9. Dual decomposition

- dual methods
- dual decomposition
- network utility maximization
- network flow optimization
Dual methods

primal: minimize $f(x) + g(Ax)$
dual: maximize $-g^*(z) - f^*(-A^Tz)$

reasons why dual problem may be easier to solve by first-order methods:

- dual problem is unconstrained or has simple constraints (for example, $z \succeq 0$)
- dual objective is differentiable or has a simple nondifferentiable term
- decomposition: exploit separable structure
(Sub-)gradients of conjugate function

Assume \(f : \mathbb{R}^n \to \mathbb{R} \) is closed and convex with conjugate

\[
f^*(y) = \sup_x (y^T x - f(x))
\]

- \(f^* \) is subdifferentiable on (at least) \(\text{int dom } f^* \) (page 2.4)
- Maximizers in the definition of \(f^*(y) \) are subgradients at \(y \) (page 5.15)

\[
y \in \partial f(x) \iff y^T x - f(x) = f^*(y) \iff x \in \partial f^*(y)
\]

- If \(f \) is strictly convex, maximizer is unique (hence, equal to \(\nabla f^*(y) \)) if it exists
- If \(f \) is strongly convex, then conjugate is defined for all \(y \) and differentiable with

\[
\|\nabla f^*(y) - \nabla f^*(y')\| \leq \frac{1}{\mu} \|y - y'\|_* \quad \text{for all } y, y'
\]

where \(\mu \) is strong convexity constant of \(f \) with respect to \(\| \cdot \| \); see page 5.19
Outline

• dual methods

• dual decomposition

• network utility maximization

• network flow optimization
Equality constraints

Primal and dual problems

primal: minimize \(f(x) \)
subject to \(Ax = b \)
dual: maximize \(-b^T z - f^*(-A^T z) \)

Dual gradient ascent algorithm (assuming \(\text{dom} f^* = \mathbb{R}^n \))

\[
\hat{x} = \arg\min_x (f(x) + z^T A x) \\
z^+ = z - t(b - A\hat{x})
\]

- step one computes a subgradient \(\hat{x} \in \partial f^*(-A^T z) \)
- in step two, \(b - A\hat{x} \) is a subgradient of \(b^T z + f^*(-A^T z) \) at \(z \)

of interest if calculation of \(\hat{x} \) is inexpensive (for example, \(f \) is separable)
Dual decomposition

Convex problem with separable objective

minimize \(f_1(x_1) + f_2(x_2) \)
subject to \(A_1x_1 + A_2x_2 \leq b \)

constraint is *complicating* or *coupling* constraint

Dual problem

maximize \(-f_1^*(-A_1^Tz) - f_2^*(-A_2^Tz) - b^Tz\)
subject to \(z \geq 0 \)

can be solved by (sub-)gradient projection method if \(z \geq 0 \) is the only constraint
Dual subgradient projection

Subproblem: to calculate $f_j^*(-A_j^T z)$ and a (sub-)gradient for it,

$$\text{minimize (over } x_j) \quad f_j(x_j) + z^T A_j x_j$$

- optimal value is $-f_j^*(-A_j^T z)$
- minimizer \hat{x}_j is in $\partial f_j^*(-A_j^T z)$

Dual subgradient projection method

$$\hat{x}_j = \arg\min_{x_j} (f_j(x_j) + z^T A_j x_j) \quad \text{for } j = 1, 2$$

$$z^+ = (z - t(b - A_1 \hat{x}_1 - A_2 \hat{x}_2))_+$$

- minimization problems over x_1, x_2 are independent
- z-update is projected subgradient step ($u_+ = \max\{u, 0\}$ elementwise)
Interpretation as price coordination

- $p = 2$ units in a system; unit j chooses decision variable x_j
- Constraints are limits on shared resources; z_i is price of resource i

Dual update: depends on slacks $s = b - A_1x_1 - A_2x_2$

$$z^+ = (z - ts)_+$$

- Increases price z_i if resource i is over-utilized ($s_i < 0$)
- Decreases price z_i if resource i is under-utilized ($s_i > 0$)
- Never lets prices get negative

Distributed architecture: central node sets prices z, peripheral node j sets x_j
Example

Quadratic optimization problem

\[
\begin{align*}
\text{minimize} & \quad \sum_{j=1}^{r} \left(\frac{1}{2} x_j^T P_j x_j + q_j^T x_j \right) \\
\text{subject to} & \quad B_j x_j \leq d_j, \quad j = 1, \ldots, r \\
& \quad \sum_{j=1}^{r} A_j x_j \leq b
\end{align*}
\]

