5. Conjugate functions

- closed functions
- conjugate function
- duality

Closed set

a set *C* is **closed** if it contains its boundary:

$$x_k \in C, \quad x_k \to \bar{x} \implies \bar{x} \in C$$

Operations that preserve closedness

- the intersection of (finitely or infinitely many) closed sets is closed
- the union of a finite number of closed sets is closed
- inverse under linear mapping: $\{x \mid Ax \in C\}$ is closed if C is closed

Image under linear mapping

the image of a closed set under a linear mapping is not necessarily closed

Example

$$C = \{ (x_1, x_2) \in \mathbf{R}^2_+ \mid x_1 x_2 \ge 1 \}, \qquad A = \begin{bmatrix} 1 & 0 \end{bmatrix}, \qquad AC = \mathbf{R}_{++}$$

Sufficient condition: AC is closed if

- *C* is closed and convex
- and C does not have a recession direction in the nullspace of A, *i.e.*,

$$Ay = 0, \quad \hat{x} \in C, \quad \hat{x} + \alpha y \in C \text{ for all } \alpha \ge 0 \implies y = 0$$

in particular, this holds for any matrix A if C is bounded

Closed function

Definition: a function is closed if its epigraph is a closed set

Examples

- $f(x) = -\log(1 x^2)$ with dom $f = \{x \mid |x| < 1\}$
- $f(x) = x \log x$ with dom $f = \mathbf{R}_+$ and f(0) = 0
- indicator function of a closed set C:

$$\delta_C(x) = \begin{cases} 0 & x \in C \\ +\infty & \text{otherwise} \end{cases}$$

Not closed

- $f(x) = x \log x$ with dom $f = \mathbf{R}_{++}$, or with dom $f = \mathbf{R}_{+}$ and f(0) = 1
- indicator function of a set *C* if *C* is not closed

Properties

Sublevel sets: *f* is closed if and only if all its sublevel sets are closed

Minimum: if f is closed with bounded sublevel sets then it has a minimizer

Common operations on convex functions that preserve closedness

- *sum:* $f = f_1 + f_2$ is closed if f_1 and f_2 are closed
- composition with affine mapping: f(x) = g(Ax + b) is closed if g is closed
- *supremum:* $f(x) = \sup_{\alpha} f_{\alpha}(x)$ is closed if each function f_{α} is closed

in each case, we assume dom $f \neq \emptyset$

Outline

- closed functions
- conjugate function
- duality

Conjugate function

the **conjugate** of a function f is

$$f^*(y) = \sup_{x \in \text{dom } f} \left(y^T x - f(x) \right)$$

 f^* is closed and convex (even when f is not)

Fenchel's inequality: the definition implies that

$$f(x) + f^*(y) \ge x^T y$$
 for all x, y

this is an extension to non-quadratic convex f of the inequality

$$\frac{1}{2}x^T x + \frac{1}{2}y^T y \ge x^T y$$

Quadratic function

$$f(x) = \frac{1}{2}x^T A x + b^T x + c$$

Strictly convex case (A > 0)

$$f^*(y) = \frac{1}{2}(y-b)^T A^{-1}(y-b) - c$$

General convex case $(A \ge 0)$

$$f^*(y) = \frac{1}{2}(y-b)^T A^{\dagger}(y-b) - c, \quad \text{dom } f^* = \text{range}(A) + b$$

Negative entropy and negative logarithm

Negative entropy

$$f(x) = \sum_{i=1}^{n} x_i \log x_i \qquad f^*(y) = \sum_{i=1}^{n} e^{y_i - 1}$$

Negative logarithm

$$f(x) = -\sum_{i=1}^{n} \log x_i \qquad f^*(y) = -\sum_{i=1}^{n} \log(-y_i) - n$$

Matrix logarithm

$$f(X) = -\log \det X \quad (\dim f = \mathbf{S}_{++}^n) \qquad f^*(Y) = -\log \det(-Y) - n$$

