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9. Dual decomposition

e dual methods
e dual decomposition
e network utility maximization

e network flow optimization
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Dual methods

primal: minimize f(x) + g(Ax)

dual: maximize —g*(z) — f*(-A'7)

reasons why dual problem may be easier to solve by first-order methods:

e dual problem is unconstrained or has simple constraints (for example, z > 0)
e dual objective is differentiable or has a simple nondifferentiable term

e decomposition: exploit separable structure
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(Sub-)gradients of conjugate function

assume f : R” — Ris closed and convex with conjugate

() = sup (y'x = f(x)

e ™ is subdifferentiable on (at least) intdom f™ (page 2.4)

e maximizers in the definition of f*(y) are subgradients at y (page 5.15)

yedIf(x) e yx-fx)=£0) = xedf ()

e if f is strictly convex, maximizer is unique (hence, equal to V f*(y)) if it exists

e if f is strongly convex, then conjugate is defined for all y and differentiable with

k k / 1 4 /
IV (y) = V) < ;IIy—y |« forally,y

where u is strong convexity constant of f with respect to || - ||; see page 5.19
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Outline
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Equality constraints

Primal and dual problems

primal: minimize  f(x)
subjectto Ax =0>b

dual: maximize —blz— f*(-Al7)
Dual gradient ascent algorithm (assuming dom f* = R")

£ = argmin(f(x) +z' Ax)
X

77 = z-1t(b- AX)

e step one computes a subgradient £ € 0 f*(-A'z)

e in step two, b — A% is a subgradient of b7z + f*(—AT7) at z

of interest if calculation of X is inexpensive (for example, f is separable)
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Dual decomposition

Convex problem with separable objective

minimize  fi(x1) + f2(x2)

subjectto Ajx;+ Axxp < b

constraint is complicating or coupling constraint

Dual problem
maximize —f;"(—Alz) - f5(-AJz) — bz

subjectto z >0

can be solved by (sub-)gradient projection method if z > 0O is the only constraint
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Dual subgradient projection

Subproblem: to calculate f; T"(—AJT.z) and a (sub-)gradient for it,
minimize (over x;) fj(x;) + ZTijj

e optimal value is —f7 (~A%2)

e minimizer £; is in 8f]i"(—AJT.Z)
Dual subgradient projection method

%, = argmin(f;(x;)+2z' Ajx;) forj=1,2
Xj

77 = (z—t(b—Ax; — Axky)),

e minimization problems over x1, x, are independent

e z-update is projected subgradient step (1, = max{u, 0} elementwise)
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Interpretation as price coordination

e p =2 units in a system; unit j chooses decision variable x;

e constraints are limits on shared resources; z; is price of resource i

Dual update: depends on slacks s = b — A1x1 — Axx»
5= (z—1s)y

e increases price z; if resource i is over-utilized (s; < 0)
e decreases price z; if resource i is under-utilized (s; > 0)

e never lets prices get negative

Distributed architecture: central node sets prices z, peripheral node j sets x;
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Example

Quadratic optimization problem

minimize 3 AxTPix; +qlx;)
=1 277 I j
subjectto Bjx; <d;, j=1,...,r

r
Z ijj'ﬁb

J=1
e without last inequality, problem would separate into r independent QPs

e We assume PJ- >0

Formulation for dual decomposition

r
minimize X f;(x;)
j=1
r
subjectto X Ajx; <b
j=1
where fj(xj) = (I/Z)X?Pij + q§Xj with domain {x]- | Bix; < dj}
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Dual problem

.
maximize -blz— Y fi(-Alz)

Fe J
subjectto z >0

e gradient of h(z) = 3 ; f;(—AJT.z) is Lipschitz continuous (since P; > 0):

1A113

minj ﬁmin(Pj)

|IVh(z) = VR(Z)l2 < 1z — 2’|l

where A= Ay -+ A, |

e function value of —f;(—A]T.z) is the optimal value of the QP

minimize (over x ) (1/2)xJT.ij +(gq; + A]T.z)ij
subject to Bjx; < d;

e optimal solution £; is gradient £; = V f(-A"z)
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Numerical example

e 10 subproblems (r = 10), each with 100 variables and 100 constraints

e 10 coupling constraints

e projected gradient descent and FISTA, with the same fixed step size

10% — gradient projection |
i — FISTA ]

relative dual suboptimality

o 50 100 150 200
iteration
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Network utility maximization

