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9. Dual decomposition
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Dual methods

primal: minimize 5 (G) + 6(�G)
dual: maximize −6∗(I) − 5 ∗(−�) I)

reasons why dual problem may be easier to solve by first-order methods:

• dual problem is unconstrained or has simple constraints (for example, I � 0)

• dual objective is differentiable or has a simple nondifferentiable term

• decomposition: exploit separable structure
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(Sub-)gradients of conjugate function

assume 5 : R= → R is closed and convex with conjugate

5 ∗(H) = sup
G
(H)G − 5 (G))

• 5 ∗ is subdifferentiable on (at least) int dom 5 ∗ (page 2.4)

• maximizers in the definition of 5 ∗(H) are subgradients at H (page 5.15)

H ∈ m 5 (G) ⇐⇒ H)G − 5 (G) = 5 ∗(H) ⇐⇒ G ∈ m 5 ∗(H)

• if 5 is strictly convex, maximizer is unique (hence, equal to ∇ 5 ∗(H)) if it exists
• if 5 is strongly convex, then conjugate is defined for all H and differentiable with

‖∇ 5 ∗(H) − ∇ 5 ∗(H′)‖ ≤ 1
`
‖H − H′‖∗ for all H, H′

where ` is strong convexity constant of 5 with respect to ‖ · ‖; see page 5.19
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Equality constraints

Primal and dual problems

primal: minimize 5 (G)
subject to �G = 1

dual: maximize −1) I − 5 ∗(−�) I)

Dual gradient ascent algorithm (assuming dom 5 ∗ = R=)

Ĝ = argmin
G
( 5 (G) + I)�G)

I+ = I − C (1 − �Ĝ)

• step one computes a subgradient Ĝ ∈ m 5 ∗(−�) I)
• in step two, 1 − �Ĝ is a subgradient of 1) I + 5 ∗(−�) I) at I

of interest if calculation of Ĝ is inexpensive (for example, 5 is separable)
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Dual decomposition

Convex problem with separable objective

minimize 51(G1) + 52(G2)
subject to �1G1 + �2G2 � 1

constraint is complicating or coupling constraint

Dual problem

maximize − 5 ∗1 (−�)1 I) − 5 ∗2 (−�)2 I) − 1) I
subject to I � 0

can be solved by (sub-)gradient projection method if I � 0 is the only constraint
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Dual subgradient projection

Subproblem: to calculate 5 ∗9 (−�)9 I) and a (sub-)gradient for it,

minimize (over G 9 ) 5 9 (G 9) + I)� 9G 9

• optimal value is − 5 ∗9 (−�)9 I)

• minimizer Ĝ 9 is in m 5 ∗9 (−�)9 I)

Dual subgradient projection method

Ĝ 9 = argmin
G 9
( 5 9 (G 9) + I)� 9G 9) for 9 = 1, 2

I+ = (I − C (1 − �1Ĝ1 − �2Ĝ2))+

• minimization problems over G1, G2 are independent

• I-update is projected subgradient step (D+ = max{D, 0} elementwise)
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Interpretation as price coordination

• ? = 2 units in a system; unit 9 chooses decision variable G 9

• constraints are limits on shared resources; I8 is price of resource 8

Dual update: depends on slacks B = 1 − �1G1 − �2G2

I+ = (I − CB)+

• increases price I8 if resource 8 is over-utilized (B8 < 0)

• decreases price I8 if resource 8 is under-utilized (B8 > 0)

• never lets prices get negative

Distributed architecture: central node sets prices I, peripheral node 9 sets G 9
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Example

Quadratic optimization problem

minimize
A∑
9=1
(12G)9 % 9G 9 + @)9 G 9)

subject to � 9G 9 � 3 9 , 9 = 1, . . . , A
A∑
9=1

� 9G 9 � 1

• without last inequality, problem would separate into A independent QPs

• we assume % 9 � 0

Formulation for dual decomposition

minimize
A∑
9=1

5 9 (G 9)

subject to
A∑
9=1

� 9G 9 � 1

where 5 9 (G 9) = (1/2)G)9 % 9G 9 + @)9 G 9 with domain {G 9 | � 9G 9 � 3 9}
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Dual problem

maximize −1) I −
A∑
9=1

5 ∗9 (−�)9 I)
subject to I � 0

• gradient of ℎ(I) = ∑
9 5
∗
9 (−�)9 I) is Lipschitz continuous (since % 9 � 0):

‖∇ℎ(I) − ∇ℎ(I′)‖2 ≤
‖�‖22

min 9 _min(% 9) ‖I − I
′‖2

where � = [ �1 · · · �A ]
• function value of − 5 ∗9 (−�)9 I) is the optimal value of the QP

minimize (over G 9 ) (1/2)G)9 %G 9 + (@ 9 + �)9 I))G 9
subject to � 9G 9 � 3 9

• optimal solution Ĝ 9 is gradient Ĝ 9 = ∇ 5 ∗9 (−�)9 I)
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Numerical example

• 10 subproblems (A = 10), each with 100 variables and 100 constraints

• 10 coupling constraints

• projected gradient descent and FISTA, with the same fixed step size
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Network utility maximization

