10. Dual proximal gradient method

- proximal gradient method applied to the dual
- examples
- alternating minimization method
Dual methods

Subgradient method: converges slowly, step size selection is difficult

Gradient method: requires differentiable dual cost function

- often the dual cost function is not differentiable, or has a nontrivial domain
- dual function can be smoothed by adding small strongly convex term to primal

Augmented Lagrangian method

- equivalent to gradient ascent on a smoothed dual problem
- quadratic penalty in augmented Lagrangian destroys separable primal structure

Proximal gradient method *(this lecture)*: dual cost split in two terms

- one term is differentiable with Lipschitz continuous gradient
- other term has an inexpensive \(\text{prox}\) operator
Composite primal and dual problem

primal: minimize $f(x) + g(Ax)$

dual: maximize $-g^*(z) - f^*(-A^Tz)$

the dual problem has the right structure for the proximal gradient method if

- f is strongly convex: this implies $f^*(-A^Tz)$ has a Lipschitz continuous gradient

$$\|A \nabla f^*(-A^T u) - A \nabla f^*(-A^T v)\|_2 \leq \frac{\|A\|_2^2}{\mu} \|u - v\|_2$$

μ is the strong convexity constant of f (see page 5.19)

- prox operator of g (or g^*) is inexpensive (closed form or simple algorithm)
Dual proximal gradient update

\[
\text{minimize } \quad g^*(z) + f^*(-A^T z)
\]

- proximal gradient update:

\[
z^+ = \text{prox}_{t g^*}(z + t A \nabla f^*(-A^T z))
\]

- \(\nabla f^*\) can be computed by minimizing partial Lagrangian (from p. 5.15, p. 5.19):

\[
\hat{x} = \arg\min_x (f(x) + z^T A x) \\
z^+ = \text{prox}_{t g^*}(z + t A \hat{x})
\]

- partial Lagrangian is a separable function of \(x\) if \(f\) is separable
- step size \(t\) is constant \((t \leq \mu/\|A\|_2^2)\) or adjusted by backtracking
- faster variant uses accelerated proximal gradient method of lecture 7
Dual proximal gradient update

\[\hat{x} = \arg\min_x (f(x) + z^T A x) \]

\[z^+ = \text{prox}_{tg^*}(z + t A \hat{x}) \]

- Moreau decomposition gives alternate expression for \(z \)-update:

\[z^+ = z + t A \hat{x} - t \text{prox}_{t^{-1}g}(t^{-1}z + A \hat{x}) \]

- Right-hand side can be written as \(z + t(A \hat{x} - \hat{y}) \) where

\[\hat{y} = \text{prox}_{t^{-1}g}(t^{-1}z + A \hat{x}) \]

\[= \arg\min_y (g(y) + \frac{t}{2} \|A \hat{x} + t^{-1}z - y\|_2^2) \]

\[= \arg\min_y (g(y) + z^T (A \hat{x} - y) + \frac{t}{2} \|A \hat{x} - y\|_2^2) \]
Alternating minimization interpretation

\[
\hat{x} = \arg\min_x (f(x) + z^T A x)
\]

\[
\hat{y} = \arg\min_y (g(y) - z^T y + \frac{t}{2} \|A\hat{x} - y\|_2^2)
\]

\[z^+ = z + t(A\hat{x} - \hat{y})\]

- first minimize Lagrangian over \(x\), then augmented Lagrangian over \(y\)

- compare with augmented Lagrangian method:

\[
(\hat{x}, \hat{y}) = \arg\min_{x,y} (f(x) + g(y) + z^T (A x - y) + \frac{t}{2} \|A x - y\|_2^2)
\]

\[z^+ = z + t(A\hat{x} - \hat{y})\]

- requires strongly convex \(f\) (in contrast to augmented Lagrangian method)
Outline

- proximal gradient method applied to the dual
- examples
- alternating minimization method
Regularized norm approximation

primal: minimize \(f(x) + \|Ax - b\| \)
dual: maximize \(-b^Tz - f^*(-A^Tz) \)
subject to \(\|z\|_* \leq 1 \)

(see page 5.23)

- we assume \(f \) is strongly convex with constant \(\mu \), not necessarily differentiable
- we assume projections on unit \(\| \cdot \|_* \)-ball are simple
- this is a special case of the problem on page 10.3 with \(g(y) = \|y - b\| \):

\[
g^*(z) = \begin{cases}
 b^Tz & \|z\|_* \leq 1 \\
 +\infty & \text{otherwise}
\end{cases}
\]

