Ellipsoid method

- ellipsoid method
- convergence proof
- inequality constraints

Ellipsoid method

history

- developed by Shor, Nemirovski, Yudin in 1970s
- used in 1979 by Khachian to show polynomial solvability of LPs

properties

- each step requires cutting-plane or subgradient evaluation
- modest storage $\left(O\left(n^{2}\right)\right)$
- modest computation per step $\left(O\left(n^{2}\right)\right)$, via analytical formula
- extremely simple to implement
- efficient in theory
- slow but steady in practice; rarely used

Motivation

drawbacks of cutting-plane methods

- serious computation needed to find next query point typically, $O\left(n^{2} m\right)$ for analytic centering in ACCPM, with m inequalities
- localization polyhedron grows in complexity as algorithm progresses (with pruning, can keep m proportional to $n, e . g ., m=4 n$)
ellipsoid method addresses both issues, but retains theoretical efficiency

Ellipsoid algorithm for minimizing convex function

idea: localize x^{\star} in an ellipsoid instead of a polyhedron
given an initial ellipsoid \mathcal{E}_{0} known to contain optimal set
repeat for $k=1,2, \ldots$

1. query oracle to get a neutral cut $a^{T} z \leq b$ at $x^{(k))}$, the center of \mathcal{E}_{k-1}
2. set $\mathcal{E}_{k}:=$ minimum volume ellipsoid covering $\mathcal{E}_{k-1} \cap\left\{z \mid a^{T} z \leq b\right\}$

differences with cutting-plane methods

- localization set doesn't grow more complicated
- generating query point is trivial
- but, we add unnecessary points in step 2

interpretation

- reduces to bisection for $n=1$
- can be viewed as an implementable version of the center-of-gravity cutting-plane method

Example

Updating the ellipsoid

$\mathcal{E}=\left\{z \mid(z-x)^{T} P^{-1}(z-x) \leq 1\right\}$
\mathcal{E}^{+}is min. volume ellipsoid covering

$$
\mathcal{E} \cap\left\{z \mid g^{T}(z-x) \leq 0\right\}
$$

update formula (for $n>1$): $\mathcal{E}^{+}=\left\{z \mid\left(z-x^{+}\right)^{T}\left(P^{+}\right)^{-1}\left(z-x^{+}\right) \leq 1\right\}$,

$$
x^{+}=x-\frac{1}{n+1} P \tilde{g}, \quad P^{+}=\frac{n^{2}}{n^{2}-1}\left(P-\frac{2}{n+1} P \tilde{g} \tilde{g}^{T} P\right)
$$

where $\tilde{g}=\left(1 / \sqrt{g^{T} P g}\right) g$

Simple stopping criterion

for unconstrained problem of minimizing $f(x)$
lower bound on optimal value

$$
\begin{aligned}
f\left(x^{\star}\right) & \geq f\left(x^{(k)}\right)+g^{(k) T}\left(x^{\star}-x^{(k)}\right) \\
& \geq f\left(x^{(k)}\right)+\inf _{z \in \mathcal{E}_{k-1}} g^{(k) T}\left(z-x^{(k)}\right) \\
& =f\left(x^{(k)}\right)-\sqrt{g^{(k) T} P^{(k-1)} g^{(k)}}
\end{aligned}
$$

second inequality holds since $x^{\star} \in \mathcal{E}_{k-1}$
simple stopping criterion to guarantee $f\left(x^{(k)}\right)-f\left(x^{\star}\right) \leq \epsilon$:

$$
\sqrt{g^{(k) T} P^{(k-1)} g^{(k)}} \leq \epsilon
$$

Basic ellipsoid algorithm

ellipsoid described as

$$
\mathcal{E}(x, P)=\left\{z \mid(z-x)^{T} P^{-1}(z-x) \leq 1\right\}
$$

given ellipsoid $\mathcal{E}(x, P)$ containing x^{\star}, accuracy $\epsilon>0$
repeat

