7. Accelerated proximal gradient methods

- Nesterov’s method
- analysis with fixed step size
- line search
Proximal gradient method

Results from lecture 4

• each proximal gradient iteration is a descent step (page 4.15 and 4.17):

\[f(x_{k+1}) < f(x_k), \quad \|x_{k+1} - x^*\|^2_2 \leq c \|x_k - x^*\|^2_2 \]

with \(c = 1 - m/L \)

• suboptimality after \(k \) iterations is \(O(1/k) \) (page 4.16):

\[f(x_k) - f^* \leq \frac{L}{2k} \|x_0 - x^*\|^2_2 \]

Accelerated proximal gradient methods

• to improve convergence, we add a momentum term

• we relax the descent properties

• originated in work by Nesterov in the 1980s
Assumptions

we consider the same problem and make the same assumptions as in lecture 4:

\[\text{minimize } f(x) = g(x) + h(x) \]

- \(h\) is closed and convex (so that \(\text{prox}_{th}\) is well defined)
- \(g\) is differentiable with \(\text{dom } g = \mathbb{R}^n\)
- there exist constants \(m \geq 0\) and \(L > 0\) such that the functions

\[
\frac{m}{2}x^T x, \quad \frac{L}{2}x^T x - g(x)
\]

are convex
- the optimal value \(f^*\) is finite and attained at \(x^*\) (not necessarily unique)
Nesterov’s method

choose \(x_0 = v_0 \) and \(\theta_0 \in (0, 1] \), and repeat the following steps for \(k = 0, 1, \ldots \)

- if \(k \geq 1 \), define \(\theta_k \) as the positive root of the quadratic equation

\[
\frac{\theta_k^2}{t_k} = (1 - \theta_k)\gamma_k + m\theta_k \quad \text{where} \quad \gamma_k = \frac{\theta_{k-1}^2}{t_{k-1}}
\]

- update \(x_k \) and \(v_k \) as follows:

\[
y = x_k + \frac{\theta_k \gamma_k}{\gamma_k + m\theta_k}(v_k - x_k) \quad \text{(} y = x_0 \text{ if } k = 0 \text{)}
\]

\[
x_{k+1} = \text{prox}_{t_k h}(y - t_k \nabla g(y))
\]

\[
v_{k+1} = x_k + \frac{1}{\theta_k}(x_{k+1} - x_k)
\]

stepsize \(t_k \) is fixed (\(t_k = 1/L \)) or obtained from line search
Momentum interpretation

- the first iteration \((k = 0)\) is a proximal gradient step at \(y = x_0\)
- next iterations are proximal gradient steps at extrapolated points \(y:\)

\[
y = x_k + \frac{\theta_k \gamma_k}{\gamma_k + m \theta_k} (v_k - x_k) = x_k + \beta_k (x_k - x_{k-1})
\]

where

\[
\beta_k = \frac{\theta_k \gamma_k}{\gamma_k + m \theta_k} \left(\frac{1}{\theta_{k-1}} - 1 \right) = \frac{t_k \theta_{k-1} (1 - \theta_{k-1})}{t_{k-1} \theta_k + t_k \theta^2_{k-1}}
\]

\[
x_{k+1} = \text{prox}_{t_k h}(y - t_k \nabla g(y))
\]
Parameters θ_k and β_k (for fixed stepsize $t_k = 1/L = 1$)

\[m = 0.1 \]

θ_k

\[\theta_0 = \sqrt{m/L} \]
\[\theta_0 = \sqrt{4m/L} \]
\[\theta_0 = 1 \]

β_k

\[\theta_0 = \sqrt{m/L} \]
\[\theta_0 = \sqrt{4m/L} \]
\[\theta_0 = 1 \]

$\sqrt{L-\sqrt{m}}$ \quad $\sqrt{L+\sqrt{m}}$

$\sqrt{m/L}$

$\sqrt{L-\sqrt{m}}$ \quad $\sqrt{L+\sqrt{m}}$

$m = 0$

θ_k

\[\theta_0 = 0.5 \]
\[\theta_0 = 1.0 \]

β_k

\[\theta_0 = 0.5 \]
\[\theta_0 = 1.0 \]
Parameter θ_k

- for $k \geq 1$, θ_k is the positive root of the quadratic equation

$$\frac{\theta_k^2}{t_k} = (1 - \theta_k)\frac{\theta_{k-1}^2}{t_{k-1}} + m\theta_k$$

- if $m > 0$ and $\theta_0 = \sqrt{mt_0}$, then $\theta_k = \sqrt{mt_k}$ for all k

