5. Conjugate functions

- closed functions
- conjugate function
- duality

Closed set

a set C is closed if it contains its boundary:

$$
x_{k} \in C, \quad x_{k} \rightarrow \bar{x} \quad \Longrightarrow \quad \bar{x} \in C
$$

Operations that preserve closedness

- the intersection of (finitely or infinitely many) closed sets is closed
- the union of a finite number of closed sets is closed
- inverse under linear mapping: $\{x \mid A x \in C\}$ is closed if C is closed

Image under linear mapping

the image of a closed set under a linear mapping is not necessarily closed

Example

$$
C=\left\{\left(x_{1}, x_{2}\right) \in \mathbf{R}_{+}^{2} \mid x_{1} x_{2} \geq 1\right\}, \quad A=\left[\begin{array}{cc}
1 & 0
\end{array}\right], \quad A C=\mathbf{R}_{++}
$$

Sufficient condition: $A C$ is closed if

- C is closed and convex
- and C does not have a recession direction in the nullspace of A, i.e.,

$$
A y=0, \quad \hat{x} \in C, \quad \hat{x}+\alpha y \in C \text { for all } \alpha \geq 0 \quad \Longrightarrow \quad y=0
$$

in particular, this holds for any matrix A if C is bounded

Closed function

Definition: a function is closed if its epigraph is a closed set

Examples

- $f(x)=-\log \left(1-x^{2}\right)$ with $\operatorname{dom} f=\{x| | x \mid<1\}$
- $f(x)=x \log x$ with $\operatorname{dom} f=\mathbf{R}_{+}$and $f(0)=0$
- indicator function of a closed set C :

$$
\delta_{C}(x)= \begin{cases}0 & x \in C \\ +\infty & \text { otherwise }\end{cases}
$$

Not closed

- $f(x)=x \log x$ with $\operatorname{dom} f=\mathbf{R}_{++}$, or with $\operatorname{dom} f=\mathbf{R}_{+}$and $f(0)=1$
- indicator function of a set C if C is not closed

Properties

Sublevel sets: f is closed if and only if all its sublevel sets are closed

Minimum: if f is closed with bounded sublevel sets then it has a minimizer

Common operations on convex functions that preserve closedness

- sum: $f=f_{1}+f_{2}$ is closed if f_{1} and f_{2} are closed
- composition with affine mapping: $f(x)=g(A x+b)$ is closed if g is closed
- supremum: $f(x)=\sup _{\alpha} f_{\alpha}(x)$ is closed if each function f_{α} is closed
in each case, we assume $\operatorname{dom} f \neq \emptyset$

Outline

- closed functions
- conjugate function
- duality

Conjugate function

the conjugate of a function f is

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right)
$$

f^{*} is closed and convex (even when f is not)

Fenchel's inequality: the definition implies that

$$
f(x)+f^{*}(y) \geq x^{T} y \quad \text { for all } x, y
$$

this is an extension to non-quadratic convex f of the inequality

$$
\frac{1}{2} x^{T} x+\frac{1}{2} y^{T} y \geq x^{T} y
$$

Quadratic function

$$
f(x)=\frac{1}{2} x^{T} A x+b^{T} x+c
$$

Strictly convex case ($A>0$)

$$
f^{*}(y)=\frac{1}{2}(y-b)^{T} A^{-1}(y-b)-c
$$

General convex case $(A \geq 0)$

$$
f^{*}(y)=\frac{1}{2}(y-b)^{T} A^{\dagger}(y-b)-c, \quad \operatorname{dom} f^{*}=\operatorname{range}(A)+b
$$

Negative entropy and negative logarithm

Negative entropy

$$
f(x)=\sum_{i=1}^{n} x_{i} \log x_{i} \quad f^{*}(y)=\sum_{i=1}^{n} e^{y_{i}-1}
$$

Negative logarithm

$$
f(x)=-\sum_{i=1}^{n} \log x_{i} \quad f^{*}(y)=-\sum_{i=1}^{n} \log \left(-y_{i}\right)-n
$$

Matrix logarithm

$$
f(X)=-\log \operatorname{det} X \quad\left(\operatorname{dom} f=\mathbf{S}_{++}^{n}\right) \quad f^{*}(Y)=-\log \operatorname{det}(-Y)-n
$$

Indicator function and norm

Indicator of convex set C : conjugate is the support function of C

$$
\delta_{C}(x)=\left\{\begin{array}{ll}
0 & x \in C \\
+\infty & x \notin C
\end{array} \quad \delta_{C}^{*}(y)=\sup _{x \in C} y^{T} x\right.
$$

