is finite)

Compare with linear programming duality (K = Rm
+ )

• for an LP, only exception to strong duality is p? = +∞, d? = −∞
• strong duality holds if primal or dual is feasible

• if optimal value is finite then it is attained (in primal and dual)
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Example with finite nonzero duality gap

Primal problem
minimize x1

subject to
[

0 x1
x1 x2

]
� 0

x1 ≥ −1

optimal value p? = 0

Dual problem
maximize −z

subject to
[
Z11 Z12

Z12 Z22

]
� 0, z ≥ 0

2Z12 + z = 1, Z22 = 0

optimal value d? = −1
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Optimality conditions

if strong duality holds, then x and z are optimal if and only if

[
0
s

]
=

[
0 AT

−A 0

] [
x
z

]
+

[
c
b

]
(1)

s � 0, z �∗ 0, zTs = 0

Primal feasibility: block 2 of (1) and s � 0

Dual feasibility: block 1 of (1) and z �∗ 0

Zero duality gap: inner product of (x, z) and (0, s) gives

zTs = cTx+ bTz
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Strong theorems of alternative

Strict primal feasibility

exactly one of the following two systems is solvable

1. Ax ≺ b
2. ATz = 0, z 6= 0, z �∗ 0, bTz ≤ 0

Strict dual feasibility

if c ∈ R(AT ), exactly one of the following two systems is solvable

1. Ax �K 0, Ax 6= 0, cTx ≤ 0

2. ATz + c = 0, z �K∗ 0

solution of one system is a certificate of infeasibility of the other system
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Weak theorems of alternative

Primal feasibility

at most one of the following two systems is solvable

1. Ax � b
2. ATz = 0, z �∗ 0, bTz < 0

Dual feasibility

at most one of the following two systems is solvable

1. Ax � 0, cTx < 0

2. ATz + c = 0, z �∗ 0

these are strong alternatives if a constraint qualification holds
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Self-dual embeddings

Idea

embed primal, dual conic LPs into a single (self-dual) conic LP, so that:

• embedded problem is feasible, with known feasible points

• from the solution of the embedded problem, primal and dual solutions of
original problem can be constructed, or certificates of primal or dual infeasibility

Purpose: a feasible algorithm applied to the embedded problem

• can detect infeasibility in original problem

• does not require a phase I to find initial feasible points

used by some interior-point solvers
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Basic self-dual embedding

minimize 0

subject to

 0
s
κ

 =

 0 AT c
−A 0 b
−cT −bT 0

 x
z
τ


s � 0, κ ≥ 0, z �∗ 0, τ ≥ 0

• a self-dual conic LP

• has a trivial solution (all variables zero)

• zTs+ τκ = 0 for all feasible points (follows from equality constraint)

• hence, problem is not strictly feasible

Conic optimization 15-30



Optimality condition for embedded problem

 0
s
κ

 =

 0 AT c
−A 0 b
−cT −bT 0

 x
z
τ


s � 0, κ ≥ 0, z �∗ 0, τ ≥ 0

zTs+ τκ = 0

• follows from self-dual property

• a (mixed) linear complementarity problem
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Classification of nonzero solution

let s, κ, x, z, τ be a nonzero solution of the self-dual embedding

Case 1: τ > 0, κ = 0

ŝ = s/τ, x̂ = x/τ, ẑ = z/τ

are primal and dual solutions of the conic LPs, i.e., satisfy

[
0
ŝ

]
=

[
0 AT

−A 0

] [
x̂
ẑ

]
+

[
c
b

]

ŝ � 0, ẑ �∗ 0, ŝT ẑ = 0
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Classification of nonzero solution

Case 2: τ = 0, κ > 0; this implies cTx+ bTz < 0

• if bTz < 0, then ẑ = z/(−bTz) is a proof of primal infeasibility:

AT ẑ = 0, bT ẑ = −1, ẑ �∗ 0

• if cTx < 0, then x̂ = x/(−cTx) is a proof of dual infeasibility:

Ax̂ � 0, cT x̂ = −1

Case 3: τ = κ = 0; no conclusion can be made about the original problem
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Extended self-dual embedding

minimize θ

subject to


0
s
κ
0

 =


0 AT c qx
−A 0 b qz
−cT −bT 0 qτ
−qTx −qTz −qτ 0



x
z
τ
θ

+


0
0
0
1


s � 0, κ ≥ 0, z �∗ 0, τ ≥ 0

• qx, qz, qτ chosen so that

(s, κ, x, z, τ, θ) = (s0, 1, x0, z0, 1, z
T
0 s0 + 1)

is feasible, for some given s0 � 0, x0, z0 �∗ 0

• a self-dual conic LP
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Optimality condition


0
s
κ
0

 =


0 AT c qx
−A 0 b qz
−cT −bT 0 qτ
−qTx −qTz −qτ 0



x
z
τ
θ

+


0
0
0
1


s � 0, κ ≥ 0, z �∗ 0, τ ≥ 0

zTs+ τκ = 0

• follows from self-dual property

• a (mixed) linear complementarity problem
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Properties of extended self-dual embedding

• problem is strictly feasible by construction

• if s, κ, x, z, τ, θ satisfy equality constraint, then

θ = sTz + κτ

(take inner product with (x, z, τ, θ) of each side of the equality)

• at optimum, θ = 0 and problem reduces to the embedding on p.15-30

• classification of p.15-32 also applies to solutions of extended embedding
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