7. Fast proximal gradient methods

- fast proximal gradient method (FISTA)
- FISTA with line search
- FISTA as descent method
- Nesterov’s second method
Fast (proximal) gradient methods

- Beck & Teboulle (2008): FISTA, a proximal gradient version of Nesterov’s 1983 method

- several recent variations and extensions

this lecture:

FISTA and Nesterov’s 2nd method (1988) as presented by Tseng
Outline

• fast proximal gradient method (FISTA)
• FISTA with line search
• FISTA as descent method
• Nesterov’s second method
FISTA (basic version)

minimize \(f(x) = g(x) + h(x) \)

• \(g \) convex, differentiable, with \(\text{dom} \, g = \mathbb{R}^n \)
• \(h \) closed, convex, with inexpensive \(\text{prox}_{th} \) operator

algorithm: choose any \(x^{(0)} = x^{(-1)} \); for \(k \geq 1 \), repeat the steps

\[
y = x^{(k-1)} + \frac{k - 2}{k + 1} (x^{(k-1)} - x^{(k-2)}) \\
x^{(k)} = \text{prox}_{t_k h} (y - t_k \nabla g(y))
\]

• step size \(t_k \) fixed or determined by line search
• acronym stands for ‘Fast Iterative Shrinkage-Thresholding Algorithm’
Interpretation

• first iteration \((k = 1)\) is a proximal gradient step at \(y = x^{(0)}\)

• next iterations are proximal gradient steps at extrapolated points \(y\)

\[
x^{(k)} = \text{prox}_{t_k h} \left(y - t_k \nabla g(y) \right)
\]

note: \(x^{(k)}\) is feasible \((\text{in dom } h)\); \(y\) may be outside \(\text{dom } h\)
Example

\[\text{minimize } \log \sum_{i=1}^{m} \exp(a_i^T x + b_i)\]

randomly generated data with \(m = 2000, n = 1000\), same fixed step size
another instance

FISTA is not a descent method
Convergence of FISTA

assumptions

- g convex with $\text{dom } g = \mathbb{R}^n$; ∇g Lipschitz continuous with constant L:

$$\|\nabla g(x) - \nabla g(y)\|_2 \leq L\|x - y\|_2 \quad \forall x, y$$

- h is closed and convex (so that $\text{prox}_{th}(u)$ is well defined)

- optimal value f^* is finite and attained at x^* (not necessarily unique)

convergence result: $f(x^{(k)}) - f^*$ decreases at least as fast as $1/k^2$

- with fixed step size $t_k = 1/L$

- with suitable line search
Reformulation of FISTA

define $\theta_k = 2/(k + 1)$ and introduce an intermediate variable $v^{(k)}$

algorithm: choose $x^{(0)} = v^{(0)}$; for $k \geq 1$, repeat the steps

$$y = (1 - \theta_k)x^{(k-1)} + \theta_kv^{(k-1)}$$

$$x^{(k)} = \text{prox}_{t_kh}(y - t_k\nabla g(y))$$

$$v^{(k)} = x^{(k-1)} + \frac{1}{\theta_k}(x^{(k)} - x^{(k-1)})$$

substituting expression for $v^{(k)}$ in formula for y gives FISTA of page 7-3
Important inequalities

choice of θ_k: the sequence $\theta_k = 2/(k + 1)$ satisfies $\theta_1 = 1$ and

$$
\frac{1 - \theta_k}{\theta_k^2} \leq \frac{1}{\theta_{k-1}^2}, \quad k \geq 2
$$

upper bound on g from Lipschitz property (page 1-12)

$$
g(u) \leq g(z) + \nabla g(z)^T (u - z) + \frac{L}{2} \|u - z\|_2^2 \quad \forall u, z
$$

upper bound on h from definition of prox-operator (page 6-7)

$$
h(u) \leq h(z) + \frac{1}{t} (w - u)^T (u - z) \quad \forall w, u = \text{prox}_{th}(w), z
$$
Progress in one iteration

define $x = x^{(i-1)}$, $x^+ = x^{(i)}$, $v = v^{(i-1)}$, $v^+ = v^{(i)}$, $t = t_i$, $\theta = \theta_i$

• upper bound from Lipschitz property: if $0 < t \leq 1/L$,

$$g(x^+) \leq g(y) + \nabla g(y)^T (x^+ - y) + \frac{1}{2t} || x^+ - y ||^2_2 \quad (1)$$

• upper bound from definition of prox-operator:

$$h(x^+) \leq h(z) + \nabla g(y)^T (z - x^+) + \frac{1}{t} (x^+ - y)^T (z - x^+) \quad \forall z$$

