12. Dual proximal gradient method

- proximal gradient method applied to the dual
- examples
- alternating minimization method
Dual methods

subgradient method: slow, step size selection difficult

gradient method: requires differentiable dual cost function
- often dual cost is not differentiable, or has nontrivial domain
- dual can be smoothed by adding small strongly convex term to primal

augmented Lagrangian method:
- equivalent to gradient ascent on a smoothed dual problem
- however smoothing destroys separable structure

proximal gradient method (this lecture): dual cost split in two terms
- one term is differentiable with Lipschitz continuous gradient
- other term has an inexpensive prox-operator
Composite structure in the dual

\[
\begin{align*}
\text{minimize} & \quad f(x) + g(Ax) \quad & \text{maximize} & \quad -f^*(-A^T z) - g^*(z)
\end{align*}
\]

dual has the right structure for the proximal gradient method if

- prox-operator of \(g\) (or \(g^*\)) is cheap (closed form or simple algorithm)
- \(f\) is strongly convex (\(f(x) - (\mu/2)x^T x\) is convex)

implies \(f^*(-A^T z)\) has Lipschitz continuous gradient \((L = \|A\|^2_2/\mu)\):

\[
\|A \nabla f^*(-A^T u) - A \nabla f^*(-A^T v)\|_2 \leq \frac{\|A\|^2_2}{\mu} \|u - v\|_2
\]

because \(\nabla f^*\) is Lipschitz continuous with constant \(1/\mu\) (see page 11-6)
Dual proximal gradient update

\[z^+ = \text{prox}_{t g^*} \left(z + t A \nabla f^* (-A^T z) \right) \]

equivalent expression in terms of \(f \):

\[z^+ = \text{prox}_{t g^*} (z + t A \hat{x}) \quad \text{where} \quad \hat{x} = \arg\min_x (f(x) + z^T A x) \]

- if \(f \) is separable, calculation of \(\hat{x} \) decomposes into independent problems
- step size \(t \) constant or from backtracking line search
- can use accelerated proximal gradient methods of lecture 7
Alternating minimization interpretation

Moreau decomposition gives alternate expression for \(z \)-update

\[
z^+ = z + t(A\hat{x} - \hat{y})
\]

where

\[
\hat{x} = \arg\min_x (f(x) + z^T Ax)
\]

\[
\hat{y} = \prox_{t^{-1} g}(z/t + A\hat{x})
\]

\[
= \arg\min_y (g(y) + z^T (A\hat{x} - y) + \frac{t}{2} \|A\hat{x} - y\|_2^2)
\]

in each iteration, an alternating minimization of:

- Lagrangian \(f(x) + g(y) + z^T(Ax - y) \) over \(x \)
- augmented Lagrangian \(f(x) + g(y) + z^T(Ax - y) + \frac{t}{2} \|Ax - y\|_2^2 \) over \(y \)

Dual proximal gradient method
Outline

- proximal gradient method applied to the dual
- examples
- alternating minimization method
Regularized norm approximation

minimize $f(x) + \|Ax - b\|$ \quad (\text{with } f \text{ strongly convex})

a special case of page 12-3 with $g(y) = \|y - b\|$

\[g^*(z) = \begin{cases}
 b^T z & \|z\|_* \leq 1 \\
 +\infty & \text{otherwise}
\end{cases} \quad \text{prox}_{tg^*}(z) = P_C(z - tb) \]

C is unit norm ball for dual norm $\| \cdot \|_*$

dual gradient projection update

\[\hat{x} = \arg\min_x (f(x) + z^T Ax) \]

\[z^+ = P_C(z + t(A\hat{x} - b)) \]
Example

minimize $f(x) + \sum_{i=1}^{p} \|B_ix\|_2$ \hspace{1cm} (with f strongly convex)

a special case of page 12-3 with $g(y_1, \ldots, y_p) = \sum_{i=1}^{p} \|y_i\|_2$ and

$$A = \begin{bmatrix} B_1^T & B_2^T & \cdots & B_p^T \end{bmatrix}^T$$

dual gradient projection update

$$\hat{x} = \arg\min_x \left(f(x) + \left(\sum_{i=1}^{p} B_i^T z_i \right)^T x \right)$$

$$z_i^+ = P_{C_i} (z_i + tB_i\hat{x}), \quad i = 1, \ldots, p$$

C_i is unit Euclidean norm ball in \mathbb{R}^{m_i}, if $B_i \in \mathbb{R}^{m_i \times n}$
numerical example

\[f(x) = \frac{1}{2} \|Cx - d\|^2_2 \]

with randomly generated \(C \in \mathbb{R}^{2000 \times 1000} \), \(B_i \in \mathbb{R}^{10 \times 1000} \), \(p = 500 \)
Minimization over intersection of convex sets

minimize \(f(x) \)
subject to \(x \in C_1 \cap \cdots \cap C_m \)

