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Nonlinear least squares

minimize 6(G) = ‖ 5 (G)‖22 =
<∑
8=1

58 (G)2

• 5 : R= → R< is differentiable function 5 (G) = ( 51(G), . . . , 5< (G)) of =-vector G

• linear least squares is special case with 5 (G) = �G − 1

G★ = �+1, 6(G★) = ‖(� − ��+)1‖22 = 1) (� − ��+)1

�+ is the pseudo-inverse: �+ = (�)�)−1�) if � has full column rank

• a nonconvex optimization problem with “composite structure”:

minimize ℎ( 5 (G))

ℎ : R< → R is convex, 5 : R= → R< is differentiable

Gauss–Newton method 16.2



Model fitting

minimize
#∑
8=1
( 5̂ (D(8), \) − {(8))2

• model 5̂ (D, \) depends on model parameters \1, . . . , \?

• (D(1), {(1)), . . . , (D(#), {(#)) are data points

• the minimization is over the model parameters \

Example 5̂ (D, \)
5̂ (D, \) = \1 exp(\2D) cos(\3D + \4)

D
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Orthogonal distance regression

minimize the mean square distance of data points to graph of 5̂ (D, \)

Example: orthogonal distance regression with cubic polynomial

5̂ (D, \) = \1 + \2D + \3D
2 + \4D

3

standard least squares fit
D

5̂ (D, \)

orthogonal distance fit
D

5̂ (D, \)
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Nonlinear least squares formulation

minimize
#∑
8=1

(
( 5̂ (|(8), \) − {(8))2 + ‖|(8) − D(8)‖22

)
• optimization variables are model parameters \ and # points |(8)

• 8th term is squared distance of data point (D(8), {(8)) to point (|(8), 5̂ (|(8), \))

38

(|(8), 5̂ (|(8), \))

(D(8), {(8))

32
8 = ( 5̂ (|(8), \) − {(8))2 + ‖|(8) − D(8)‖22

• minimizing 32
8 over |(8) gives squared distance of (D(8), {(8)) to graph

• minimizing
∑
8 3

2
8 over |(1), . . . , |(#) and \ minimizes mean squared distance
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Location from multiple camera views

camera center

G′
G

principal axis

image plane

Camera model: described by parameters � ∈ R2×3, 1 ∈ R2, 2 ∈ R3, 3 ∈ R
• object at location G ∈ R3 creates image at location G′ ∈ R2 in image plane

G′ =
1

2)G + 3 (�G + 1)

2)G + 3 > 0 if object is in front of the camera

• �, 1, 2, 3 characterize the camera, and its position and orientation
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Location from multiple camera views

• an object at location Gex is viewed by ; cameras (described by �8, 18, 28, 38)

• the image of the object in the image plane of camera 8 is at location

H8 =
1

2)8 Gex + 38
(�8Gex + 18) + {8

• {8 is measurement or quantization error

• goal is to estimate 3-D location Gex from the ; observations H1, . . . , H;

Nonlinear least squares estimate: compute estimate Ĝ by minimizing

;∑
8=1

 1
2)8 G + 38

(�8G + 18) − H8
2

2
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Derivative notation

• as in lecture 14 we denote the < × = Jacobian matrix of 5 by 5 ′(G):

5 ′(G) =



m 51
mG1
(G) m 51

mG2
(G) · · · m 51

mG=
(G)

m 52
mG1
(G) m 52

mG2
(G) · · · m 52

mG=
(G)

... ... ...

m 5<
mG1
(G) m 5<

mG2
(G) · · · m 5<

mG=
(G)


=


∇ 51(G))
∇ 52(G))

...
∇ 5< (G))


• linearization of 5 around Ĝ is

5 (G) ≈ 5 (Ĝ) + 5 ′(Ĝ) (G − Ĝ)

• gradient of nonlinear least squares cost function 6(G) = ‖ 5 (G)‖22 is

∇6(G) = 2 5 ′(G)) 5 (G)
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Gauss–Newton method

minimize ‖ 5 (G)‖22 =
<∑
8=1

58 (G)2

start at some initial guess G0, and repeat for : = 1, 2, . . .:

