9. Dual decomposition

- dual methods
- dual decomposition
- network utility maximization
- network flow optimization

Dual methods

```
primal: minimize }f(x)+g(Ax
dual: maximize - g* (z) - f* (-A T}z
```

reasons why dual problem may be easier to solve by first-order methods:

- dual problem is unconstrained or has simple constraints (for example, $z \geq 0$)
- dual objective is differentiable or has a simple nondifferentiable term
- decomposition: exploit separable structure

(Sub-)gradients of conjugate function

assume $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is closed and convex with conjugate

$$
f^{*}(y)=\sup _{x}\left(y^{T} x-f(x)\right)
$$

- f^{*} is subdifferentiable on (at least) $\operatorname{int} \operatorname{dom} f^{*}$ (page 2.4)
- maximizers in the definition of $f^{*}(y)$ are subgradients at y (page 5.15)

$$
y \in \partial f(x) \quad \Longleftrightarrow y^{T} x-f(x)=f^{*}(y) \quad \Longleftrightarrow \quad x \in \partial f^{*}(y)
$$

- if f is strictly convex, maximizer is unique (hence, equal to $\nabla f^{*}(y)$) if it exists
- if f is strongly convex, then conjugate is defined for all y and differentiable with

$$
\left\|\nabla f^{*}(y)-\nabla f^{*}\left(y^{\prime}\right)\right\| \leq \frac{1}{\mu}\left\|y-y^{\prime}\right\|_{*} \quad \text { for all } y, y^{\prime}
$$

where μ is strong convexity constant of f with respect to $\|\cdot\|$; see page 5.19

Outline

- dual methods
- dual decomposition
- network utility maximization
- network flow optimization

Equality constraints

Primal and dual problems

$$
\begin{array}{lll}
\text { primal: } & \text { minimize } f(x) \\
& \text { subject to } A x=b \\
\text { dual: } & \text { maximize }-b^{T} z-f^{*}\left(-A^{T} z\right)
\end{array}
$$

Dual gradient ascent algorithm (assuming $\operatorname{dom} f^{*}=\mathbf{R}^{n}$)

$$
\begin{aligned}
\hat{x} & =\underset{x}{\operatorname{argmin}}\left(f(x)+z^{T} A x\right) \\
z^{+} & =z-t(b-A \hat{x})
\end{aligned}
$$

- step one computes a subgradient $\hat{x} \in \partial f^{*}\left(-A^{T} z\right)$
- in step two, $b-A \hat{x}$ is a subgradient of $b^{T} z+f^{*}\left(-A^{T} z\right)$ at z
of interest if calculation of \hat{x} is inexpensive (for example, f is separable)

Dual decomposition

Convex problem with separable objective

$$
\begin{array}{ll}
\operatorname{minimize} & f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right) \\
\text { subject to } & A_{1} x_{1}+A_{2} x_{2} \leq b
\end{array}
$$

constraint is complicating or coupling constraint

Dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & -f_{1}^{*}\left(-A_{1}^{T} z\right)-f_{2}^{*}\left(-A_{2}^{T} z\right)-b^{T} z \\
\text { subject to } & z \geq 0
\end{array}
$$

can be solved by (sub-)gradient projection method if $z \geq 0$ is the only constraint

Dual subgradient projection

Subproblem: to calculate $f_{j}^{*}\left(-A_{j}^{T} z\right)$ and a (sub-)gradient for it,

$$
\text { minimize (over } x_{j} \text {) } \quad f_{j}\left(x_{j}\right)+z^{T} A_{j} x_{j}
$$

- optimal value is $-f_{j}^{*}\left(-A_{j}^{T} z\right)$
- minimizer \hat{x}_{j} is in $\partial f_{j}^{*}\left(-A_{j}^{T} z\right)$

Dual subgradient projection method

$$
\begin{aligned}
\hat{x}_{j} & =\underset{x_{j}}{\operatorname{argmin}}\left(f_{j}\left(x_{j}\right)+z^{T} A_{j} x_{j}\right) \quad \text { for } j=1,2 \\
z^{+} & =\left(z-t\left(b-A_{1} \hat{x}_{1}-A_{2} \hat{x}_{2}\right)\right)_{+}
\end{aligned}
$$