- $\theta_k < 1$ if $mt_k < 1$

- for constant t_k, sequence θ_k is completely determined by θ_0
if we take \(m = 0 \) on page 7.4, the expression for \(y \) simplifies:

\[
\begin{align*}
y &= x_k + \theta_k(v_k - x_k) \\
x_{k+1} &= \text{prox}_{t_k h}(y - t_k \nabla g(y)) \\
v_{k+1} &= x_k + \frac{1}{\theta_k}(x_{k+1} - x_k)
\end{align*}
\]

eliminating the variables \(v^{(k)} \) gives the equivalent iteration

\[
\begin{align*}
y &= x_k + \theta_k\left(\frac{1}{\theta_{k-1}} - 1\right)(x_k - x_{k-1}) \quad (y = x_0 \text{ if } k = 0) \\
x_{k+1} &= \text{prox}_{t_k h}(y - t_k \nabla g(y))
\end{align*}
\]

this is known as **FISTA** (Fast Iterative Shrinkage-Thresholding Algorithm)
Example

\[
\text{minimize} \quad \log \sum_{i=1}^{p} \exp(a_i^T x + b_i)
\]

- two randomly generated problems with \(p = 2000, n = 1000 \)
- same fixed step size used for gradient method and FISTA
- figures show \((f(x^{(k)}) - f^*) / f^* \)
A simplification for strongly convex problems

• if $m > 0$ and we choose $\theta_0 = \sqrt{mt_0}$, then

$$\gamma_k = m, \quad \theta_k = \sqrt{mt_k} \quad \text{for all } k \geq 1$$

• the algorithm on page 7.4 and page 7.5 simplifies:

$$y = x_k + \frac{\sqrt{t_k}}{\sqrt{t_{k-1}}} \frac{1 - \sqrt{mt_{k-1}}}{1 + \sqrt{mt_k}} (x_k - x_{k-1}) \quad (y = x_0 \text{ if } k = 0)$$

$$x_{k+1} = \text{prox}_{t_k h}(y - t_k \nabla g(y))$$

• with constant stepszie $t_k = 1/L$, the expression for y reduces to

$$y = x_k + \frac{1 - \sqrt{m/L}}{1 + \sqrt{m/L}} (x_k - x_{k-1}) \quad (y = x_0 \text{ if } k = 0)$$
Outline

- Nesterov’s method
- analysis with fixed step size
- line search
Overview

• we show that if $t_i = 1/L$, the following inequality holds at iteration i:

$$f(x_{i+1}) - f^* + \frac{\gamma_{i+1}}{2} \|v_{i+1} - x^*\|_2^2$$

$$\leq (1 - \theta_i)(f(x_i) - f^*) + \frac{\gamma_{i+1} - m\theta_i}{2} \|v_i - x^*\|_2^2$$

$$= (1 - \theta_i) \left(f(x_i) - f^* + \frac{\gamma_i}{2} \|v_i - x^*\|_2^2 \right) \quad \text{if } i \geq 1$$

• combining the inequalities from $i = 0$ to $i = k - 1$ shows that

$$f(x_k) - f^* \leq \lambda_k \left((1 - \theta_0)(f(x_0) - f^*) + \frac{\gamma_1 - m\theta_0}{2} \|x_0 - x^*\|_2^2 \right)$$

$$\leq \lambda_k \left((1 - \theta_0)(f(x_0) - f^*) + \frac{\theta_0^2}{2t_0} \|x_0 - x^*\|_2^2 \right)$$

where $\lambda_1 = 1$ and $\lambda_k = \prod_{i=1}^{k-1}(1 - \theta_i)$ for $k > 1$

(here we assume $x_0 \in \text{dom } f$)
Notation for one iteration

quantities in iteration i of the algorithm on page 7.4

- define $t = t_i$, $\theta = \theta_i$, $\gamma^+ = \gamma_{i+1} = \theta^2/t$
- if $i \geq 1$, define $\gamma = \gamma_i$ and note that $\gamma^+ - m\theta = (1 - \theta)\gamma$
- define $x = x_i$, $x^+ = x_{i+1}$, $v = v_i$, and $v^+ = v_{i+1}$:

$$
\begin{align*}
 y &= \frac{1}{\gamma + m\theta} (\gamma^+ x + \theta \gamma v) \quad (y = x = v \text{ if } i = 0) \\
 x^+ &= y - tG_i(y) \\
 v^+ &= x + \frac{1}{\theta} (x^+ - x)
\end{align*}
$$

- v^+, v, and y are related as

$$
\gamma^+ v^+ = \gamma^+ v + m\theta (y - v) - \theta G_i(y) \quad (1)
$$
Proof (last identity):

• combine v and x updates and use $\gamma^+ = \theta^2/t$:

\[
v^+ = x + \frac{1}{\theta}(y - tG_t(y) - x)
\]

\[
= \frac{1}{\theta}(y - (1 - \theta)x) - \frac{\theta}{\gamma^+}G_t(y)
\]