• linearize 5 around G: :

5 (G) ≈ 5 (G:) + 5 ′(G:) (G − G:)

• substitute affine approximation for 5 in least squares problem:

minimize
 5 (G:) + 5 ′(G:) (G − G:)2

2

• take the solution of this linear least squares problem as G:+1
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Gauss–Newton update

least squares problem solved in iteration : :

minimize ‖ 5 ′(G:) (G − G:) + 5 (G:)‖22

• if 5 ′(G:) has full column rank, solution is given by

G:+1 = G: − ( 5 ′(G:)) 5 ′(G:))−1 5 ′(G:)) 5 (G:)
= G: − 5 ′(G:)+ 5 (G:)

• Gauss–Newton step {: = G:+1 − G: is the solution of the linear LS problem

minimize ‖ 5 ′(G:){ + 5 (G:)‖22

• to improve convergence, can add line search and update G:+1 = G: + C:{:
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Newton and Gauss–Newton steps

minimize 6(G) = ‖ 5 (G)‖22 =
<∑
8=1

58 (G)2

Newton step at G = G: :

{nt = −∇26(G)−1∇6(G)

= −
(
5 ′(G)) 5 ′(G) +

<∑
8=1

58 (G)∇2 58 (G)
)−1

5 ′(G)) 5 (G)

Gauss–Newton step at G = G: (from previous page):

{gn = −
(
5 ′(G)) 5 ′(G)

)−1
5 ′(G)) 5 (G)

• this can be written as {gn = −�−1∇6(G) where � = 2 5 ′(G)) 5 ′(G)
• � is the Hessian without the terms 58 (G)∇2 58 (G)
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Comparison

Newton step

• requires second derivatives of 5

• not always a descent direction (∇26(G) is not necessarily positive definite)

• fast convergence near local minimum

Gauss–Newton step

• does not require second derivatives

• a descent direction: � = 2 5 ′(G)) 5 ′(G) � 0 (if 5 ′(G) has full column rank)

• local convergence to G★ is similar to Newton method if

<∑
8=1

58 (G★)∇2 58 (G★)

is small (e.g., 5 (G★) is small, or 5 is nearly affine around G★)
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Levenberg–Marquardt method

addresses two difficulties in Gauss–Newton method:

• how to update G: when columns of 5 ′(G:) are linearly dependent

• what to do when the Gauss–Newton update does not reduce ‖ 5 (G)‖22

Levenberg–Marquardt method

compute G:+1 by solving a regularized least squares problem

minimize ‖ 5 ′(G:) (G − G:) + 5 (G:)‖22 + _: ‖G − G: ‖22

• second term forces G to be close to G: where local approximation is accurate

• with _: > 0, always has a unique solution (no rank condition on 5 ′(G:))
• a proximal point update with convexified cost function
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Levenberg–Marquardt update

regularized least squares problem solved in iteration :

minimize
 5 ′(G:) (G − G:) + 5 (G:)2

2 + _: ‖G − G: ‖22

• solution is given by

G:+1 = G: −
(
5 ′(G:)) 5 ′(G:) + _: �

)−1
5 ′(G:)) 5 (G:)

• Levenberg–Marquardt step {: = G:+1 − G: is

{: = −
(
5 ′(G:)) 5 (G:) + _: �

)−1
5 ′(G:)) 5 (G:)

= −1
2

(
5 ′(G:)) 5 ′(G:) + _: �

)−1
∇6(G:)

• for _: = 0 this is the Gauss–Newton step (if defined); for large _: ,

{: ≈ −
1

2_:
∇6(G:)
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Regularization parameter

several strategies for adapting _: are possible; for example:

• at iteration : , compute the solution { of

minimize
 5 ′(G:){ + 5 (G:)2

2 + _: ‖{‖22

• if ‖ 5 (G: + {)‖22 < ‖ 5 (G:)‖22, take G:+1 = G: + { and decrease _

• otherwise, do not update G (take G:+1 = G:), but increase _

Some variations

• compare actual cost reduction with reduction predicted by linearized problem

• solve a least squares problem with trust region

minimize ‖ 5 ′(G:){ + 5 (G:)‖22
subject to ‖{‖2 ≤ W
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Summary: Levenberg–Marquardt method

choose G0 and _0 and repeat for : = 0, 1, . . .:

1. evaluate 5 (G:) and � = 5 ′(G:)
2. compute solution of regularized least squares problem:

Ĝ = G: − (�)� + _: �)−1�) 5 (G:)

3. define G:+1 and _:+1 as follows:{
G:+1 = Ĝ and _:+1 = V1_: if ‖ 5 (Ĝ)‖22 < ‖ 5 (G:)‖22
G:+1 = G: and _:+1 = V2_: otherwise

• V1, V2 are constants with 0 < V1 < 1 < V2

• terminate if ∇6(G:) = 2�) 5 (G:) is sufficiently small
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Separable nonlinear least squares

minimize ‖�(H)G − 1(H)‖22

• � : R? → R<×= and 1 : R? → R< are differentiable functions

• variables are G ∈ R< and H ∈ R?

• reduces to linear least squares if �(H) and 1(H) are constant

Example: the separable structure is common in model fitting problems

minimize
#∑
8=1

(
5̂ (D(8), \) − {(8)

)2

• model 5̂ is linear combination of parameterized basis functions: \ = (G, H) and

5̂ (D, \) = G1ℎ1(D, H) + · · · + G?ℎ? (D, H)

• variables are coefficients G1, . . . , G? and parameters H
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Derivative notation

5 (G, H) = �(H)G − 1(H)

• H is a ?-vector, G is an =-vector, �(H) is an < × = matrix

• we denote the rows of �(H) by 08 (H)) , with 08 (H) ∈ R=:

�(H) =

01(H))
...

0< (H))


• the Jacobian matrix of 5 (G, H) is the < × (= + ?) matrix

5 ′(G, H) = [
�(H) �(G, H) ]

, where �(G, H) =

G)0′1(H)...
G)0′< (H)

 − 1′(H)
here 0′8 (H) ∈ R=×? and 1′(H) ∈ R<×? are the Jacobian matrices of 08, 1
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Gauss–Newton algorithm

minimize ‖ 5 (G, H)‖22 = ‖�(H)G − 1(H)‖22

• in the Gauss–Newton algorithm we choose for G:+1, H:+1 the solution G, H of

minimize
[ �(H:) �(G: , H:)

] [
G

H − H:

]
− 1(H:)

2

2

• equivalently, if we eliminate G in this problem, we compute H:+1 by solving

minimize
H

(� − �(H:)�(H:)+) (�(G: , H:) (H − H:) − 1(H:))2
2

from H:+1 we then find

G:+1 = �(H:)+ (1(H:) − �(G: , H:) (H:+1 − H:))
= argmin

G
‖�(H:)G + �(G: , H:) (H:+1 − H:) − 1(H:)‖22
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Variable projection algorithm (VARPRO)

minimize ‖ 5 (G, H)‖22 = ‖�(H)G − 1(H)‖22

• we can also eliminate G in the original nonlinear LS problem, before linearizing

• substituting G = �(H)+1(H) gives equivalent nonlinear least squares problem

minimize
(� − �(H)�(H)+) 1(H)2

2

• the Gauss–Newton applied to this problem is known as variable projection

• to improve convergence, we can add a step size or use Levenberg–Marquardt
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Simplified variable projection

a further simplification results in the following iteration

1. compute Ĝ = �(H:)+1(H:), by solving the linear least squares problem

minimize ‖�(H:)G − 1(H:)‖22
2. compute H:+1 as the solution H of a second linear least squares problem

minimize
(� − �(H:)�(H:)+) (�(Ĝ, H:) (H − H:) − 1(H:))2

2

Interpretation

• step 2 is equivalent to solving the linear least squares problem

minimize
[ �(H:) �(Ĝ, H:)

] [
G

H − H:

]
− 1(H:)

2

2

in the variables G, H, and using the solution H as H:+1
• cf., GN update of p. 16.19: we replace G: in �(G: , H:) with a better estimate Ĝ
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