• add the upper bounds and use convexity of g

$$f(x^+) \leq f(z) + \frac{1}{t} (x^+ - y)^T (z - x^+) + \frac{1}{2t} || x^+ - y ||^2_2 \quad \forall z$$
make convex combination of upper bounds for $z = x$ and $z = x^*$

$$f(x^+) - f^* - (1 - \theta)(f(x) - f^*)$$

$$= f(x^+) - \theta f^* - (1 - \theta)f(x)$$

$$\leq \frac{1}{t}(x^+ - y)^T(\theta x^* + (1 - \theta)x - x^+) + \frac{1}{2t}\|x^+ - y\|_2^2$$

$$= \frac{1}{2t} \left(\|y - (1 - \theta)x - \theta x^*\|_2^2 - \|x^+ - (1 - \theta)x - \theta x^*\|_2^2\right)$$

$$= \frac{\theta^2}{2t} \left(\|v - x^*\|_2^2 - \|v^+ - x^*\|_2^2\right)$$

Conclusion: if the inequality (1) holds at iteration i, then

$$\frac{t_i}{\theta^2_i} \left(f(x^{(i)}) - f^*\right) + \frac{1}{2} \|v^{(i)} - x^*\|_2^2$$

$$\leq \frac{(1 - \theta_i)t_i}{\theta^2_i} \left(f(x^{(i-1)}) - f^*\right) + \frac{1}{2} \|v^{(i-1)} - x^*\|_2^2 \quad (2)$$
Analysis for fixed step size

take \(t_i = t = 1/L \) and apply (2) recursively, using \((1 - \theta_i)/\theta_i^2 \leq 1/\theta_i^{2-1}\):

\[
\frac{t}{\theta_i^2} \left(f(x^{(k)}) - f^* \right) + \frac{1}{2} \| v^{(k)} - x^* \|_2^2 \\
\leq \frac{(1 - \theta_1)t}{\theta_1^2} \left(f(x^{(0)}) - f^* \right) + \frac{1}{2} \| v^{(0)} - x^* \|_2^2 \\
= \frac{1}{2} \| x^{(0)} - x^* \|_2^2
\]

therefore,

\[
f(x^{(k)}) - f^* \leq \frac{\theta_k^2}{2t} \| x^{(0)} - x^* \|_2^2 = \frac{2L}{(k + 1)^2} \| x^{(0)} - x^* \|_2^2
\]

conclusion: reaches \(f(x^{(k)}) - f^* \leq \epsilon \) after \(O(1/\sqrt{\epsilon}) \) iterations
Example: quadratic program with box constraints

\[
\begin{align*}
\text{minimize} & \quad (1/2)x^T Ax + b^T x \\
\text{subject to} & \quad 0 \leq x \leq 1
\end{align*}
\]

\[
\begin{array}{c}
\text{gradient} \\
\text{FISTA}
\end{array}
\]

\[
n = 3000; \text{ fixed step size } t = 1/\lambda_{\text{max}}(A)
\]
1-norm regularized least-squares

\[
\text{minimize} \quad \frac{1}{2} \|Ax - b\|^2_2 + \|x\|_1
\]

randomly generated \(A \in \mathbb{R}^{2000 \times 1000} \); step \(t_k = 1/L \) with \(L = \lambda_{\text{max}}(A^T A) \)
Outline

- fast proximal gradient method (FISTA)
- **FISTA with line search**
- FISTA as descent method
- Nesterov’s second method
Key steps in the analysis of FISTA

• the starting point (page 7-10) is the inequality

\[
g(x^+) \leq g(y) + \nabla g(y)^T (x^+ - y) + \frac{1}{2t} \|x^+ - y\|^2_2
\]

(1)

this inequality is known to hold for \(0 < t \leq 1/L\)

• if (1) holds, then the progress made in iteration \(i\) is bounded by

\[
\frac{t_i}{\theta^2_i} \left(f(x^{(i)}) - f^* \right) + \frac{1}{2} \|v^{(i)} - x^*\|^2_2
\]

\[
\leq \frac{(1 - \theta_i)t_i}{\theta^2_i} \left(f(x^{(i-1)}) - f^* \right) + \frac{1}{2} \|v^{(i-1)} - x^*\|^2_2
\]

(2)

• to combine these inequalities recursively, we need

\[
\frac{(1 - \theta_i)t_i}{\theta^2_i} \leq \frac{t_{i-1}}{\theta^2_{i-1}} \quad (i \geq 2)
\]

