## 16. Gauss-Newton method

- definition and examples
- Gauss-Newton method
- Levenberg-Marquardt method
- separable nonlinear least squares


## Nonlinear least squares

$$
\text { minimize } g(x)=\|f(x)\|_{2}^{2}=\sum_{i=1}^{m} f_{i}(x)^{2}
$$

- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is differentiable function $f(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)$ of $n$-vector $x$
- linear least squares is special case with $f(x)=A x-b$

$$
x^{\star}=A^{+} b, \quad g\left(x^{\star}\right)=\left\|\left(I-A A^{+}\right) b\right\|_{2}^{2}=b^{T}\left(I-A A^{+}\right) b
$$

$A^{+}$is the pseudo-inverse: $A^{+}=\left(A^{T} A\right)^{-1} A^{T}$ if $A$ has full column rank

- a nonconvex optimization problem with "composite structure":

$$
\text { minimize } \quad h(f(x))
$$

$h: \mathbf{R}^{m} \rightarrow \mathbf{R}$ is convex, $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is differentiable

## Model fitting

$$
\operatorname{minimize} \sum_{i=1}^{N}\left(\hat{f}\left(u^{(i)}, \theta\right)-v^{(i)}\right)^{2}
$$

- model $\hat{f}(u, \theta)$ depends on model parameters $\theta_{1}, \ldots, \theta_{p}$
- $\left(u^{(1)}, v^{(1)}\right), \ldots,\left(u^{(N)}, v^{(N)}\right)$ are data points
- the minimization is over the model parameters $\theta$


## Example

$$
\hat{f}(u, \theta)
$$

$$
\hat{f}(u, \theta)=\theta_{1} \exp \left(\theta_{2} u\right) \cos \left(\theta_{3} u+\theta_{4}\right)
$$

## Orthogonal distance regression

minimize the mean square distance of data points to graph of $\hat{f}(u, \theta)$

Example: orthogonal distance regression with cubic polynomial

$$
\hat{f}(u, \theta)=\theta_{1}+\theta_{2} u+\theta_{3} u^{2}+\theta_{4} u^{3}
$$



## Nonlinear least squares formulation

$$
\operatorname{minimize} \sum_{i=1}^{N}\left(\left(\hat{f}\left(w^{(i)}, \theta\right)-v^{(i)}\right)^{2}+\left\|w^{(i)}-u^{(i)}\right\|_{2}^{2}\right)
$$

- optimization variables are model parameters $\theta$ and $N$ points $w^{(i)}$
- $i$ th term is squared distance of data point $\left(u^{(i)}, v^{(i)}\right)$ to point $\left(w^{(i)}, \hat{f}\left(w^{(i)}, \theta\right)\right)$


$$
d_{i}^{2}=\left(\hat{f}\left(w^{(i)}, \theta\right)-v^{(i)}\right)^{2}+\left\|w^{(i)}-u^{(i)}\right\|_{2}^{2}
$$

- minimizing $d_{i}^{2}$ over $w^{(i)}$ gives squared distance of $\left(u^{(i)}, v^{(i)}\right)$ to graph
- minimizing $\sum_{i} d_{i}^{2}$ over $w^{(1)}, \ldots, w^{(N)}$ and $\theta$ minimizes mean squared distance


## Location from multiple camera views



Camera model: described by parameters $A \in \mathbf{R}^{2 \times 3}, b \in \mathbf{R}^{2}, c \in \mathbf{R}^{3}, d \in \mathbf{R}$

- object at location $x \in \mathbf{R}^{3}$ creates image at location $x^{\prime} \in \mathbf{R}^{2}$ in image plane

$$
x^{\prime}=\frac{1}{c^{T} x+d}(A x+b)
$$

$c^{T} x+d>0$ if object is in front of the camera

- $A, b, c, d$ characterize the camera, and its position and orientation


## Location from multiple camera views

- an object at location $x_{\mathrm{ex}}$ is viewed by $l$ cameras (described by $A_{i}, b_{i}, c_{i}, d_{i}$ )
- the image of the object in the image plane of camera $i$ is at location

$$
y_{i}=\frac{1}{c_{i}^{T} x_{\mathrm{ex}}+d_{i}}\left(A_{i} x_{\mathrm{ex}}+b_{i}\right)+v_{i}
$$