- without last inequality, problem would separate into \(r \) independent QPs
- we assume \(P_j > 0 \)

Formulation for dual decomposition

\[
\begin{align*}
\text{minimize} & \quad \sum_{j=1}^{r} f_j(x_j) \\
\text{subject to} & \quad \sum_{j=1}^{r} A_j x_j \leq b
\end{align*}
\]

where \(f_j(x_j) = (1/2)x_j^T P_j x_j + q_j^T x_j \) with domain \(\{ x_j \mid B_j x_j \leq d_j \} \)
Dual problem

maximize \(-b^T z - \sum_{j=1}^{r} f_j^*(-A_j^T z)\)
subject to \(z \geq 0\)

- gradient of \(h(z) = \sum_j f_j^*(-A_j^T z)\) is Lipschitz continuous (since \(P_j > 0\)):

\[\|\nabla h(z) - \nabla h(z')\|_2 \leq \frac{\|A\|_2^2}{\min_j \lambda_{\min}(P_j)} \|z - z'\|_2\]

where \(A = \begin{bmatrix} A_1 & \cdots & A_r \end{bmatrix}\)

- function value of \(-f_j^*(-A_j^T z)\) is the optimal value of the QP

\[
\text{minimize (over } x_j) \quad \frac{1}{2} x_j^T P x_j + (q_j + A_j^T z)^T x_j
\]
subject to \(B_j x_j \leq d_j\)

- optimal solution \(\hat{x}_j\) is gradient \(\hat{x}_j = \nabla f_j^*(-A_j^T z)\)
Numerical example

- 10 subproblems \((r = 10)\), each with 100 variables and 100 constraints
- 10 coupling constraints
- projected gradient descent and FISTA, with the same fixed step size
Outline

- dual methods
- dual decomposition
- network utility maximization
- network flow optimization
Network utility maximization

Network flows

- n flows, with fixed routes, in a network with m links
- variable $x_j \geq 0$ denotes the rate of flow j
- flow utility is $U_j : \mathbb{R} \rightarrow \mathbb{R}$, concave, increasing

Capacity constraints

- traffic y_i on link i is sum of flows passing through it
- $y = Rx$, where R is the routing matrix

$$R_{ij} = \begin{cases}
1 & \text{flow } j \text{ passes over link } i \\
0 & \text{otherwise}
\end{cases}$$

- link capacity constraint: $y \leq c$
Dual network utility maximization problem

primal: maximize \[\sum_{j=1}^{n} U_j(x_j) \]
subject to \[Rx \leq c \]

dual: minimize \[c^T z + \sum_{j=1}^{n} (-U_j)^*(-r_j^T z) \]
subject to \[z \geq 0 \]

- \(r_j \) is column \(j \) of \(R \)
- dual variable \(z_i \) is price (per unit flow) for using link \(i \)
- \(r_j^T z \) is the sum of prices along route \(j \)
(Sub-)gradients of dual function

Dual objective

\[f(z) = c^T z + \sum_{j=1}^{n} (-U_j)^*(-r_j^T z) \]

\[= c^T z + \sum_{j=1}^{n} \sup_{x_j} \left(U_j(x_j) - (r_j^T z)x_j \right) \]

Subgradient

\[c - R\hat{x} \in \partial f(z) \quad \text{where} \quad \hat{x}_j = \arg\max_{x_j} \left(U_j(x_j) - (r_j^T z)x_j \right) \]

- \(r_j^T z \) is the sum of link prices along route \(j \)
- \(c - R\hat{x} \) is vector of link capacity margins for flow \(\hat{x} \)
- if \(U_j \) is strictly concave, this is a gradient
Dual decomposition algorithm

given initial link price vector z, repeat:

1. sum link prices along each route: calculate $\lambda_j = r_j^T z$ for $j = 1, \ldots, n$
2. optimize flows (separately) using flow prices

 $$\hat{x}_j = \arg\max_{x_j} (U_j(x_j) - \lambda_j x_j), \quad j = 1, \ldots, n$$
3. calculate link capacity margins $s = c - R\hat{x}$
4. update link prices using projected (sub-)gradient step with step t

 $$z := (z - ts)_+$$

Decentralized:

- to find λ_j, \hat{x}_j source j only needs to know the prices on its route
- to update s_i, z_i, link i only needs to know the flows that pass through it
Outline