(3)
• if $\theta_1 = 1$, combining the inequalities (2) from $i = 1$ to k gives the bound

$$f(x^{(k)}) - f^* \leq \frac{\theta_k^2}{2t_k} \|x^{(0)} - x^*\|^2_2$$

conclusion: rate $1/k^2$ convergence if (1) and (3) hold with

$$\frac{\theta_k^2}{t_k} = O\left(\frac{1}{k^2}\right)$$

FISTA with fixed step size

$$t_k = \frac{1}{L}, \quad \theta_k = \frac{2}{k + 1}$$

these values satisfy (1) and (3) with

$$\frac{\theta_k^2}{t_k} = \frac{4L}{(k + 1)^2}$$
FISTA with line search (method 1)

replace update of x in iteration k (page 7-8) with

\[
\begin{align*}
t &:= t_{k-1} \quad \text{(define $t_0 = \hat{t} > 0$)} \\
x &:= \text{prox}_{th}(y - t\nabla g(y)) \\
\text{while } g(x) > g(y) + \nabla g(y)^T (x - y) + \frac{1}{2t} \|x - y\|^2_2 \\
\quad &\quad t := \beta t \\
\quad &\quad x := \text{prox}_{th}(y - t\nabla g(y)) \\
\end{align*}
\]

- inequality (1) holds trivially, by the backtracking exit condition
- inequality (3) holds with $\theta_k = 2/(k + 1)$ because $t_k \leq t_{k-1}$
- Lipschitz continuity of ∇g guarantees $t_k \geq t_{\min} = \min\{\hat{t}, \beta/L\}$
- preserves $1/k^2$ convergence rate because $\theta_k^2/t_k = O(1/k^2)$:

\[
\frac{\theta_k^2}{t_k} \leq \frac{4}{(k + 1)^2 t_{\min}}
\]
FISTA with line search (method 2)

replace update of y and x in iteration k (page 7-8) with

\[
\begin{align*}
t &:= \hat{t} > 0 \\
\theta &:= \text{positive root of } t_{k-1} \theta^2 = t \theta^2_{k-1} (1 - \theta) \\
y &:= (1 - \theta)x^{(k-1)} + \theta v^{(k-1)} \\
x &:= \text{prox}_{\theta t} (y - t \nabla g(y)) \\
\text{while } g(x) > g(y) + \nabla g(y)^T (x - y) + \frac{1}{2t} \| x - y \|^2_2 \\
& \quad t := \beta t \\
& \quad \theta := \text{positive root of } t_{k-1} \theta^2 = t \theta^2_{k-1} (1 - \theta) \\
y &:= (1 - \theta)x^{(k-1)} + \theta v^{(k-1)} \\
x &:= \text{prox}_{\theta t} (y - t \nabla g(y))
\end{align*}
\]

end

assume $t_0 = 0$ in the first iteration ($k = 1$), i.e., take $\theta_1 = 1$, $y = x^{(0)}$
discussion

- inequality (1) holds trivially, by the backtracking exit condition
- inequality (3) holds trivially, by construction of θ_k
- Lipschitz continuity of ∇g guarantees $t_k \geq t_{\text{min}} = \min\{\hat{t}, \beta/L\}$
- θ_i is defined as the positive root of $\theta_i^2/t_i = (1 - \theta_i)\theta_{i-1}^2/t_{i-1}$; hence

$$\frac{\sqrt{t_{i-1}}}{\theta_{i-1}} = \frac{\sqrt{(1 - \theta_i)t_i}}{\theta_i} \leq \frac{\sqrt{t_i}}{\theta_i} - \frac{\sqrt{t_i}}{2}$$

combine inequalities from $i = 2$ to k to get $\sqrt{t_1} \leq \frac{\sqrt{t_k}}{\theta_k} - \frac{1}{2} \sum_{i=2}^{k} \sqrt{t_i}$

- rearranging shows that $\theta_k^2/t_k = O(1/k^2)$:

$$\frac{\theta_k^2}{t_k} \leq \frac{1}{\left(\sqrt{t_1} + \frac{1}{2} \sum_{i=2}^{k} \sqrt{t_i}\right)^2} \leq \frac{4}{(k + 1)^2 t_{\text{min}}}$$

Fast proximal gradient methods
Comparison of line search methods

method 1

• uses nonincreasing step sizes (enforces $t_k \leq t_{k-1}$)

• one evaluation of $g(x)$, one prox_{th} evaluation per line search iteration

method 2

• allows non-monotonic step sizes

• one evaluation of $g(x)$, one evaluation of $g(y)$, $\nabla g(y)$, one evaluation of prox_{th} per line search iteration

the two strategies can be combined and extended in various ways
Outline

• fast proximal gradient method (FISTA)
• FISTA with line search
• FISTA as descent method
• Nesterov’s second method
Descent version of FISTA

choose $x^{(0)} = v^{(0)}$; for $k \geq 1$, repeat the steps

$$y = (1 - \theta_k)x^{(k-1)} + \theta_kv^{(k-1)}$$

$$u = \text{prox}_{t_k h}(y - t_k \nabla g(y))$$

$$x^{(k)} = \begin{cases} u & f(u) \leq f(x^{(k-1)}) \\ x^{(k-1)} & \text{otherwise} \end{cases}$$

$$v^{(k)} = x^{(k-1)} + \frac{1}{\theta_k}(u - x^{(k-1)})$$

• step 3 implies $f(x^{(k)}) \leq f(x^{(k-1)})$
• use $\theta_k = 2/(k + 1)$ and $t_k = 1/L$, or one of the line search methods
• same iteration complexity as original FISTA
• changes on page 7-10: replace x^+ with u and use $f(x^+) \leq f(u)$
Example