Indicator function and norm

Indicator of convex set C: conjugate is the *support function* of C

$$\delta_C(x) = \begin{cases} 0 & x \in C \\ +\infty & x \notin C \end{cases} \qquad \qquad \delta_C^*(y) = \sup_{x \in C} y^T x$$

Indicator of convex cone C: conjugate is indicator of polar (negative dual) cone

$$\delta_C^*(y) = \delta_{-C^*}(y) = \delta_{C^*}(-y) = \begin{cases} 0 & y^T x \le 0 \quad \forall x \in C \\ +\infty & \text{otherwise} \end{cases}$$

Norm: conjugate is indicator of unit ball for dual norm

$$f(x) = ||x|| \qquad f^*(y) = \begin{cases} 0 & ||y||_* \le 1\\ +\infty & ||y||_* > 1 \end{cases}$$

(see next page)

Conjugate functions

Proof: recall the definition of dual norm

$$||y||_* = \sup_{||x|| \le 1} x^T y$$

to evaluate $f^*(y) = \sup_x (y^T x - ||x||)$ we distinguish two cases

• if $||y||_* \le 1$, then (by definition of dual norm)

 $y^T x \le ||x||$ for all x

and equality holds if x = 0; therefore $\sup_{x} (y^{T}x - ||x||) = 0$

• if $||y||_* > 1$, there exists an x with $||x|| \le 1$, $x^T y > 1$; then

$$f^*(y) \ge y^T(tx) - ||tx|| = t(y^T x - ||x||)$$

and right-hand side goes to infinity if $t \to \infty$

Calculus rules

Separable sum

 $f(x_1, x_2) = g(x_1) + h(x_2) \qquad \qquad f^*(y_1, y_2) = g^*(y_1) + h^*(y_2)$

Scalar multiplication ($\alpha > 0$)

$$f(x) = \alpha g(x) \qquad f^*(y) = \alpha g^*(y/\alpha)$$
$$f(x) = \alpha g(x/\alpha) \qquad f^*(y) = \alpha g^*(y)$$

- the operation $f(x) = \alpha g(x/\alpha)$ is sometimes called "right scalar multiplication"
- a convenient notation is $f = g\alpha$ for the function $(g\alpha)(x) = \alpha g(x/\alpha)$
- conjugates can be written concisely as $(g\alpha)^* = \alpha g^*$ and $(\alpha g)^* = g^* \alpha$

Calculus rules

Addition to affine function

$$f(x) = g(x) + a^{T}x + b$$
 $f^{*}(y) = g^{*}(y - a) - b$

Translation of argument

$$f(x) = g(x - b)$$
 $f^*(y) = b^T y + g^*(y)$

Composition with invertible linear mapping: if A is square and nonsingular,

$$f(x) = g(Ax)$$
 $f^{*}(y) = g^{*}(A^{-T}y)$

Infimal convolution

$$f(x) = \inf_{u+v=x} (g(u) + h(v)) \qquad \qquad f^*(y) = g^*(y) + h^*(y)$$

The second conjugate

$$f^{**}(x) = \sup_{y \in \text{dom } f^*} (x^T y - f^*(y))$$

- f^{**} is closed and convex
- from Fenchel's inequality, $x^T y f^*(y) \le f(x)$ for all y and x; therefore

 $f^{**}(x) \le f(x)$ for all x

equivalently, epi $f \subseteq$ epi f^{**} (for any f)

• if f is closed and convex, then

 $f^{**}(x) = f(x)$ for all x

equivalently, $epi f = epi f^{**}$ (if *f* is closed and convex); proof on next page

Proof (by contradiction): assume *f* is closed and convex, and epi $f^{**} \neq$ epi *f* suppose $(x, f^{**}(x)) \notin$ epi *f*; then there is a strict separating hyperplane:

$$\begin{bmatrix} a \\ b \end{bmatrix}^T \begin{bmatrix} z-x \\ s-f^{**}(x) \end{bmatrix} \le c < 0 \quad \text{for all } (z,s) \in \text{epi } f$$

holds for some *a*, *b*, *c* with $b \le 0$ (b > 0 gives a contradiction as $s \to \infty$)