Network flows

o 1 flows, with fixed routes, in a network with m links
e variable x; > 0 denotes the rate of flow j

e flow utility is U; : R — R, concave, increasing

Capacity constraints

e traffic y; on link i is sum of flows passing through it

e vy = Rx, where R is the routing matrix

R = 1 flow j passes over link i
7771 0 otherwise

e link capacity constraint: y < ¢
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Dual network utility maximization problem

n
primal:  maximize '21 Uj(x;)
]:
subjectto Rx <c¢

n
dual: minimize ¢’z + ¥ (=U;)*(-r]2)
j=1
subjectto z >0

e rjiscolumn j of R

e dual variable z; is price (per unit flow) for using link i

T

® 12 is the sum of prices along route j
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(Sub-)gradients of dual function

Dual objective
T S T
fz) = ¢ Z+Zl(_Uj)*(_er)
]:

n
= 7+ Z sup (Uj(xj) — (r]Tz)xj)
J=1 X

Subgradient

c—RX €0f(z) where £;=argmax (Uj(xj) ~ (”JTZ)XJ‘)
Xj

° rjrz is the sum of link prices along route j

e ¢ — RX is vector of link capacity margins for flow £

e if U, is strictly concave, this is a gradient
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Dual decomposition algorithm

given initial link price vector z, repeat:

1. sum link prices along each route: calculate 4; = r]Tz forj=1,...,n

2. optimize flows (separately) using flow prices

ﬁj:argflax(Uj(xj)—ljxj), j:1,...,n
J

3. calculate link capacity margins s = ¢ — RX

4. update link prices using projected (sub-)gradient step with step ¢

z:=(z—-1s);

Decentralized:

e to find A, X; source j only needs to know the prices on its route

e to update s;, z;, link i only needs to know the flows that pass through it
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Single commodity network flow

Network

e connected, directed graph with n links/arcs, m nodes

e node-arc incidence matrix A € R"™*" js

I arc j enters nodei
A;j; =4 —1 arcjleaves node i
0 otherwise

Flow vector and external sources

e variable x; denotes flow (traffic) on arc j

e b; is external demand (or supply) of flow at node i (satisfies 15 = 0)

e flow conservation: Ax = b
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Network flow optimization problem
minimize ¢(x) = % ¢i(x;)
j=1
subjectto Ax=0>b

e ¢ is a separable sum of convex functions

e dual decomposition yields decentralized solution method

Dual problem (a; is jth column of A)

T u T
maximize —-b'z— X ¢%(—a’z)
=

e dual variable z; can be interpreted as potential at node i
® y;= —a]T.z is the potential difference across arc j

(potential at start node minus potential at end node)
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(Sub-)gradients of dual function

Negative dual objective

f(R)=b"z+ 3 ¢3(-a}2)
=1

Subgradient
b—- A% €0f(z) where X;=argmin (qu (x7) + (%T'Z)xf)

e this is a gradient if the functions ¢ ; are strictly convex

o if ¢; is differentiable, gb} (%)) = —aJT.z
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Dual decomposition network flow algorithm

given initial potential vector z, repeat

1. determine link flows from potential differences y = —A’z

£;=argmin (¢;(x;) —yjxj), j=1,...,n
X

2. compute flow residual at each node: s := b — AX

3. update node potentials using (sub-)gradient step with step size ¢

2. =27—1§

Decentralized:

e flow X, is calculated from potential difference across arc j

e node potential z; is updated from its own flow residual s;
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Electrical network interpretation

network flow optimality conditions (with differentiable ¢ ;)
Ax = b, y+Alz=0, yj:qﬁ}(xj), j=1,...,n

network with node incidence matrix A, nonlinear resistors in branches
Kirchhoff current law (KCL): Ax = b
x; is the current flow in branch j; b; is external current extracted at node i
Kirchhoff voltage law (KVL): y + ATz =0

T

z; is node potential; y; = —a: z is jth branch voltage

Current—voltage characterics: y; = qb} (x;)

for example, ¢;(x;) = ij?/2 for linear resistor R;

current and potentials in circuit are optimal flows and dual variables
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Example: minimum queueing delay

Flow cost function and conjugate (c¢; > 0 is link capacity):

v ._12 . 1/c:
$j(x)) = : ¢j’(yj):{( im0 vz e

Cj—Xj 0 yi <1/cj
with dom ¢; = [0, ¢;)

e ¢; is differentiable exceptat x; = 0

/ Cj
6(;5]-(0) = (—00,0], ¢j(xj) — (C]. _ij)z (0 < Xj < Cj)

° gbj. is differentiable

%/ N\ — y <1/C]
¢] (y])_ /C]/y] y]>1/C]
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Flow cost function, conjugate, and their subdifferentials (c; = 1)

6

¢i(x;)

a¢]’(xj)
¢ (yj)
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