\(\text{prox}_{tg^*}(z) = PC(z - tb) \)
Dual gradient projection

primal: minimize $f(x) + \|Ax - b\|

dual: maximize $-b^Tz - f^*(-A^Tz)$
subject to $\|z\|_* \leq 1$

• dual gradient projection update ($C = \{z \mid \|z\|_* \leq 1\}$):

$$z^+ = P_C \left(z + t(A\nabla f^*(-A^Tz) - b) \right)$$

• gradient of f^* can be computed by minimizing the partial Lagrangian:

$$\hat{x} = \arg\min_x (f(x) + z^T Ax)$$

$$z^+ = P_C(z + t(A\hat{x} - b))$$
Example

primal: minimize \(f(x) + \sum_{i=1}^{p} \|B_i x\|_2 \)

dual: maximize \(-f^*(-B_1^T z_1 - \cdots - B_p^T z_p)\)

subject to \(\|z_i\|_2 \leq 1, \quad i = 1, \ldots, p \)

Dual gradient projection update (for strongly convex \(f \)):

\[
\hat{x} = \arg\min_x (f(x) + \sum_{i=1}^{p} B_i^T z_i)^T x)
\]

\[
z_i^+ = P_{C_i}(z_i + tB_i \hat{x}), \quad i = 1, \ldots, p
\]

- \(C_i \) is unit Euclidean norm ball in \(\mathbb{R}^{m_i} \), if \(B_i \in \mathbb{R}^{m_i\times n} \)
- \(\hat{x} \)-calculation decomposes if \(f \) is separable

Dual proximal gradient method

10.9
Example

• we take \(f(x) = (1/2)\|Cx - d\|_2^2 \)

• each iteration requires solution of linear equation with coefficient \(C^T C \)

• randomly generated \(C \in \mathbb{R}^{2000 \times 1000}, B_i \in \mathbb{R}^{10 \times 1000}, p = 500 \)
Minimization over intersection of convex sets

\[
\text{minimize} \quad f(x) \\
\text{subject to} \quad x \in C_1 \cap \cdots \cap C_p
\]

- \(f \) is strongly convex with constant \(\mu \)
- we assume each set \(C_i \) is closed, convex, and easy to project onto
- this is a special case of the problem on page 10.3 with

\[
g(y_1, \ldots, y_p) = \delta_{C_1}(y_1) + \cdots + \delta_{C_p}(y_p)
\]

\[
A = \begin{bmatrix} I & I & \cdots & I \end{bmatrix}^T
\]

with this choice of \(g \) and \(A \),

\[
f(x) + g(Ax) = f(x) + \delta_{C_1}(x) + \cdots + \delta_{C_p}(x)
\]
Dual problem

primal: minimize \(f(x) + \delta_{C_1}(x) + \cdots + \delta_{C_p}(x) \)
dual: maximize \(-\delta^*_C(z_1) - \cdots - \delta^*_C(z_p) - f^*(-z_1 - \cdots - z_p) \)

• proximal mapping of \(\delta^*_C \): from Moreau decomposition (page 6.18),

\[
\text{prox}_{t\delta^*_C}(u) = u - tP_{C_i}(u/t)
\]

• gradient of \(h(z_1, \ldots, z_p) = f^*(-z_1 - \cdots - z_p) \):

\[
\nabla h(z) = -A \nabla f(-A^Tz) = -\begin{bmatrix} I \\ I \\ : \end{bmatrix} \nabla f^*(-z_1 - \cdots - z_p)
\]

• \(\nabla h(z) \) is Lipschitz continuous with constant \(\|A\|^2/\mu = p/\mu \)
Dual proximal gradient method

primal: minimize \(f(x) + \delta_{C_1}(x) + \cdots + \delta_{C_p}(x) \)

dual: maximize \(-\delta^*_{C_1}(z_1) - \cdots - \delta^*_{C_p}(z_p) - f^*(-z_1 - \cdots - z_p)\)

• dual proximal gradient update

\[
\begin{align*}
 s &= -z_1 - \cdots - z_p \\
 z_i^+ &= z_i + t \nabla f^*(s) - t P_{C_i}(t^{-1}z_i + \nabla f^*(s)), \quad i = 1, \ldots, p
\end{align*}
\]

• gradient of \(f^* \) can be computed by minimizing the partial Lagrangian

\[
\begin{align*}
 \hat{x} &= \arg \min_x (f(x) + (z_1 + \cdots + z_p)^T x) \\
 z_i^+ &= z_i + t \hat{x} - t P_{C_i}(z_i/t + \hat{x}), \quad i = 1, \ldots, p
\end{align*}
\]

• stepsize is fixed \((t \leq \mu/p)\) or adjusted by backtracking
Euclidean projection on intersection of convex sets

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} \| x - a \|^2_2 \\
\text{subject to} & \quad x \in C_1 \cap \cdots \cap C_p
\end{align*}
\]