(from page 7-6)
Outline

• fast proximal gradient method (FISTA)

• line search strategies

• enforcing descent

• Nesterov’s second method
Nesterov’s second method

algorithm: choose $x^{(0)} = v^{(0)}$; for $k \geq 1$, repeat the steps

$$y = (1 - \theta_k) x^{(k-1)} + \theta_k v^{(k-1)}$$

$$v^{(k)} = \text{prox}_{t_k/\theta_k h} \left(v^{(k-1)} - \frac{t_k}{\theta_k} \nabla g(y) \right)$$

$$x^{(k)} = (1 - \theta_k) x^{(k-1)} + \theta_k v^{(k)}$$

• use $\theta_k = 2/(k + 1)$ and $t_k = 1/L$, or one of the line search methods

• identical to FISTA if $h(x) = 0$

• unlike in FISTA, y is feasible (in $\text{dom } h$) if we take $x^{(0)} \in \text{dom } h$
Convergence of Nesterov’s second method

assumptions

- g convex; ∇g is Lipschitz continuous on $\text{dom } h \subseteq \text{dom } g$

\[\| \nabla g(x) - \nabla g(y) \|_2 \leq L \| x - y \|_2 \quad \forall x, y \in \text{dom } h \]

- h is closed and convex (so that $\text{prox}_{th}(u)$ is well defined)
- optimal value f^* is finite and attained at x^* (not necessarily unique)

convergence result: $f(x^{(k)}) - f^*$ decreases at least as fast as $1/k^2$

- with fixed step size $t_k = 1/L$
- with suitable line search
Analysis of one iteration

define $x = x^{(i-1)}$, $x^+ = x^{(i)}$, $v = v^{(i-1)}$, $v^+ = v^{(i)}$, $t = t_i$, $\theta = \theta_i$

• from Lipschitz property if $0 < t \leq 1/L$

$$g(x^+) \leq g(y) + \nabla g(y)^T (x^+ - y) + \frac{1}{2t} \|x^+ - y\|^2_2$$

• plug in $x^+ = (1 - \theta)x + \theta v^+$ and $x^+ - y = \theta(v^+ - v)$

$$g(x^+) \leq g(y) + \nabla g(y)^T ((1 - \theta)x + \theta v^+ - y) + \frac{\theta^2}{2t} \|v^+ - v\|^2_2$$

• from convexity of g, h

$$g(x^+) \leq (1 - \theta)g(x) + \theta \left(g(y) + \nabla g(y)^T (v^+ - y) \right) + \frac{\theta^2}{2t} \|v^+ - v\|^2_2$$

$$h(x^+) \leq (1 - \theta)h(x) + \theta h(v^+)$$
• upper bound on h from p. 7-9 (with $u = v^+, w = v - (t/\theta) \nabla g(y)$)

$$h(v^+) \leq h(z) + \nabla g(y)^T(z - v^+) - \frac{\theta}{t}(v^+ - v)^T(v^+ - z) \quad \forall z$$

• combine the upper bounds on $g(x^+), h(x^+), h(v^+)$ with $z = x^*$

$$f(x^+) \leq (1 - \theta)f(x) + \theta f^* - \frac{\theta^2}{t}(v^+ - v)^T(v^+ - x^*) + \frac{\theta^2}{2t}||v^+ - v||_2^2$$

$$= (1 - \theta)f(x) + \theta f^* + \frac{\theta^2}{2t} (||v - x^*||_2^2 - ||v^+ - x^*||_2^2)$$

this is identical to the final inequality (2) in the analysis of FISTA on p.7-11

$$\frac{t_i}{\theta_i^2} \left(f(x^{(i)}) - f^* \right) + \frac{1}{2} \left| \left| v^{(i)} - x^* \right| \right|_2^2$$

$$\leq \frac{(1 - \theta_i)t_i}{\theta_i^2} \left(f(x^{(i-1)}) - f^* \right) + \frac{1}{2} \left| \left| v^{(i-1)} - x^* \right| \right|_2^2$$
References

surveys of fast gradient methods

FISTA

line search strategies

- FISTA papers by Beck and Teboulle
Nesterov’s third method (not covered in this lecture)