- $v_{i}$ is measurement or quantization error
- goal is to estimate 3-D location $x_{\text {ex }}$ from the $l$ observations $y_{1}, \ldots, y_{l}$

Nonlinear least squares estimate: compute estimate $\hat{x}$ by minimizing

$$
\sum_{i=1}^{l}\left\|\frac{1}{c_{i}^{T} x+d_{i}}\left(A_{i} x+b_{i}\right)-y_{i}\right\|_{2}^{2}
$$

## Outline

- definition and examples
- Gauss-Newton method
- Levenberg-Marquardt method
- separable nonlinear least squares


## Derivative notation

- as in lecture 14 we denote the $m \times n$ Jacobian matrix of $f$ by $f^{\prime}(x)$ :

$$
f^{\prime}(x)=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}}(x) & \frac{\partial f_{1}}{\partial x_{2}}(x) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(x) \\
\frac{\partial f_{2}}{\partial x_{1}}(x) & \frac{\partial f_{2}}{\partial x_{2}}(x) & \cdots & \frac{\partial f_{2}}{\partial x_{n}}(x) \\
\vdots & \vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(x) & \frac{\partial f_{m}}{\partial x_{2}}(x) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(x)
\end{array}\right]=\left[\begin{array}{c}
\nabla f_{1}(x)^{T} \\
\nabla f_{2}(x)^{T} \\
\vdots \\
\nabla f_{m}(x)^{T}
\end{array}\right]
$$

- linearization of $f$ around $\hat{x}$ is

$$
f(x) \approx f(\hat{x})+f^{\prime}(\hat{x})(x-\hat{x})
$$

- gradient of nonlinear least squares cost function $g(x)=\|f(x)\|_{2}^{2}$ is

$$
\nabla g(x)=2 f^{\prime}(x)^{T} f(x)
$$

## Gauss-Newton method

$$
\text { minimize }\|f(x)\|_{2}^{2}=\sum_{i=1}^{m} f_{i}(x)^{2}
$$

start at some initial guess $x_{0}$, and repeat for $k=1,2, \ldots$ :

- linearize $f$ around $x_{k}$ :

$$
f(x) \approx f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)
$$

- substitute affine approximation for $f$ in least squares problem:

$$
\text { minimize } \quad\left\|f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)\right\|_{2}^{2}
$$

- take the solution of this linear least squares problem as $x_{k+1}$


## Gauss-Newton update

least squares problem solved in iteration $k$ :

$$
\operatorname{minimize}\left\|f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+f\left(x_{k}\right)\right\|_{2}^{2}
$$

- if $f^{\prime}\left(x_{k}\right)$ has full column rank, solution is given by

$$
\begin{aligned}
x_{k+1} & =x_{k}-\left(f^{\prime}\left(x_{k}\right)^{T} f^{\prime}\left(x_{k}\right)\right)^{-1} f^{\prime}\left(x_{k}\right)^{T} f\left(x_{k}\right) \\
& =x_{k}-f^{\prime}\left(x_{k}\right)^{+} f\left(x_{k}\right)
\end{aligned}
$$

- Gauss-Newton step $v_{k}=x_{k+1}-x_{k}$ is the solution of the linear LS problem

$$
\text { minimize }\left\|f^{\prime}\left(x_{k}\right) v+f\left(x_{k}\right)\right\|_{2}^{2}
$$

- to improve convergence, can add line search and update $x_{k+1}=x_{k}+t_{k} v_{k}$


## Newton and Gauss-Newton steps

$$
\text { minimize } g(x)=\|f(x)\|_{2}^{2}=\sum_{i=1}^{m} f_{i}(x)^{2}
$$

Newton step at $x=x_{k}$ :

$$
\begin{aligned}
v_{\mathrm{nt}} & =-\nabla^{2} g(x)^{-1} \nabla g(x) \\
& =-\left(f^{\prime}(x)^{T} f^{\prime}(x)+\sum_{i=1}^{m} f_{i}(x) \nabla^{2} f_{i}(x)\right)^{-1} f^{\prime}(x)^{T} f(x)
\end{aligned}
$$