• if b < 0, define y = a/(-b) and maximize left-hand side over $(z, s) \in epi f$:

$$f^*(y) - y^T x + f^{**}(x) \le c/(-b) < 0$$

this contradicts Fenchel's inequality

• if b = 0, choose $\hat{y} \in \text{dom } f^*$ and add small multiple of $(\hat{y}, -1)$ to (a, b):

$$\begin{bmatrix} a+\epsilon\hat{y}\\ -\epsilon \end{bmatrix}^T \begin{bmatrix} z-x\\ s-f^{**}(x) \end{bmatrix} \le c+\epsilon\left(f^*(\hat{y})-x^T\hat{y}+f^{**}(x)\right) < 0$$

now apply the argument for b < 0

Conjugate functions

Conjugates and subgradients

if f is closed and convex, then

$$y \in \partial f(x) \iff x \in \partial f^*(y) \iff x^T y = f(x) + f^*(y)$$

Proof. if $y \in \partial f(x)$, then $f^*(y) = \sup_u (y^T u - f(u)) = y^T x - f(x)$; hence

$$f^{*}(v) = \sup_{u} (v^{T}u - f(u))$$

$$\geq v^{T}x - f(x)$$

$$= x^{T}(v - y) - f(x) + y^{T}x$$

$$= f^{*}(y) + x^{T}(v - y)$$

this holds for all *v*; therefore, $x \in \partial f^*(y)$

reverse implication $x \in \partial f^*(y) \Longrightarrow y \in \partial f(x)$ follows from $f^{**} = f$

Conjugate functions

Example

Strongly convex function

Definition (page 1.18) f is μ -strongly convex (for $\|\cdot\|$) if dom f is convex and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) - \frac{\mu}{2}\theta(1 - \theta)||x - y||^2$$

for all $x, y \in \text{dom } f$ and $\theta \in [0, 1]$

First-order condition

• if f is μ -strongly convex, then

$$f(y) \ge f(x) + g^T(y - x) + \frac{\mu}{2} ||y - x||^2 \quad \text{for all } x, y \in \text{dom } f, g \in \partial f(x)$$

• for differentiable f this is the inequality (4) on page 1.19

Proof

• recall the definition of directional derivative (page 2.28 and 2.29):

$$f'(x, y - x) = \inf_{\theta > 0} \frac{f(x + \theta(y - x)) - f(x)}{\theta}$$

and the infimum is approached as $\theta \to 0$

• if f is μ -strongly convex and subdifferentiable at x, then for all $y \in \text{dom } f$,

$$\begin{aligned} f'(x, y - x) &\leq \inf_{\theta \in \{0, 1\}} \frac{(1 - \theta) f(x) + \theta f(y) - (\mu/2) \theta (1 - \theta) \|y - x\|^2 - f(x)}{\theta} \\ &= f(y) - f(x) - \frac{\mu}{2} \|y - x\|^2 \end{aligned}$$

• from page 2.31, the directional derivative is the support function of $\partial f(x)$:

$$g^{T}(y-x) \leq \sup_{\tilde{g} \in \partial f(x)} \tilde{g}^{T}(y-x)$$

$$= f'(x; y-x)$$

$$\leq f(y) - f(x) - \frac{\mu}{2} ||y-x||$$

2

Conjugate of strongly convex function

assume *f* is closed and strongly convex with parameter $\mu > 0$ for the norm $\|\cdot\|$

- f^* is defined for all y (*i.e.*, dom $f^* = \mathbf{R}^n$)
- f^* is differentiable everywhere, with gradient

$$\nabla f^*(y) = \operatorname*{argmax}_{x} \left(y^T x - f(x) \right)$$

• ∇f^* is Lipschitz continuous with constant $1/\mu$ for the dual norm $\|\cdot\|_*$:

$$\|\nabla f^*(y) - \nabla f^*(y')\| \le \frac{1}{\mu} \|y - y'\|_*$$
 for all y and y'