Indicator of convex cone C : conjugate is indicator of polar (negative dual) cone

$$
\delta_{C}^{*}(y)=\delta_{-C^{*}}(y)=\delta_{C^{*}}(-y)= \begin{cases}0 & y^{T} x \leq 0 \quad \forall x \in C \\ +\infty & \text { otherwise }\end{cases}
$$

Norm: conjugate is indicator of unit ball for dual norm

$$
f(x)=\|x\| \quad f^{*}(y)= \begin{cases}0 & \|y\|_{*} \leq 1 \\ +\infty & \|y\|_{*}>1\end{cases}
$$

(see next page)

Proof: recall the definition of dual norm

$$
\|y\|_{*}=\sup _{\|x\| \leq 1} x^{T} y
$$

to evaluate $f^{*}(y)=\sup _{x}\left(y^{T} x-\|x\|\right)$ we distinguish two cases

- if $\|y\|_{*} \leq 1$, then (by definition of dual norm)

$$
y^{T} x \leq\|x\| \quad \text { for all } x
$$

and equality holds if $x=0$; therefore $\sup _{x}\left(y^{T} x-\|x\|\right)=0$

- if $\|y\|_{*}>1$, there exists an x with $\|x\| \leq 1, x^{T} y>1$; then

$$
f^{*}(y) \geq y^{T}(t x)-\|t x\|=t\left(y^{T} x-\|x\|\right)
$$

and right-hand side goes to infinity if $t \rightarrow \infty$

Calculus rules

Separable sum

$$
f\left(x_{1}, x_{2}\right)=g\left(x_{1}\right)+h\left(x_{2}\right) \quad f^{*}\left(y_{1}, y_{2}\right)=g^{*}\left(y_{1}\right)+h^{*}\left(y_{2}\right)
$$

Scalar multiplication ($\alpha>0$)

$$
\begin{array}{cr}
f(x)=\alpha g(x) & f^{*}(y)=\alpha g^{*}(y / \alpha) \\
f(x)=\alpha g(x / \alpha) & f^{*}(y)=\alpha g^{*}(y)
\end{array}
$$

- the operation $f(x)=\alpha g(x / \alpha)$ is sometimes called "right scalar multiplication"
- a convenient notation is $f=g \alpha$ for the function $(g \alpha)(x)=\alpha g(x / \alpha)$
- conjugates can be written concisely as $(g \alpha)^{*}=\alpha g^{*}$ and $(\alpha g)^{*}=g^{*} \alpha$

Calculus rules

Addition to affine function

$$
f(x)=g(x)+a^{T} x+b \quad f^{*}(y)=g^{*}(y-a)-b
$$

Translation of argument

$$
f(x)=g(x-b) \quad f^{*}(y)=b^{T} y+g^{*}(y)
$$

Composition with invertible linear mapping: if A is square and nonsingular,

$$
f(x)=g(A x) \quad f^{*}(y)=g^{*}\left(A^{-T} y\right)
$$

Infimal convolution

$$
f(x)=\inf _{u+v=x}(g(u)+h(v)) \quad f^{*}(y)=g^{*}(y)+h^{*}(y)
$$

The second conjugate

$$
f^{* *}(x)=\sup _{y \in \operatorname{dom} f^{*}}\left(x^{T} y-f^{*}(y)\right)
$$

- $f^{* *}$ is closed and convex
- from Fenchel's inequality, $x^{T} y-f^{*}(y) \leq f(x)$ for all y and x; therefore

$$
f^{* *}(x) \leq f(x) \text { for all } x
$$

equivalently, epi $f \subseteq \operatorname{epi} f^{* *}$ (for any f)

- if f is closed and convex, then

$$
f^{* *}(x)=f(x) \quad \text { for all } x
$$

equivalently, epi $f=$ epi $f^{* *}$ (if f is closed and convex); proof on next page

Proof (by contradiction): assume f is closed and convex, and epi $f^{* *} \neq \operatorname{epi} f$ suppose $\left(x, f^{* *}(x)\right) \notin$ epi f; then there is a strict separating hyperplane:

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]^{T}\left[\begin{array}{c}
z-x \\
s-f^{* *}(x)
\end{array}\right] \leq c<0 \quad \text { for all }(z, s) \in \operatorname{epi} f
$$

holds for some a, b, c with $b \leq 0(b>0$ gives a contradiction as $s \rightarrow \infty)$