• for $i = 0$, the equation (1) follows because $y = x = v$

• for $i \geq 1$, multiply with $\gamma^+ = \gamma + m\theta - \theta\gamma$:

\[
\gamma^+v^+ = \frac{\gamma^+}{\theta}(y - (1 - \theta)x) - \theta G_i(y)
\]

\[
= \frac{(1 - \theta)}{\theta}((\gamma + m\theta)y - \gamma^+ x) + \theta my - \theta G_t(y)
\]

\[
= (1 - \theta)\gamma v + \theta my - \theta G_t(y)
\]

\[
= (\gamma^+ - m\theta)\gamma v + \theta my - \theta G_t(y)
\]
Bound on objective function

recall the results on the proximal gradient update (page 4.13):

• if $0 < t \leq 1/L$ then $g(x^+) = g(y - tG_t(y))$ is bounded by

$$g(x^+) \leq g(y) - t\nabla g(y)^TG_t(y) + \frac{t}{2}\|G_t(y)\|^2$$

(2)

• if the inequality (2) holds, then $mt \leq 1$ and, for all z,

$$f(z) \geq f(x^+) + \frac{t}{2}\|G_t(y)\|^2 + G_t(y)^T(z - y) + \frac{m}{2}\|z - y\|^2$$

• add $(1 - \theta)$ times the inequality for $z = x$ and θ times the inequality for $z = x^*$:

$$f(x^+) - f^* \leq (1 - \theta)(f(x) - f^*) - G_t(y)^T((1 - \theta)x + \theta x^* - y)$$

$$- \frac{t}{2}\|G_t(y)\|^2 - \frac{m\theta}{2}\|x^* - y\|^2$$
Bound on distance to optimum

• it follows from (1) that

\[
\frac{\gamma^+}{2} \|v^+ - x^*\|_2^2 = \frac{\gamma^+ - m\theta}{2} \|v - x^*\|_2^2 + \theta G_t(y)^T (x^* - v - \frac{m\theta}{\gamma^+}(y - v)) \\
- \frac{m\theta(\gamma^+ - m\theta)}{2\gamma^+} \|y - v\|_2^2 + \frac{t}{2} \|G_t(y)\|_2^2 + \frac{m\theta}{2} \|x^* - y\|_2^2 \\
\leq \frac{\gamma^+ - m\theta}{2} \|v - x^*\|_2^2 + \theta G_t(y)^T (x^* - v - \frac{m\theta}{\gamma^+}(y - v)) \\
+ \frac{t}{2} \|G_t(y)\|_2^2 + \frac{m\theta}{2} \|x^* - y\|_2^2
\]

• \(\gamma^+\) and \(y\) are chosen so that \(\theta(\gamma^+ - m\theta)(y - v) = \gamma^+(1 - \theta)(x - y)\); hence

\[
\frac{\gamma^+}{2} \|v^+ - x^*\|_2^2 \leq \frac{\gamma^+ - m\theta}{2} \|v - x^*\|_2^2 + G_t(y)^T (\theta x^* + (1 - \theta)x - y) \\
+ \frac{t}{2} \|G_t(y)\|_2^2 + \frac{m\theta}{2} \|x^* - y\|_2^2
\]
Progress in one iteration

• combining the bounds on page 7.14 and 7.15 gives

\[f(x^+) - f^* + \frac{\gamma^+}{2} \|v^+ - x^*\|^2 \]

\leq (1 - \theta)(f(x) - f^*) + \frac{\gamma^+ - m\theta}{2} \|v - x^*\|^2

this is the first inequality on page 7.11

• if \(i \geq 1 \), we use \(\gamma^+ - m\theta = (1 - \theta)\gamma \) to write this as

\[f(x^+) - f^* + \frac{\gamma^+}{2} \|v^+ - x^*\|^2 \]

\leq (1 - \theta) \left(f(x) - f^* + \frac{\gamma}{2} \|v - x^*\|^2 \right)
Analysis for fixed step size

the product $\lambda_k = \prod_{i=1}^{k-1} (1 - \theta_i)$ determines the rate of convergence (page 7.11)

- the sequence λ_k satisfies the following bound (proof on next page)

$$\lambda_k \leq \frac{4}{(2 + \sqrt{\gamma_1} \sum_{i=1}^{k-1} \sqrt{t_i})^2} = \frac{4t_0}{(2 \sqrt{t_0} + \theta_0 \sum_{i=1}^{k-1} \sqrt{t_i})^2}$$ \hspace{1cm} (3)

- for constant step size and $\theta_0 = 1$, we obtain

$$\lambda_k \leq \frac{4}{(k + 1)^2}$$

- with $t_0 = 1/L$, the inequality on page 7.11 shows a $1/k^2$ convergence rate

$$f(x_k) - f^* \leq \frac{2L}{(k + 1)^2} ||x_0 - x^*||_2^2$$
Proof.