Proof: if f is strongly convex and closed

- $y^T x f(x)$ has a unique maximizer x for every y
- x maximizes $y^T x f(x)$ if and only if $y \in \partial f(x)$; from page 5.15

$$y \in \partial f(x) \quad \iff \quad x \in \partial f^*(y) = \{\nabla f^*(y)\}$$

hence $\nabla f^*(y) = \operatorname{argmax}_x (y^T x - f(x))$

• from first-order condition on page 5.17: if $y \in \partial f(x)$, $y' \in \partial f(x')$:

$$f(x') \geq f(x) + y^{T}(x' - x) + \frac{\mu}{2} ||x' - x||^{2}$$

$$f(x) \geq f(x') + (y')^{T}(x - x') + \frac{\mu}{2} ||x' - x||^{2}$$

combining these inequalities shows

$$\mu \|x - x'\|^2 \le (y - y')^T (x - x') \le \|y - y'\|_* \|x - x'\|$$

• now substitute $x = \nabla f^*(y)$ and $x' = \nabla f^*(y')$

Outline

- closed functions
- conjugate function
- duality

Duality

primal: minimize
$$f(x) + g(Ax)$$

dual: maximize $-g^*(z) - f^*(-A^T z)$

• follows from Lagrange duality applied to reformulated primal

minimize f(x) + g(y)subject to Ax = y

dual function for the formulated problem is:

$$\inf_{x,y} \left(f(x) + z^T A x + g(y) - z^T y \right) = -f^* (-A^T z) - g^*(z)$$

• Slater's condition (for convex f, g): strong duality holds if there exists an \hat{x} with

 $\hat{x} \in \operatorname{int} \operatorname{dom} f, \qquad A\hat{x} \in \operatorname{int} \operatorname{dom} g$

this also guarantees that the dual optimum is attained if optimal value is finite

Conjugate functions

Set constraint

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax - b \in C \end{array}$

Primal and dual problem

Examples

	constraint	set C	support function $\delta^*_C(z)$
equality	Ax = b	{0}	0
norm inequality	$\ Ax - b\ \le 1$	unit $\ \cdot\ $ -ball	$ z _*$
conic inequality	$Ax \leq_K b$	-K	$\delta_{K^*}(z)$

Norm regularization

minimize f(x) + ||Ax - b||

• take g(y) = ||y - b|| in general problem

minimize f(x) + g(Ax)

- conjugate of $\|\cdot\|$ is indicator of unit ball for dual norm

$$g^*(z) = b^T z + \delta_B(z)$$
 where $B = \{z \mid ||z||_* \le 1\}$

• hence, dual problem can be written as

maximize
$$-b^T z - f^*(-A^T z)$$

subject to $||z||_* \le 1$

Optimality conditions

minimize f(x) + g(y)subject to Ax = y

assume f, g are convex and Slater's condition holds

Optimality conditions: x is optimal if and only if there exists a z such that

1. primal feasibility: $x \in \text{dom } f$ and $y = Ax \in \text{dom } g$

2. *x* and *y* = *Ax* are minimizers of the Lagrangian $f(x) + z^T A x + g(y) - z^T y$:

$$-A^T z \in \partial f(x), \qquad z \in \partial g(Ax)$$

if g is closed, this can be written symmetrically as

$$-A^T z \in \partial f(x), \qquad A x \in \partial g^*(z)$$

References

- J.-B. Hiriart-Urruty, C. Lemaréchal, *Convex Analysis and Minimization Algoritms* (1993), chapter X.
- D.P. Bertsekas, A. Nedić, A.E. Ozdaglar, *Convex Analysis and Optimization* (2003), chapter 7.
- R. T. Rockafellar, *Convex Analysis* (1970).