1. evaluate $g \in \partial f(x)$
2. if $\sqrt{g^{T} P g} \leq \epsilon$, return x; else, update ellipsoid

$$
x:=x-\frac{1}{n+1} P \tilde{g}, \quad P:=\frac{n^{2}}{n^{2}-1}\left(P-\frac{2}{n+1} P \tilde{g} \tilde{g}^{T} P\right)
$$

where $\tilde{g}=\left(1 / \sqrt{g^{T} P g}\right) g$

Interpretation

- change coordinates

$$
\tilde{z}=P^{-1 / 2} z
$$

so uncertainty is isotropic (same in all directions), i.e., \mathcal{E} is unit ball

- take subgradient step with fixed length $1 /(n+1)$

Shor calls ellipsoid method 'gradient method with space dilation in direction of gradient'

Improvements

- keep track of best upper and lower bounds:

$$
\begin{aligned}
f_{\text {best }}^{(k)} & =\min _{i=1, \ldots, k} f\left(x^{(i)}\right) \\
l_{\text {best }}^{(k)} & =\max _{i=1, \ldots, k}\left(f\left(x^{(i)}\right)-\sqrt{g^{(i) T} P^{(i-1)} g^{(i)}}\right)
\end{aligned}
$$

stop when $f_{\text {best }}^{(k)}-l_{\text {best }}^{(k)} \leq \epsilon$

- propagate Cholesky factor of P (improves numerical stability)

Proof of convergence

assumptions: we consider the unconstrained problem

$$
\text { minimize } \quad f(x)
$$

- f is Lipschitz: $|f(y)-f(x)| \leq G\|y-x\|_{2}$
- $\left\{x \mid f(x) \leq f^{\star}+\epsilon\right\} \subseteq \mathcal{E}_{0}$
- \mathcal{E}_{0} is ball with radius R
reduction of volume: can show that

$$
\operatorname{vol} \mathcal{E}_{k+1}<e^{-\frac{1}{2 n}} \operatorname{vol} \mathcal{E}_{k}
$$

(reduction factor degrades rapidly with n, compared to CG or MVE cutting-plane methods)
proof. suppose $f\left(x^{(i)}\right)>f^{\star}+\epsilon, i=1, \ldots, k$

- at iteration i we only discard points with $f(z) \geq f\left(x^{(i)}\right)$; therefore

$$
\left\{z \mid f(z) \leq f^{\star}+\epsilon\right\} \subseteq \mathcal{E}_{k}
$$

- from Lipschitz condition, $\left\|z-x^{\star}\right\|_{2} \leq \epsilon / G$ implies $f(z) \leq f^{\star}+\epsilon$; hence

$$
B=\left\{z \mid\left\|z-x^{\star}\right\|_{2} \leq \epsilon / G\right\} \subseteq \mathcal{E}_{k}
$$

- therefore $\operatorname{vol} B \leq \operatorname{vol} \mathcal{E}_{k}$, so

$$
\alpha_{n}(\epsilon / G)^{n} \leq e^{-\frac{k}{2 n}} \operatorname{vol} \mathcal{E}_{0}=e^{-\frac{k}{2 n}} \alpha_{n} R^{n}
$$

(α_{n} is volume of unit ball in \mathbf{R}^{n})

- this gives

$$
k \leq 2 n^{2} \log (R G / \epsilon)
$$

geometrical illustration

$$
B=\left\{x \mid\left\|x-x^{\star}\right\|_{2} \leq \epsilon / G\right\}
$$

conclusion: for $k>2 n^{2} \log (R G / \epsilon)$,

$$
f_{\text {best }}^{(k)} \leq f^{\star}+\epsilon
$$

Interpretation of complexity

- since $x^{\star} \in \mathcal{E}_{0}=\left\{x \mid\left\|x-x^{(1)}\right\|_{2} \leq R\right\}$, our prior knowledge of f^{\star} is

$$
f\left(x^{(1)}\right)-G R \leq f^{\star} \leq f\left(x^{(1)}\right)
$$

our prior uncertainty in f^{\star} is $G R$

- after k iterations our knowledge of f^{\star} is

$$
f_{\text {best }}^{(k)}-\epsilon \leq f^{\star} \leq f_{\text {best }}^{(k)}
$$

posterior uncertainty in f^{\star} is $\leq \epsilon$

- iterations required:

$$
2 n^{2} \log \frac{R G}{\epsilon}=\frac{2 n^{2} \log _{2}(R G / \epsilon)}{\log _{2} e}=1.39 n^{2} \log _{2} \frac{\text { prior uncertainty }}{\text { posterior uncertainty }}
$$

efficiency: $1 /\left(1.39 n^{2}\right)=0.72 / n^{2}$ bits per gradient evaluation