- if $b<0$, define $y=a /(-b)$ and maximize left-hand side over $(z, s) \in \operatorname{epi} f$:

$$
f^{*}(y)-y^{T} x+f^{* *}(x) \leq c /(-b)<0
$$

this contradicts Fenchel's inequality

- if $b=0$, choose $\hat{y} \in \operatorname{dom} f^{*}$ and add small multiple of $(\hat{y},-1)$ to (a, b) :

$$
\left[\begin{array}{c}
a+\epsilon \hat{y} \\
-\epsilon
\end{array}\right]^{T}\left[\begin{array}{c}
z-x \\
s-f^{* *}(x)
\end{array}\right] \leq c+\epsilon\left(f^{*}(\hat{y})-x^{T} \hat{y}+f^{* *}(x)\right)<0
$$

now apply the argument for $b<0$

Conjugates and subgradients

if f is closed and convex, then

$$
y \in \partial f(x) \quad \Longleftrightarrow \quad x \in \partial f^{*}(y) \quad \Longleftrightarrow \quad x^{T} y=f(x)+f^{*}(y)
$$

Proof. if $y \in \partial f(x)$, then $f^{*}(y)=\sup _{u}\left(y^{T} u-f(u)\right)=y^{T} x-f(x)$; hence

$$
\begin{aligned}
f^{*}(v) & =\sup _{u}\left(v^{T} u-f(u)\right) \\
& \geq v^{T} x-f(x) \\
& =x^{T}(v-y)-f(x)+y^{T} x \\
& =f^{*}(y)+x^{T}(v-y)
\end{aligned}
$$

this holds for all v; therefore, $x \in \partial f^{*}(y)$
reverse implication $x \in \partial f^{*}(y) \Longrightarrow y \in \partial f(x)$ follows from $f^{* *}=f$

Example

Strongly convex function

Definition (page 1.18) f is μ-strongly convex (for $\|\cdot\|$) if $\operatorname{dom} f$ is convex and

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)-\frac{\mu}{2} \theta(1-\theta)\|x-y\|^{2}
$$

for all $x, y \in \operatorname{dom} f$ and $\theta \in[0,1]$

First-order condition

- if f is μ-strongly convex, then

$$
f(y) \geq f(x)+g^{T}(y-x)+\frac{\mu}{2}\|y-x\|^{2} \quad \text { for all } x, y \in \operatorname{dom} f, g \in \partial f(x)
$$

- for differentiable f this is the inequality (4) on page 1.19

Proof

- recall the definition of directional derivative (page 2.28 and 2.29):

$$
f^{\prime}(x, y-x)=\inf _{\theta>0} \frac{f(x+\theta(y-x))-f(x)}{\theta}
$$

and the infimum is approached as $\theta \rightarrow 0$

- if f is μ-strongly convex and subdifferentiable at x, then for all $y \in \operatorname{dom} f$,

$$
\begin{aligned}
f^{\prime}(x, y-x) & \leq \inf _{\theta \in(0,1]} \frac{(1-\theta) f(x)+\theta f(y)-(\mu / 2) \theta(1-\theta)\|y-x\|^{2}-f(x)}{\theta} \\
& =f(y)-f(x)-\frac{\mu}{2}\|y-x\|^{2}
\end{aligned}
$$

- from page 2.31, the directional derivative is the support function of $\partial f(x)$:

$$
\begin{aligned}
g^{T}(y-x) & \leq \sup _{\tilde{g} \in \partial f(x)} \tilde{g}^{T}(y-x) \\
& =f^{\prime}(x ; y-x) \\
& \leq f(y)-f(x)-\frac{\mu}{2}\|y-x\|^{2}
\end{aligned}
$$

Conjugate of strongly convex function

assume f is closed and strongly convex with parameter $\mu>0$ for the norm $\|\cdot\|$

- f^{*} is defined for all y (i.e., $\operatorname{dom} f^{*}=\mathbf{R}^{n}$)
- f^{*} is differentiable everywhere, with gradient

$$
\nabla f^{*}(y)=\underset{x}{\operatorname{argmax}}\left(y^{T} x-f(x)\right)
$$

- ∇f^{*} is Lipschitz continuous with constant $1 / \mu$ for the dual norm $\|\cdot\|_{*}$:

$$
\left\|\nabla f^{*}(y)-\nabla f^{*}\left(y^{\prime}\right)\right\| \leq \frac{1}{\mu}\left\|y-y^{\prime}\right\|_{*} \quad \text { for all } y \text { and } y^{\prime}
$$