- minimization problems over x_{1}, x_{2} are independent
- z-update is projected subgradient $\operatorname{step}\left(u_{+}=\max \{u, 0\}\right.$ elementwise)

Interpretation as price coordination

- $p=2$ units in a system; unit j chooses decision variable x_{j}
- constraints are limits on shared resources; z_{i} is price of resource i

Dual update: depends on slacks $s=b-A_{1} x_{1}-A_{2} x_{2}$

$$
z^{+}=(z-t s)_{+}
$$

- increases price z_{i} if resource i is over-utilized $\left(s_{i}<0\right)$
- decreases price z_{i} if resource i is under-utilized $\left(s_{i}>0\right)$
- never lets prices get negative

Distributed architecture: central node sets prices z, peripheral node j sets x_{j}

Example

Quadratic optimization problem

$$
\begin{array}{cl}
\text { minimize } & \sum_{j=1}^{r}\left(\frac{1}{2} x_{j}^{T} P_{j} x_{j}+q_{j}^{T} x_{j}\right) \\
\text { subject to } & B_{j} x_{j} \leq d_{j}, \quad j=1, \ldots, r \\
& \sum_{j=1}^{r} A_{j} x_{j} \leq b
\end{array}
$$

- without last inequality, problem would separate into r independent QPs
- we assume $P_{j}>0$

Formulation for dual decomposition

$$
\begin{array}{ll}
\text { minimize } & \sum_{j=1}^{r} f_{j}\left(x_{j}\right) \\
\text { subject to } & \sum_{j=1}^{r} A_{j} x_{j} \leq b
\end{array}
$$

where $f_{j}\left(x_{j}\right)=(1 / 2) x_{j}^{T} P_{j} x_{j}+q_{j}^{T} x_{j}$ with domain $\left\{x_{j} \mid B_{j} x_{j} \leq d_{j}\right\}$

Dual problem

$$
\begin{array}{ll}
\text { maximize } & -b^{T} z-\sum_{j=1}^{r} f_{j}^{*}\left(-A_{j}^{T} z\right) \\
\text { subject to } & z \geq 0
\end{array}
$$

- gradient of $h(z)=\Sigma_{j} f_{j}^{*}\left(-A_{j}^{T} z\right)$ is Lipschitz continuous (since $\left.P_{j}>0\right)$:

$$
\left\|\nabla h(z)-\nabla h\left(z^{\prime}\right)\right\|_{2} \leq \frac{\|A\|_{2}^{2}}{\min _{j} \lambda_{\min }\left(P_{j}\right)}\left\|z-z^{\prime}\right\|_{2}
$$

where $A=\left[\begin{array}{lll}A_{1} & \cdots & A_{r}\end{array}\right]$

- function value of $-f_{j}^{*}\left(-A_{j}^{T} z\right)$ is the optimal value of the QP

$$
\begin{array}{ll}
\text { minimize (over } \left.x_{j}\right) & (1 / 2) x_{j}^{T} P x_{j}+\left(q_{j}+A_{j}^{T} z\right)^{T} x_{j} \\
\text { subject to } & B_{j} x_{j} \leq d_{j}
\end{array}
$$

- optimal solution \hat{x}_{j} is gradient $\hat{x}_{j}=\nabla f_{j}^{*}\left(-A_{j}^{T} z\right)$

Numerical example

- 10 subproblems $(r=10)$, each with 100 variables and 100 constraints
- 10 coupling constraints
- projected gradient descent and FISTA, with the same fixed step size

Outline

- dual methods
- dual decomposition
- network utility maximization
- network flow optimization

Network utility maximization

Network flows

- n flows, with fixed routes, in a network with m links
- variable $x_{j} \geq 0$ denotes the rate of flow j
- flow utility is $U_{j}: \mathbf{R} \rightarrow \mathbf{R}$, concave, increasing