Network flows

• = flows, with fixed routes, in a network with < links

• variable G 9 ≥ 0 denotes the rate of flow 9

• flow utility is* 9 : R→ R, concave, increasing

Capacity constraints

• traffic H8 on link 8 is sum of flows passing through it

• H = 'G, where ' is the routing matrix

'8 9 =

{
1 flow 9 passes over link 8
0 otherwise

• link capacity constraint: H � 2
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Dual network utility maximization problem

primal: maximize
=∑
9=1
* 9 (G 9)

subject to 'G � 2

dual: minimize 2) I +
=∑
9=1
(−* 9)∗(−A)9 I)

subject to I � 0

• A 9 is column 9 of '

• dual variable I8 is price (per unit flow) for using link 8

• A)9 I is the sum of prices along route 9
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(Sub-)gradients of dual function

Dual objective

5 (I) = 2) I +
=∑
9=1
(−* 9)∗(−A)9 I)

= 2) I +
=∑
9=1

sup
G 9

(
* 9 (G 9) − (A)9 I)G 9

)
Subgradient

2 − 'Ĝ ∈ m 5 (I) where Ĝ 9 = argmax
G 9

(
* 9 (G 9) − (A)9 I)G 9

)
• A)9 I is the sum of link prices along route 9

• 2 − 'Ĝ is vector of link capacity margins for flow Ĝ

• if* 9 is strictly concave, this is a gradient
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Dual decomposition algorithm

given initial link price vector I, repeat:

1. sum link prices along each route: calculate _ 9 = A)9 I for 9 = 1, . . . , =

2. optimize flows (separately) using flow prices

Ĝ 9 = argmax
G 9

(
* 9 (G 9) − _ 9G 9

)
, 9 = 1, . . . , =

3. calculate link capacity margins B = 2 − 'Ĝ
4. update link prices using projected (sub-)gradient step with step C

I := (I − CB)+

Decentralized:

• to find _ 9 , Ĝ 9 source 9 only needs to know the prices on its route

• to update B8, I8, link 8 only needs to know the flows that pass through it
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Single commodity network flow

Network

• connected, directed graph with = links/arcs, < nodes

• node-arc incidence matrix � ∈ R<×= is

�8 9 =


1 arc 9 enters node 8
−1 arc 9 leaves node 8

0 otherwise

Flow vector and external sources

• variable G 9 denotes flow (traffic) on arc 9

• 18 is external demand (or supply) of flow at node 8 (satisfies 1)1 = 0)

• flow conservation: �G = 1
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Network flow optimization problem

minimize q(G) =
=∑
9=1
q 9 (G 9)

subject to �G = 1

• q is a separable sum of convex functions

• dual decomposition yields decentralized solution method

Dual problem (0 9 is 9 th column of �)

maximize −1) I −
=∑
9=1
q∗9 (−0)9 I)

• dual variable I8 can be interpreted as potential at node 8

• H 9 = −0)9 I is the potential difference across arc 9

(potential at start node minus potential at end node)
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(Sub-)gradients of dual function

Negative dual objective

5 (I) = 1) I +
=∑
9=1

q∗9 (−0)9 I)

Subgradient

1 − �Ĝ ∈ m 5 (I) where Ĝ 9 = argmin
(
q 9 (G 9) + (0)9 I)G 9

)
• this is a gradient if the functions q 9 are strictly convex

• if q 9 is differentiable, q′9 (Ĝ 9) = −0)9 I
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Dual decomposition network flow algorithm

given initial potential vector I, repeat

1. determine link flows from potential differences H = −�) I

Ĝ 9 = argmin
G 9

(
q 9 (G 9) − H 9G 9

)
, 9 = 1, . . . , =

2. compute flow residual at each node: B := 1 − �Ĝ
3. update node potentials using (sub-)gradient step with step size C

I := I − CB

Decentralized:

• flow Ĝ 9 is calculated from potential difference across arc 9

• node potential I8 is updated from its own flow residual B8
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Electrical network interpretation

network flow optimality conditions (with differentiable q 9 )

�G = 1, H + �) I = 0, H 9 = q
′
9 (G 9), 9 = 1, . . . , =

network with node incidence matrix �, nonlinear resistors in branches

Kirchhoff current law (KCL): �G = 1

G 9 is the current flow in branch 9 ; 18 is external current extracted at node 8

Kirchhoff voltage law (KVL): H + �) I = 0

I 9 is node potential; H 9 = −0)9 I is 9 th branch voltage

Current–voltage characterics: H 9 = q′9 (G 9)

for example, q 9 (G 9) = ' 9G2
9/2 for linear resistor ' 9

current and potentials in circuit are optimal flows and dual variables
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Example: minimum queueing delay

Flow cost function and conjugate (2 9 > 0 is link capacity):

q 9 (G 9) =
G 9

2 9 − G 9 , q∗9 (H 9) =
{
(√2 9 H 9 − 1)2 H 9 > 1/2 9
0 H 9 ≤ 1/2 9

with dom q 9 = [0, 2 9)

• q 9 is differentiable except at G 9 = 0

mq 9 (0) = (−∞, 0], q′9 (G 9) =
2 9

(2 9 − G 9)2
(0 < G 9 < 2 9 )

• q∗9 is differentiable

q∗9
′(H 9) =

{
0 H 9 ≤ 1/2 9
2 9 −

√
2 9/H 9 H 9 > 1/2 9
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Flow cost function, conjugate, and their subdifferentials (2 9 = 1)
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