- special case of previous problem with

\[
f(x) = \frac{1}{2} \| x - a \|^2_2, \quad f^*(u) = \frac{1}{2} \| u \|^2_2 + a^T u
\]

- strong convexity constant \(\mu = 1 \); hence stepsize \(t = 1/p \) works

- dual proximal gradient update (with change of variable \(w_i = p z_i \)):

\[
\hat{x} = a - \frac{1}{p} (w_1 + \cdots + w_p)
\]

\[
w_i^+ = w_i + \hat{x} - P_{C_i}(w_i + \hat{x}), \quad i = 1, \ldots, p
\]

- the \(p \) projections in the second step can be computed in parallel
Nearest positive semidefinite unit-diagonal Z-matrix

projection in Frobenius norm of \(A \in S^{100} \) on the intersection of two sets:

\[
C_1 = S_+^{100}, \quad C_2 = \{ X \in S^{100} \mid \text{diag}(X) = 1, \ X_{ij} \leq 0 \text{ for } i \neq j \}
\]
Euclidean projection on polyhedron

- intersection of p halfspaces $C_i = \{x \mid a_i^T x \leq b_i\}$

$$P_{C_i}(x) = x - \frac{\max\{a_i^T x - b_i, 0\}}{\|a_i\|^2}a_i$$

- example with $p = 2000$ inequalities and $n = 1000$ variables

![Graph showing the relative dual suboptimality over iterations for proximal gradient and FISTA methods.](image)
Decomposition of primal–dual separable problems

\[
\text{minimize } \sum_{j=1}^{n} f_j(x_j) + \sum_{i=1}^{m} g_i(A_i x_1 + \cdots + A_i x_n)
\]

• special case of \(f(x) + g(Ax) \) with (block-)separable \(f \) and \(g \)

• for example,

\[
\text{minimize } \sum_{j=1}^{n} f_j(x_j)
\]

subject to \(\sum_{j=1}^{n} A_1 j x_j \in C_1 \)

\[
\cdots
\]

\[
\sum_{j=1}^{n} A_m j x_j \in C_m
\]

• we assume each \(f_i \) is strongly convex; each \(g_i \) has inexpensive \text{prox} operator
Decomposition of primal–dual separable problems

primal: minimize \(\sum_{j=1}^{n} f_j(x_j) + \sum_{i=1}^{m} g_i(A_{i1}x_1 + \cdots + A_{in}x_n) \)

dual: maximize \(-\sum_{i=1}^{m} g_i^*(z_i) - \sum_{j=1}^{n} f_j^*(-A_{1j}^Tz_1 - \cdots - A_{mj}^Tz_j) \)

Dual proximal gradient update

\[
\hat{x}_j = \arg\min_{x_j} \left(f_j(x_j) + \sum_{i=1}^{m} z_i^T A_{ij}x_j \right), \quad j = 1, \ldots, n
\]

\[
z_i^+ = \text{prox}_{t g_i^*}(z_i + t \sum_{j=1}^{n} A_{ij}\hat{x}_j), \quad i = 1, \ldots, m
\]
Outline

- proximal gradient method applied to the dual
- examples
- alternating minimization method
Separable structure with one strongly convex term

\[
\text{minimize } \quad f_1(x_1) + f_2(x_2) + g(A_1x_1 + A_2x_2)
\]

- composite problem with separable \(f \) (two terms, for simplicity)
- if \(f_1 \) and \(f_2 \) are strongly convex, dual method of page 10.4 applies
 \[
 \hat{x}_1 = \arg\min_{x_1} \left(f_1(x_1) + z^T A_1 x_1 \right)
 \]
 \[
 \hat{x}_2 = \arg\min_{x_2} \left(f_2(x_2) + z^T A_2 x_2 \right)
 \]
 \[
 z^+ = \prox_{t g^*}(z + t (A_1 \hat{x}_1 + A_2 \hat{x}_2))
 \]
- we now assume that one function \((f_2) \) is not strongly convex

Dual proximal gradient method
Separable structure with one strongly convex term

primal: minimize \[f_1(x_1) + f_2(x_2) + g(A_1x_1 + A_2x_2) \]
dual: maximize \[-g^*(z) - f_1^*(-A_1^Tz) - f_2^*(-A_2^Tz) \]

- we split dual objective in components \(-f_1^*(-A_1^Tz)\) and \(-g^*(z) - f_2^*(-A_2^Tz)\)

- component \(f_1^*(-A_1^Tz)\) is differentiable with Lipschitz continuous gradient