Capacity constraints

- traffic y_{i} on link i is sum of flows passing through it
- $y=R x$, where R is the routing matrix

$$
R_{i j}= \begin{cases}1 & \text { flow } j \text { passes over link } i \\ 0 & \text { otherwise }\end{cases}
$$

- link capacity constraint: $y \leq c$

Dual network utility maximization problem

$$
\begin{array}{lll}
\text { primal: } & \text { maximize } & \sum_{j=1}^{n} U_{j}\left(x_{j}\right) \\
& \text { subject to } R x \leq c \\
& & \\
\text { dual: } & \text { minimize } & c^{T} z+\sum_{j=1}^{n}\left(-U_{j}\right)^{*}\left(-r_{j}^{T} z\right) \\
& \text { subject to } z \geq 0
\end{array}
$$

- r_{j} is column j of R
- dual variable z_{i} is price (per unit flow) for using link i
- $r_{j}^{T} z$ is the sum of prices along route j

(Sub-)gradients of dual function

Dual objective

$$
\begin{aligned}
f(z) & =c^{T} z+\sum_{j=1}^{n}\left(-U_{j}\right)^{*}\left(-r_{j}^{T} z\right) \\
& =c^{T} z+\sum_{j=1}^{n} \sup _{x_{j}}\left(U_{j}\left(x_{j}\right)-\left(r_{j}^{T} z\right) x_{j}\right)
\end{aligned}
$$

Subgradient

$$
c-R \hat{x} \in \partial f(z) \quad \text { where } \quad \hat{x}_{j}=\underset{x_{j}}{\operatorname{argmax}}\left(U_{j}\left(x_{j}\right)-\left(r_{j}^{T} z\right) x_{j}\right)
$$

- $r_{j}^{T} z$ is the sum of link prices along route j
- $c-R \hat{x}$ is vector of link capacity margins for flow \hat{x}
- if U_{j} is strictly concave, this is a gradient

Dual decomposition algorithm

given initial link price vector z, repeat:

1. sum link prices along each route: calculate $\lambda_{j}=r_{j}^{T} z$ for $j=1, \ldots, n$
2. optimize flows (separately) using flow prices

$$
\hat{x}_{j}=\underset{x_{j}}{\operatorname{argmax}}\left(U_{j}\left(x_{j}\right)-\lambda_{j} x_{j}\right), \quad j=1, \ldots, n
$$

3. calculate link capacity margins $s=c-R \hat{x}$
4. update link prices using projected (sub-)gradient step with step t

$$
z:=(z-t s)_{+}
$$

Decentralized:

- to find λ_{j}, \hat{x}_{j} source j only needs to know the prices on its route
- to update s_{i}, z_{i}, link i only needs to know the flows that pass through it

Outline

- dual methods
- dual decomposition
- network utility maximization
- network flow optimization

Single commodity network flow

Network

- connected, directed graph with n links/arcs, m nodes
- node-arc incidence matrix $A \in \mathbf{R}^{m \times n}$ is

$$
A_{i j}=\left\{\begin{aligned}
1 & \text { arc } j \text { enters node } i \\
-1 & \text { arc } j \text { leaves node } i \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Flow vector and external sources

- variable x_{j} denotes flow (traffic) on arc j
- b_{i} is external demand (or supply) of flow at node i (satisfies $\mathbf{1}^{T} b=0$)
- flow conservation: $A x=b$

Network flow optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & \phi(x)=\sum_{j=1}^{n} \phi_{j}\left(x_{j}\right) \\
\text { subject to } & A x=b
\end{array}
$$

- ϕ is a separable sum of convex functions
- dual decomposition yields decentralized solution method

Dual problem $\left(a_{j}\right.$ is j th column of $\left.A\right)$

$$
\text { maximize }-b^{T} z-\sum_{j=1}^{n} \phi_{j}^{*}\left(-a_{j}^{T} z\right)
$$

- dual variable z_{i} can be interpreted as potential at node i
- $y_{j}=-a_{j}^{T} z$ is the potential difference across arc j (potential at start node minus potential at end node)