Proof: if f is strongly convex and closed

- $y^{T} x-f(x)$ has a unique maximizer x for every y
- x maximizes $y^{T} x-f(x)$ if and only if $y \in \partial f(x)$; from page 5.15

$$
y \in \partial f(x) \quad \Longleftrightarrow \quad x \in \partial f^{*}(y)=\left\{\nabla f^{*}(y)\right\}
$$

hence $\nabla f^{*}(y)=\operatorname{argmax}_{x}\left(y^{T} x-f(x)\right)$

- from first-order condition on page 5.17: if $y \in \partial f(x), y^{\prime} \in \partial f\left(x^{\prime}\right)$:

$$
\begin{aligned}
f\left(x^{\prime}\right) & \geq f(x)+y^{T}\left(x^{\prime}-x\right)+\frac{\mu}{2}\left\|x^{\prime}-x\right\|^{2} \\
f(x) & \geq f\left(x^{\prime}\right)+\left(y^{\prime}\right)^{T}\left(x-x^{\prime}\right)+\frac{\mu}{2}\left\|x^{\prime}-x\right\|^{2}
\end{aligned}
$$

combining these inequalities shows

$$
\mu\left\|x-x^{\prime}\right\|^{2} \leq\left(y-y^{\prime}\right)^{T}\left(x-x^{\prime}\right) \leq\left\|y-y^{\prime}\right\|_{*}\left\|x-x^{\prime}\right\|
$$

- now substitute $x=\nabla f^{*}(y)$ and $x^{\prime}=\nabla f^{*}\left(y^{\prime}\right)$

Outline

- closed functions
- conjugate function
- duality

Duality

$$
\begin{array}{ll}
\text { primal: } & \text { minimize } f(x)+g(A x) \\
\text { dual: } & \text { maximize }-g^{*}(z)-f^{*}\left(-A^{T} z\right)
\end{array}
$$

- follows from Lagrange duality applied to reformulated primal

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)+g(y) \\
\text { subject to } & A x=y
\end{array}
$$

dual function for the formulated problem is:

$$
\inf _{x, y}\left(f(x)+z^{T} A x+g(y)-z^{T} y\right)=-f^{*}\left(-A^{T} z\right)-g^{*}(z)
$$

- Slater's condition (for convex f, g): strong duality holds if there exists an \hat{x} with

$$
\hat{x} \in \operatorname{int} \operatorname{dom} f, \quad A \hat{x} \in \operatorname{int} \operatorname{dom} g
$$

this also guarantees that the dual optimum is attained if optimal value is finite

Set constraint

```
minimize }\quadf(x
subject to }Ax-b\in
```


Primal and dual problem

$$
\begin{array}{ll}
\text { primal: } & \text { minimize } f(x)+\delta_{C}(A x-b) \\
\text { dual: } & \text { maximize }-b^{T} z-\delta_{C}^{*}(z)-f^{*}\left(-A^{T} z\right)
\end{array}
$$

Examples

	constraint	set C	support function $\delta_{C}^{*}(z)$						
equality	$A x=b$	$\{0\}$	0						
norm inequality	$\\|A x-b\\| \leq 1$	unit $\\|\cdot\\|$-ball	$\\|z\\|_{*}$						
conic inequality	$A x \leq_{K} b$	$-K$	$\delta_{K^{*}}(z)$						

Norm regularization

```
minimize }f(x)+|Ax-b
```

- take $g(y)=\|y-b\|$ in general problem

$$
\operatorname{minimize} \quad f(x)+g(A x)
$$

- conjugate of $\|\cdot\|$ is indicator of unit ball for dual norm

$$
g^{*}(z)=b^{T} z+\delta_{B}(z) \quad \text { where } B=\left\{z \mid\|z\|_{*} \leq 1\right\}
$$

- hence, dual problem can be written as

$$
\begin{array}{ll}
\text { maximize } & -b^{T} z-f^{*}\left(-A^{T} z\right) \\
\text { subject to } & \|z\|_{*} \leq 1
\end{array}
$$

Optimality conditions

$$
\begin{array}{ll}
\text { minimize } & f(x)+g(y) \\
\text { subject to } & A x=y
\end{array}
$$

assume f, g are convex and Slater's condition holds

Optimality conditions: x is optimal if and only if there exists a z such that

1. primal feasibility: $x \in \operatorname{dom} f$ and $y=A x \in \operatorname{dom} g$
2. x and $y=A x$ are minimizers of the Lagrangian $f(x)+z^{T} A x+g(y)-z^{T} y$:

$$
-A^{T} z \in \partial f(x), \quad z \in \partial g(A x)
$$

if g is closed, this can be written symmetrically as

$$
-A^{T} z \in \partial f(x), \quad A x \in \partial g^{*}(z)
$$

References

- J.-B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Minimization Algoritms (1993), chapter X.
- D.P. Bertsekas, A. Nedić, A.E. Ozdaglar, Convex Analysis and Optimization (2003), chapter 7.
- R. T. Rockafellar, Convex Analysis (1970).