Gauss-Newton step at $x=x_{k}$ (from previous page):

$$
v_{\mathrm{gn}}=-\left(f^{\prime}(x)^{T} f^{\prime}(x)\right)^{-1} f^{\prime}(x)^{T} f(x)
$$

- this can be written as $v_{\mathrm{gn}}=-H^{-1} \nabla g(x)$ where $H=2 f^{\prime}(x)^{T} f^{\prime}(x)$
- $H$ is the Hessian without the terms $f_{i}(x) \nabla^{2} f_{i}(x)$


## Comparison

## Newton step

- requires second derivatives of $f$
- not always a descent direction ( $\nabla^{2} g(x)$ is not necessarily positive definite)
- fast convergence near local minimum


## Gauss-Newton step

- does not require second derivatives
- a descent direction: $H=2 f^{\prime}(x)^{T} f^{\prime}(x)>0$ (if $f^{\prime}(x)$ has full column rank)
- local convergence to $x^{\star}$ is similar to Newton method if

$$
\sum_{i=1}^{m} f_{i}\left(x^{\star}\right) \nabla^{2} f_{i}\left(x^{\star}\right)
$$

is small (e.g., $f\left(x^{\star}\right)$ is small, or $f$ is nearly affine around $x^{\star}$ )

## Outline

- definition and examples
- Gauss-Newton method
- Levenberg-Marquardt method
- separable nonlinear least squares


## Levenberg-Marquardt method

addresses two difficulties in Gauss-Newton method:

- how to update $x_{k}$ when columns of $f^{\prime}\left(x_{k}\right)$ are linearly dependent
- what to do when the Gauss-Newton update does not reduce $\|f(x)\|_{2}^{2}$


## Levenberg-Marquardt method

compute $x_{k+1}$ by solving a regularized least squares problem

$$
\text { minimize }\left\|f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+f\left(x_{k}\right)\right\|_{2}^{2}+\lambda_{k}\left\|x-x_{k}\right\|_{2}^{2}
$$

- second term forces $x$ to be close to $x_{k}$ where local approximation is accurate
- with $\lambda_{k}>0$, always has a unique solution (no rank condition on $f^{\prime}\left(x_{k}\right)$ )
- a proximal point update with convexified cost function


## Levenberg-Marquardt update

regularized least squares problem solved in iteration $k$

$$
\operatorname{minimize}\left\|f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+f\left(x_{k}\right)\right\|_{2}^{2}+\lambda_{k}\left\|x-x_{k}\right\|_{2}^{2}
$$

- solution is given by

$$
x_{k+1}=x_{k}-\left(f^{\prime}\left(x_{k}\right)^{T} f^{\prime}\left(x_{k}\right)+\lambda_{k} I\right)^{-1} f^{\prime}\left(x_{k}\right)^{T} f\left(x_{k}\right)
$$

- Levenberg-Marquardt step $v_{k}=x_{k+1}-x_{k}$ is

$$
\begin{aligned}
v_{k} & =-\left(f^{\prime}\left(x_{k}\right)^{T} f\left(x_{k}\right)+\lambda_{k} I\right)^{-1} f^{\prime}\left(x_{k}\right)^{T} f\left(x_{k}\right) \\
& =-\frac{1}{2}\left(f^{\prime}\left(x_{k}\right)^{T} f^{\prime}\left(x_{k}\right)+\lambda_{k} I\right)^{-1} \nabla g\left(x_{k}\right)
\end{aligned}
$$

- for $\lambda_{k}=0$ this is the Gauss-Newton step (if defined); for large $\lambda_{k}$,

$$
v_{k} \approx-\frac{1}{2 \lambda_{k}} \nabla g\left(x_{k}\right)
$$

## Regularization parameter

several strategies for adapting $\lambda_{k}$ are possible; for example:

- at iteration $k$, compute the solution $v$ of

$$
\operatorname{minimize} \quad\left\|f^{\prime}\left(x_{k}\right) v+f\left(x_{k}\right)\right\|_{2}^{2}+\lambda_{k}\|v\|_{2}^{2}
$$