- proximal mapping of \(h(z) = g^*(z) + f_2^*(-A_2^Tz)\) was discussed on page 8.7:

\[
\text{prox}_{th}(w) = w + t(A_2\hat{x}_2 - \hat{y})
\]

where \(\hat{x}_2, \hat{y}\) minimize a partial augmented Lagrangian

\[
(\hat{x}_2, \hat{y}) = \arg\min_{x_2, y} (f_2(x_2) + g(y) + \frac{t}{2} ||A_2x_2 - y + w/t||^2_2)
\]
Dual proximal gradient method

\[z^+ = \text{prox}_{th}(z + tA_1 \nabla f_1^*(-A_1^T z)) \]

- evaluate \(\nabla f_1^* \) by minimizing partial Lagrangian:

\[\hat{x}_1 = \arg\min_{x_1} (f_1(x_1) + z^T A_1 x_1) \]

\[z^+ = \text{prox}_{th}(z + tA_1 \hat{x}_1) \]

- evaluate \(\text{prox}_{th}(z + tA_1 \hat{x}_1) \) by minimizing augmented Lagrangian:

\[(\hat{x}_2, \hat{y}) = \arg\min_{x_2, y} (f_2(x_2) + g(y) + \frac{t}{2} \| A_2 x_2 - y + z/t + A_1 \hat{x} \|^2_2) \]

\[z^+ = z + t(A_1 \hat{x}_1 + A_2 \hat{x}_2 - \hat{y}) \]
Alternating minimization method

starting at some initial z, repeat the following iteration

1. minimize the Lagrangian over x_1:

$$
\hat{x}_1 = \arg\min_{x_1} \left(f_1(x_1) + z^T A_1 x_1 \right)
$$

2. minimize the augmented Lagrangian over \hat{x}_2, \hat{y}:

$$
(\hat{x}_2, \hat{y}) = \arg\min_{x_2, y} \left(f_2(x_2) + g(y) + \frac{t}{2} \| A_1 \hat{x}_1 + A_2 x_2 - y + z/t \|_2^2 \right)
$$

3. update dual variable:

$$
z^+ = z + t (A_1 \hat{x}_1 + A_2 \hat{x}_2 - \hat{y})
$$
Comparison with augmented Lagrangian method

Augmented Lagrangian method (for problem on page 10.19)

1. compute minimizer $\hat{x}_1, \hat{x}_2, \hat{y}$ of the augmented Lagrangian

 \[
 f_1(x_1) + f_2(x_2) + g(y) + \frac{t}{2} \|A_1x_1 + A_2x_2 - y + z/t\|_2^2
 \]

2. update dual variable:

 \[
 z^+ = z + t(A_1\hat{x}_1 + A_2\hat{x}_2 - \hat{y})
 \]

Differences with alternating minimization (dual proximal gradient method)

- augmented Lagrangian method does not require strong convexity of f_1
- there is no upper limit on the step size t in augmented Lagrangian method
- quadratic term in step 1 of AL method destroys separability of $f_1(x_1) + f_2(x_2)$
Example

minimize \(\frac{1}{2} x_1^T P x_1 + q_1^T x_1 + q_2^T x_2 \)
subject to \(B_1 x_1 \leq d_1, \quad B_2 x_2 \leq d_2 \)
\(A_1 x_1 + A_2 x_2 = b \)

- without equality constraint, problem would separate in independent QP and LP
- we assume \(P > 0 \)

Formulation for dual decomposition

minimize \(f_1(x_1) + f_2(x_2) \)
subject to \(A_1 x_1 + A_2 x_2 = b \)

- first function is strongly convex

\(f_1(x) = \frac{1}{2} x_1^T P x_1 + q_1^T x_1, \quad \text{dom } f_1 = \{ x_1 | B_1 x_1 \leq d_1 \} \)

- second function is not: \(f_2(x) = q_2^T x_2 \) with domain \(\{ x_2 | B_2 x_2 \leq d_2 \} \)
Example

Alternating minimization algorithm

1. compute the solution \hat{x}_1 of the QP

 $\begin{align*}
 &\text{minimize} \quad (1/2)x_1^T P_1 x_1 + (q_1 + A_1^T z)^T x_1 \\
 &\text{subject to} \quad B_1 x_1 \leq d_1
 \end{align*}$

2. compute the solution \hat{x}_2 of the QP

 $\begin{align*}
 &\text{minimize} \quad (q_2 + A_2^T z)^T x_2 + (t/2)\|A_1\hat{x}_1 + A_2x_2 - b\|_2^2 \\
 &\text{subject to} \quad B_2 x_2 \leq d_2
 \end{align*}$

3. dual update:

 $z^+ = z + t(A_1\hat{x}_1 + A_2\hat{x}_2 - b)$
References