(Sub-)gradients of dual function

Negative dual objective

$$
f(z)=b^{T} z+\sum_{j=1}^{n} \phi_{j}^{*}\left(-a_{j}^{T} z\right)
$$

Subgradient

$$
b-A \hat{x} \in \partial f(z) \quad \text { where } \quad \hat{x}_{j}=\operatorname{argmin}\left(\phi_{j}\left(x_{j}\right)+\left(a_{j}^{T} z\right) x_{j}\right)
$$

- this is a gradient if the functions ϕ_{j} are strictly convex
- if ϕ_{j} is differentiable, $\phi_{j}^{\prime}\left(\hat{x}_{j}\right)=-a_{j}^{T} z$

Dual decomposition network flow algorithm

given initial potential vector z, repeat

1. determine link flows from potential differences $y=-A^{T} z$

$$
\hat{x}_{j}=\underset{x_{j}}{\operatorname{argmin}}\left(\phi_{j}\left(x_{j}\right)-y_{j} x_{j}\right), \quad j=1, \ldots, n
$$

2. compute flow residual at each node: $s:=b-A \hat{x}$
3. update node potentials using (sub-)gradient step with step size t

$$
z:=z-t s
$$

Decentralized:

- flow \hat{x}_{j} is calculated from potential difference across arc j
- node potential z_{i} is updated from its own flow residual s_{i}

Electrical network interpretation

network flow optimality conditions (with differentiable ϕ_{j})

$$
A x=b, \quad y+A^{T} z=0, \quad y_{j}=\phi_{j}^{\prime}\left(x_{j}\right), \quad j=1, \ldots, n
$$

network with node incidence matrix A, nonlinear resistors in branches
Kirchhoff current law (KCL): $A x=b$
x_{j} is the current flow in branch $j ; b_{i}$ is external current extracted at node i
Kirchhoff voltage law (KVL): $y+A^{T} z=0$
z_{j} is node potential; $y_{j}=-a_{j}^{T} z$ is j th branch voltage
Current-voltage characterics: $y_{j}=\phi_{j}^{\prime}\left(x_{j}\right)$
for example, $\phi_{j}\left(x_{j}\right)=R_{j} x_{j}^{2} / 2$ for linear resistor R_{j}
current and potentials in circuit are optimal flows and dual variables

Example: minimum queueing delay

Flow cost function and conjugate ($c_{j}>0$ is link capacity):

$$
\phi_{j}\left(x_{j}\right)=\frac{x_{j}}{c_{j}-x_{j}}, \quad \phi_{j}^{*}\left(y_{j}\right)= \begin{cases}\left(\sqrt{c_{j} y_{j}}-1\right)^{2} & y_{j}>1 / c_{j} \\ 0 & y_{j} \leq 1 / c_{j}\end{cases}
$$

with $\operatorname{dom} \phi_{j}=\left[0, c_{j}\right)$

- ϕ_{j} is differentiable except at $x_{j}=0$

$$
\partial \phi_{j}(0)=(-\infty, 0], \quad \phi_{j}^{\prime}\left(x_{j}\right)=\frac{c_{j}}{\left(c_{j}-x_{j}\right)^{2}} \quad\left(0<x_{j}<c_{j}\right)
$$

- ϕ_{j}^{*} is differentiable

$$
\phi_{j}^{* \prime}\left(y_{j}\right)= \begin{cases}0 & y_{j} \leq 1 / c_{j} \\ c_{j}-\sqrt{c_{j} / y_{j}} & y_{j}>1 / c_{j}\end{cases}
$$

Flow cost function, conjugate, and their subdifferentials $\left(c_{j}=1\right)$

References

- S. Boyd, Lecture slides and notes for EE364b, Convex Optimization II, lectures and notes on decomposition.
- M. Chiang, S.H. Low, A.R. Calderbank, J.C. Doyle, Layering as optimization decomposition: A mathematical theory of network architectures, Proceedings IEEE (2007).
- D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods (1989).
- D.P. Bertsekas, Network Optimization. Continuous and Discrete Models (1998).
- L.S. Lasdon, Optimization Theory for Large Systems (1970).