- if $\left\|f\left(x_{k}+v\right)\right\|_{2}^{2}<\left\|f\left(x_{k}\right)\right\|_{2}^{2}$, take $x_{k+1}=x_{k}+v$ and decrease $\lambda$
- otherwise, do not update $x$ (take $x_{k+1}=x_{k}$ ), but increase $\lambda$


## Some variations

- compare actual cost reduction with reduction predicted by linearized problem
- solve a least squares problem with trust region

$$
\begin{array}{ll}
\text { minimize } & \left\|f^{\prime}\left(x_{k}\right) v+f\left(x_{k}\right)\right\|_{2}^{2} \\
\text { subject to } & \|v\|_{2} \leq \gamma
\end{array}
$$

## Summary: Levenberg-Marquardt method

choose $x_{0}$ and $\lambda_{0}$ and repeat for $k=0,1, \ldots$ :

1. evaluate $f\left(x_{k}\right)$ and $A=f^{\prime}\left(x_{k}\right)$
2. compute solution of regularized least squares problem:

$$
\hat{x}=x_{k}-\left(A^{T} A+\lambda_{k} I\right)^{-1} A^{T} f\left(x_{k}\right)
$$

3. define $x_{k+1}$ and $\lambda_{k+1}$ as follows:

$$
\begin{cases}x_{k+1}=\hat{x} \text { and } \lambda_{k+1}=\beta_{1} \lambda_{k} & \text { if }\|f(\hat{x})\|_{2}^{2}<\left\|f\left(x_{k}\right)\right\|_{2}^{2} \\ x_{k+1}=x_{k} \text { and } \lambda_{k+1}=\beta_{2} \lambda_{k} & \text { otherwise }\end{cases}
$$

- $\beta_{1}, \beta_{2}$ are constants with $0<\beta_{1}<1<\beta_{2}$
- terminate if $\nabla g\left(x_{k}\right)=2 A^{T} f\left(x_{k}\right)$ is sufficiently small


## Outline

- definition and examples
- Gauss-Newton method
- Levenberg-Marquardt method
- separable nonlinear least squares


## Separable nonlinear least squares

$$
\text { minimize }\|A(y) x-b(y)\|_{2}^{2}
$$

- $A: \mathbf{R}^{p} \rightarrow \mathbf{R}^{m \times n}$ and $b: \mathbf{R}^{p} \rightarrow \mathbf{R}^{m}$ are differentiable functions
- variables are $x \in \mathbf{R}^{m}$ and $y \in \mathbf{R}^{p}$
- reduces to linear least squares if $A(y)$ and $b(y)$ are constant

Example: the separable structure is common in model fitting problems

$$
\operatorname{minimize} \sum_{i=1}^{N}\left(\hat{f}\left(u^{(i)}, \theta\right)-v^{(i)}\right)^{2}
$$

- model $\hat{f}$ is linear combination of parameterized basis functions: $\theta=(x, y)$ and

$$
\hat{f}(u, \theta)=x_{1} h_{1}(u, y)+\cdots+x_{p} h_{p}(u, y)
$$

- variables are coefficients $x_{1}, \ldots, x_{p}$ and parameters $y$


## Derivative notation

$$
f(x, y)=A(y) x-b(y)
$$

- $y$ is a $p$-vector, $x$ is an $n$-vector, $A(y)$ is an $m \times n$ matrix
- we denote the rows of $A(y)$ by $a_{i}(y)^{T}$, with $a_{i}(y) \in \mathbf{R}^{n}$.

$$
A(y)=\left[\begin{array}{c}
a_{1}(y)^{T} \\
\vdots \\
a_{m}(y)^{T}
\end{array}\right]
$$

- the Jacobian matrix of $f(x, y)$ is the $m \times(n+p)$ matrix

$$
f^{\prime}(x, y)=\left[\begin{array}{cc}
A(y) & B(x, y)
\end{array}\right], \quad \text { where } B(x, y)=\left[\begin{array}{c}
x^{T} a_{1}^{\prime}(y) \\
\vdots \\
x^{T} a_{m}^{\prime}(y)
\end{array}\right]-b^{\prime}(y)
$$

here $a_{i}^{\prime}(y) \in \mathbf{R}^{n \times p}$ and $b^{\prime}(y) \in \mathbf{R}^{m \times p}$ are the Jacobian matrices of $a_{i}, b$