- dual methods
- dual decomposition
- network utility maximization
- network flow optimization
Single commodity network flow

Network

- connected, directed graph with n links/arcs, m nodes
- node-arc incidence matrix $A \in \mathbb{R}^{m \times n}$ is

$$A_{ij} = \begin{cases}
1 & \text{arc } j \text{ enters node } i \\
-1 & \text{arc } j \text{ leaves node } i \\
0 & \text{otherwise}
\end{cases}$$

Flow vector and external sources

- variable x_j denotes flow (traffic) on arc j
- b_i is external demand (or supply) of flow at node i (satisfies $1^T b = 0$)
- flow conservation: $Ax = b$
Network flow optimization problem

minimize \quad \phi(x) = \sum_{j=1}^{n} \phi_j(x_j)

subject to \quad Ax = b

• \(\phi \) is a separable sum of convex functions

• dual decomposition yields decentralized solution method

Dual problem \((a_j \text{ is } j\text{'th column of } A)\)

maximize \quad -b^T z - \sum_{j=1}^{n} \phi^*_j (-a_j^T z)

• dual variable \(z_i \) can be interpreted as potential at node \(i \)

• \(y_j = -a_j^T z \) is the potential difference across arc \(j \)

 (potential at start node minus potential at end node)
(Sub-)gradients of dual function

Negative dual objective

\[
f(z) = b^T z + \sum_{j=1}^{n} \phi_j^*(-a_j^T z)
\]

Subgradient

\[
b - A\hat{x} \in \partial f(z) \quad \text{where} \quad \hat{x}_j = \text{argmin} \left(\phi_j(x_j) + (a_j^T z)x_j \right)
\]

• this is a gradient if the functions \(\phi_j \) are strictly convex

• if \(\phi_j \) is differentiable, \(\phi_j'(\hat{x}_j) = -a_j^T z \)
Dual decomposition network flow algorithm

given initial potential vector z, repeat

1. determine link flows from potential differences $y = -A^T z$

$$
\hat{x}_j = \arg\min_{x_j} (\phi_j(x_j) - y_j x_j), \quad j = 1, \ldots, n
$$

2. compute flow residual at each node: $s := b - A\hat{x}$

3. update node potentials using (sub-)gradient step with step size t

$$
z := z - t s
$$

Decentralized:

- flow \hat{x}_j is calculated from potential difference across arc j
- node potential z_i is updated from its own flow residual s_i
Electrical network interpretation

network flow optimality conditions (with differentiable ϕ_j)

$$Ax = b, \quad y + A^T z = 0, \quad y_j = \phi'_j (x_j), \quad j = 1, \ldots, n$$

network with node incidence matrix A, nonlinear resistors in branches

Kirchhoff current law (KCL): $Ax = b$

x_j is the current flow in branch j; b_i is external current extracted at node i

Kirchhoff voltage law (KVL): $y + A^T z = 0$

z_j is node potential; $y_j = -a_j^T z$ is jth branch voltage

Current–voltage characteristics: $y_j = \phi'_j (x_j)$

for example, $\phi_j (x_j) = R_j x_j^2 / 2$ for linear resistor R_j

current and potentials in circuit are optimal flows and dual variables
Example: minimum queueing delay

Flow cost function and conjugate \((c_j > 0\) is link capacity):

\[
\phi_j(x_j) = \frac{x_j}{c_j - x_j}, \quad \phi_j^*(y_j) = \begin{cases}
\sqrt{c_jy_j - 1}^2 & y_j > 1/c_j \\
0 & y_j \leq 1/c_j
\end{cases}
\]

with \(\text{dom } \phi_j = [0, c_j)\)

- \(\phi_j\) is differentiable except at \(x_j = 0\)

\[
\partial \phi_j(0) = (-\infty, 0], \quad \phi_j'(x_j) = \frac{c_j}{(c_j - x_j)^2} \quad (0 < x_j < c_j)
\]

- \(\phi_j^*\) is differentiable

\[
\phi_j^{**}(y_j) = \begin{cases}
0 & y_j \leq 1/c_j \\
c_j - \sqrt{c_j/y_j} & y_j > 1/c_j
\end{cases}
\]
Flow cost function, conjugate, and their subdifferentials ($c_j = 1$)
References

- S. Boyd, *Lecture slides and notes for EE364b, Convex Optimization II*, lectures and notes on decomposition.