• recall that for $k \geq 1$,

$$
\gamma_{k+1} = (1 - \theta_k)\gamma_k + \theta_km, \quad \gamma_k = \theta_{k-1}^2 / t_{k-1}
$$

• we first note that $\lambda_k \leq \gamma_k / \gamma_1$; this follows from

$$
\lambda_{i+1} = (1 - \theta_i)\lambda_i = \frac{\gamma_{i+1} - \theta_im}{\gamma_i} \lambda_i \leq \frac{\gamma_{i+1}}{\gamma_i} \lambda_i
$$

• the inequality (3) follows by combining from $i = 1$ to $i = k - 1$ the inequalities

$$
\frac{1}{\sqrt{\lambda_{i+1}}} - \frac{1}{\sqrt{\lambda_i}} \geq \frac{\lambda_i - \lambda_{i+1}}{2\lambda_i \sqrt{\lambda_{i+1}}} = \frac{\theta_i}{2\sqrt{\lambda_{i+1}}} \geq \frac{\theta_i}{2\sqrt{\gamma_{i+1} / \gamma_1}} = \frac{1}{2} \sqrt{\gamma_{1} t_i}
$$
Strongly convex functions

the following bound on λ_k is useful for strongly convex functions ($m > 0$)

• if $\theta_0 \geq \sqrt{mt_0}$, then $\theta_k \geq \sqrt{mt_k}$ for all k and

\[
\lambda_k \leq \prod_{i=1}^{k-1} (1 - \sqrt{mt_i})
\]

(proof on next page)

• for constant step size $t_k = 1/L$, we obtain

\[
\lambda_k \leq \left(1 - \sqrt{m/L}\right)^{k-1}
\]

• combined with the inequality on page 7.11, this shows linear convergence

\[
f(x_k) - f^* \leq \left(1 - \sqrt{\frac{m}{L}}\right)^{k-1} \left((1 - \theta_0)(f(x_0) - f^*) + \frac{\theta_0^2}{2t_0} \|x_0 - x^*\|^2\right)
\]
\textit{Proof.}

- if $\theta_{k-1} \geq \sqrt{mt_{k-1}}$, then $\theta_k \geq \sqrt{mt_k}$:

$$\frac{\theta_k^2}{t_k} = (1 - \theta_k)\frac{\theta_{k-1}^2}{t_{k-1}} + m\theta_k$$

$$\geq (1 - \theta_k)m + m\theta_k$$

$$= m$$

- if $\theta_0 \geq \sqrt{mt_0}$, then $\theta_k \geq \sqrt{mt_k}$ for all k and

$$\lambda_k = \prod_{i=1}^{k-1}(1 - \theta_i) \leq \prod_{i=1}^{k-1}(1 - \sqrt{mt_i})$$
• Nesterov’s method

• analysis with fixed step size

• line search
Line search

- the analysis for fixed step size starts with the inequality (2):

\[g(x - tG_t(y)) \leq g(y) - t\nabla g(y)^T G_t(y) + \frac{t}{2} \| G_t(y) \|^2 \]

this inequality is known to hold for \(0 \leq t \leq 1/L \)

- if \(L \) is not known, we can satisfy (2) by a backtracking line search:

 start at some \(t := \hat{t} > 0 \) and backtrack \((t := \beta t) \) until (2) holds

- step size selected by the line search satisfies \(t \geq t_{\text{min}} = \min \{\hat{t}, \beta/L\} \)

- for each tentative \(t_k \) we need to recompute \(\theta_k, y, x_{k+1} \) in the algorithm on p. 7.4

- requires evaluations of \(\nabla g, \text{prox}_{th}, \) and \(g \) (twice) per line search iteration
Analysis with line search

• from page 7.17, if $\theta_0 = 1$:

$$\lambda_k \leq \frac{4t_0}{(2\sqrt{t_0} + \sum_{i=1}^{k-1} \sqrt{t_i})^2} \leq \frac{4\hat{t}/t_{\text{min}}}{(k + 1)^2}$$

• from page 7.19, if $\theta_0 \geq \sqrt{mt_0}$:

$$\lambda_k \leq \prod_{i=1}^{k-1} (1 - \sqrt{mt_i}) \leq (1 - \sqrt{mt_{\text{min}}})^{k-1}$$

• therefore the results for fixed step size hold with $1/t_{\text{min}}$ substituted for L
Most of the material in the lecture is from §2.2 in Nesterov’s *Lectures on Convex Optimization*.

FISTA

Accelerated proximal gradient methods

Line search strategies

- FISTA papers by Beck and Teboulle.
Implementation