- \(f \) strongly convex; e.g., \(f(x) = \|x - a\|_2^2 \) for projecting \(a \) on intersection
- sets \(C_i \) are closed, convex, and easy to project onto
- this is a special case of page 12-3 with \(g \) a sum of indicators

\[
g(y_1, \ldots, y_m) = I_{C_1}(y_1) + \cdots + I_{C_m}(y_m), \quad A = \begin{bmatrix} I & \cdots & I \end{bmatrix}^T
\]

dual proximal gradient update

\[
\hat{x} = \arg\min_x (f(x) + (z_i + \cdots + z_m)^T x)
\]

\[
z_i^+ = z_i + t\hat{x} - t P_{C_i}(z_i/t + \hat{x}), \quad i = 1, \ldots, m
\]
Decomposition of separable problems

\[
\text{minimize } \sum_{j=1}^{n} f_j(x_j) + \sum_{i=1}^{m} g_i(A_{i1}x_1 + \cdots + A_{in}x_n)
\]

each \(f_i\) is strongly convex; \(g_i\) has inexpensive prox-operator

dual proximal gradient update

\[
\hat{x}_j = \arg\min_{x_j} (f_j(x_j) + \sum_{i=1}^{m} z_i^T A_{ij} x_j), \quad j = 1, \ldots, n
\]

\[
z_i^+ = \text{prox}_{t g_i^*}(z_i + t \sum_{j=1}^{n} A_{ij} \hat{x}_j), \quad i = 1, \ldots, m
\]
Outline

• proximal gradient method applied to the dual

• examples

• alternating minimization method
Primal problem with separable structure

composite problem with separable f

$$\text{minimize} \quad f_1(x_1) + f_2(x_2) + g(A_1x_1 + A_2x_2)$$

we assume f_1 strongly convex, but not necessarily f_2

dual problem

$$\text{maximize} \quad -f_1^*(-A_1^Tz) - f_2^*(-A_2^Tz) - g^*(z)$$

• first term is differentiable with Lipschitz continuous gradient
• prox-operator $h(z) = f_2^*(-A_2^Tz) + g^*(z)$ was discussed on page 10-10
Dual proximal gradient method

\[z^+ = \text{prox}_{th}(z + tA_1 \nabla f_1^*(-A_1^T z)) \]

- equivalent form using \(f_1 \):

\[z^+ = \text{prox}_{th}(z + tA_1 \hat{x}_1) \quad \text{where} \quad \hat{x}_1 = \arg\min_{x_1} (f_1(x_1) + z^T A_1 x_1) \]

- from page 10-10, prox-operator of \(h(z) = f_2^*(-A_2^T z) + g^*(z) \) is given by

\[\text{prox}_{th}(w) = w + t(A_2 \hat{x}_2 - \hat{y}) \]

where \(\hat{x}_2, \hat{y} \) minimize an augmented Lagrangian

\[(\hat{x}_2, \hat{y}) = \arg\min_{x_2, y} (f_2(x_2) + g(y) + \frac{t}{2} \|A_2 x_2 - y + w/t\|_2^2) \]
Alternating minimization method

starting at some initial z, repeat the following iteration

1. minimize the Lagrangian over x_1:

$$\hat{x}_1 = \arg\min_{x_1} (f_1(x_1) + z^T A_1 x_1)$$

2. minimize the augmented Lagrangian over \hat{x}_2, \hat{y}:

$$\left(\hat{x}_2, \hat{y}\right) = \arg\min_{x_2, y} \left(f_2(x_2) + g(y) + \frac{t}{2}\|A_1 \hat{x}_1 + A_2 x_2 - y + z/t\|^2\right)$$

3. update dual variable:

$$z^+ = z + t(A_1 \hat{x}_1 + A_2 \hat{x}_2 - \hat{y})$$
Comparison with augmented Lagrangian method

augmented Lagrangian method (for problem on page 12-11)

1. compute minimizer \(\hat{x}_1, \hat{x}_2, \hat{y} \) of the augmented Lagrangian

\[
f_1(x_1) + f_2(x_2) + g(y) + \frac{t}{2} \| A_1 x_1 + A_2 x_2 - y + z/t \|^2_2
\]

2. update dual variable:

\[
z^+ = z + t(A_1 \hat{x}_1 + A_2 \hat{x}_2 - \hat{y})
\]

differences with alternating minimization

• more general: AL method does not require strong convexity of \(f_1 \)
• quadratic penalty in step 1 destroys separability
References

alternating minimization method

- P. Tseng, *Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming*, Mathematical Programming (1990)