## Gauss-Newton algorithm

$$
\text { minimize }\|f(x, y)\|_{2}^{2}=\|A(y) x-b(y)\|_{2}^{2}
$$

- in the Gauss-Newton algorithm we choose for $x_{k+1}, y_{k+1}$ the solution $x, y$ of

$$
\text { minimize }\left\|\left[\begin{array}{ll}
A\left(y_{k}\right) & B\left(x_{k}, y_{k}\right)
\end{array}\right]\left[\begin{array}{c}
x \\
y-y_{k}
\end{array}\right]-b\left(y_{k}\right)\right\|_{2}^{2}
$$

- equivalently, if we eliminate $x$ in this problem, we compute $y_{k+1}$ by solving

$$
\underset{y}{\operatorname{minimize}}\left\|\left(I-A\left(y_{k}\right) A\left(y_{k}\right)^{+}\right)\left(B\left(x_{k}, y_{k}\right)\left(y-y_{k}\right)-b\left(y_{k}\right)\right)\right\|_{2}^{2}
$$

from $y_{k+1}$ we then find

$$
\begin{aligned}
x_{k+1} & =A\left(y_{k}\right)^{+}\left(b\left(y_{k}\right)-B\left(x_{k}, y_{k}\right)\left(y_{k+1}-y_{k}\right)\right) \\
& =\underset{x}{\operatorname{argmin}}\left\|A\left(y_{k}\right) x+B\left(x_{k}, y_{k}\right)\left(y_{k+1}-y_{k}\right)-b\left(y_{k}\right)\right\|_{2}^{2}
\end{aligned}
$$

## Variable projection algorithm (VARPRO)

$$
\text { minimize }\|f(x, y)\|_{2}^{2}=\|A(y) x-b(y)\|_{2}^{2}
$$

- we can also eliminate $x$ in the original nonlinear LS problem, before linearizing
- substituting $x=A(y)^{+} b(y)$ gives equivalent nonlinear least squares problem

$$
\text { minimize }\left\|\left(I-A(y) A(y)^{+}\right) b(y)\right\|_{2}^{2}
$$

- the Gauss-Newton applied to this problem is known as variable projection
- to improve convergence, we can add a step size or use Levenberg-Marquardt


## Simplified variable projection

a further simplification results in the following iteration

1. compute $\hat{x}=A\left(y_{k}\right)^{+} b\left(y_{k}\right)$, by solving the linear least squares problem

$$
\operatorname{minimize} \quad\left\|A\left(y_{k}\right) x-b\left(y_{k}\right)\right\|_{2}^{2}
$$

2. compute $y_{k+1}$ as the solution $y$ of a second linear least squares problem

$$
\text { minimize }\left\|\left(I-A\left(y_{k}\right) A\left(y_{k}\right)^{+}\right)\left(B\left(\hat{x}, y_{k}\right)\left(y-y_{k}\right)-b\left(y_{k}\right)\right)\right\|_{2}^{2}
$$

## Interpretation

- step 2 is equivalent to solving the linear least squares problem

$$
\operatorname{minimize}\left\|\left[\begin{array}{ll}
A\left(y_{k}\right) & B\left(\hat{x}, y_{k}\right)
\end{array}\right]\left[\begin{array}{c}
x \\
y-y_{k}
\end{array}\right]-b\left(y_{k}\right)\right\|_{2}^{2}
$$

in the variables $x, y$, and using the solution $y$ as $y_{k+1}$

- cf., GN update of p . 16.19: we replace $x_{k}$ in $B\left(x_{k}, y_{k}\right)$ with a better estimate $\hat{x}$


## References

- Å. Björck, Numerical Methods for Least Squares Problems (1996), chapter 9.
- J. E. Dennis, Jr., and R. B. Schabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1996), chapter 10.
- G. Golub and V. Pereyra, Separable nonlinear least squares: the variable projection method and its applications, Inverse Problems (2003).
- J. Nocedal and S. J. Wright, Numerical Optimization (2006), chapter 10.