Example

$$
\operatorname{minimize} \max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)
$$

$$
m=100, n=20,\left\|x^{\star}\right\|_{2} \approx 1.0, \text { start with } \mathcal{E}=\left\{x \mid\|x\|_{2} \leq 10\right\}
$$

Deep cut ellipsoid method

minimum volume ellipsoid containing ellipsoid intersected with halfspace

$$
\mathcal{E} \cap\left\{z \mid g^{T}(z-x)+h \leq 0\right\}
$$

with $h \geq 0$, is given by

$$
\begin{aligned}
x^{+} & =x-\frac{1+\alpha n}{n+1} P \tilde{g} \\
P^{+} & =\frac{n^{2}\left(1-\alpha^{2}\right)}{n^{2}-1}\left(P-\frac{2(1+\alpha n)}{(n+1)(1+\alpha)} P \tilde{g} \tilde{g}^{T} P\right)
\end{aligned}
$$

where

$$
\tilde{g}=\frac{g}{\sqrt{g^{T} P g}}, \quad \alpha=\frac{h}{\sqrt{g^{T} P g}}
$$

(if $\alpha>1$, intersection is empty)

Ellipsoid method with deep objective cuts

same example as on page 16

Inequality constrained problems

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

- if $x^{(k)}$ is feasible, update ellipsoid with objective cut

$$
g_{0}^{T} z \leq g_{0}^{T} x^{(k)}-f_{0}\left(x^{(k)}\right)+f_{\text {best }}^{(k)}, \quad g_{0} \in \partial f_{0}\left(x^{(k)}\right)
$$

$f_{\text {best }}^{(k)}$ is best objective value of feasible iterates so far

- if $x^{(k)}$ is infeasible (say, $f_{j}\left(x^{(k)}\right)>0$), use feasibility cut

$$
g_{j}^{T} z \leq g_{j}^{T} x^{(k)}-f_{j}\left(x^{(k)}\right), \quad g_{j} \in \partial f_{j}\left(x^{(k)}\right)
$$

Stopping criterion

- if $x^{(k)}$ is feasible, we have lower bound on p^{\star} as before:

$$
p^{\star} \geq f_{0}\left(x^{(k)}\right)-\sqrt{g_{0}^{(k) T} P^{(k-1)} g_{0}^{(k)}}
$$

- if $x^{(k)}$ is infeasible, we have for all $x \in \mathcal{E}_{k-1}$

$$
\begin{aligned}
f_{j}(x) & \geq f_{j}\left(x^{(k)}\right)+g_{j}^{(k) T}\left(x-x^{(k)}\right) \\
& \geq f_{j}\left(x^{(k)}\right)+\inf _{z \in \mathcal{E}_{k-1}} g^{(k) T}\left(z-x^{(k)}\right) \\
& =f_{j}\left(x^{(k)}\right)-\sqrt{g_{j}^{(k) T} P^{(k-1)} g_{j}^{(k)}}
\end{aligned}
$$

hence, problem is infeasible if for some j,

$$
f_{j}\left(x^{(k)}\right)-\sqrt{g_{j}^{(k) T} P^{(k-1)} g_{j}^{(k)}}>0
$$

stopping criteria: terminate algorithm when

- $x^{(k)}$ is known to be ϵ-suboptimal:

$$
x^{(k)} \text { is feasible and } \sqrt{g_{0}^{(k) T} P^{(k-1)} g_{0}^{(k)}} \leq \epsilon
$$

- or problem is shown to be infeasible:

$$
f_{j}\left(x^{(k)}\right)-\sqrt{g_{j}^{(k) T} P^{(k-1)} g_{j}^{(k)}}>0 \text { for some } j
$$

