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Gradient method

to minimize a convex differentiable function f: choose an initial point xg and repeat
Xk+1 :.Xk_thf(Xk), k :O, la
step size ¢ is constant or determined by line search

Advantages

e every iteration is inexpensive

e does not require second derivatives

Notation

e x; can refer to kth element of a sequence, or to the kth component of vector x

e to avoid confusion, we sometimes use x¥) to denote elements of a sequence
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Quadratic example

f(x) = %(x% + yx%) (with y > 1)

with exact line search and starting point x(%) = (y, 1)

n
Ix® — X%l (y - 1)"
0
[x©@ —x*|l, \y+1 S0 'WV\/\/\/
where x* =0
4
-10 0 10
X1

gradient method is often slow; convergence very dependent on scaling
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Nondifferentiable example

+
(x) = x2 +*yx2 if |x2] < x4, f(x) = *1+ vl if [xo] > x4
1 2 T+,

with exact line search, starting point x(0) = (v, 1), converges to non-optimal point

X2
o
T

_2—2 0 2 4
X1

gradient method does not handle nondifferentiable problems
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First-order methods

address one or both shortcomings of the gradient method

Methods for nondifferentiable or constrained problems

e subgradient method
e proximal gradient method
e smoothing methods

e cutting-plane methods

Methods with improved convergence

e conjugate gradient method
e accelerated gradient method

e quasi-Newton methods

Gradient method
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Convex function

a function f is convex if dom f is a convex set and Jensen’s inequality holds:

fx+(1-0)y) <60f(x)+(1-6)f(y) forallx,y e dom f, 0 € [0, 1]

First-order condition

for (continuously) differentiable f, Jensen’s inequality can be replaced with

f) = Fx)+Vfx) ! (y=x) forallx,y e dom f
as in ECE236B, we use b’ a for inner product of a and b

Second-order condition

for twice differentiable f, Jensen’s inequality can be replaced with

VZf(x) =0 forallx € dom f
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Strictly convex function

f is strictly convex if dom f is a convex set and
fOx+(1-0)y) <0f(x)+(1-6)f(y) forallx,y edomf,x # y,and 8 € (0,1)

strict convexity implies that if a minimizer of f exists, it is unique

First-order condition

for differentiable f, strict Jensen’s inequality can be replaced with

f(y) > fF)+Vf) (y=x) forallx,y edom f,x #y

Second-order condition

note that V2 f(x) > 0 is not necessary for strict convexity (cf., f(x) = x*)
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Monotonicity of gradient

a differentiable function f is convex if and only if dom f is convex and

(VFx)=ViON  (x=y) =0 forallx,y e dom f

i.e., the gradient Vf : R" — R" is a monotone mapping

a differentiable function f is strictly convex if and only if dom f is convex and
(V) =VfO) (x=y) >0 forallx,y edomf,x #y

i.e., the gradient Vf : R" — R" is a strictly monotone mapping
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Proof

e if f is differentiable and convex, then

fO) 2 f)+VF@) ' (y-x), f@)=2fO)+YF) (x-y)

combining the inequalities gives (V£ (x) —= V/(y)) (x —y) = 0
e if V f is monotone, then g’(z) > g’(0) fort > 0 and r € dom g, where
gt)=flx+t(y-x), @O =Vflx+i(y—-x)"(y—x)

hence

1
F(y) = g(1) = g(0) + fo S di = g(0)+g'(0)
= f()+Vfx)' (»y-x)
this is the first-order condition for convexity

Gradient method
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Lipschitz continuous gradient

the gradient of f is Lipschitz continuous with parameter L > 0 if

IVf(x) = Vi« < Lllx =yl forallx,y € dom f

e functions f with this property are also called L-smooth

e the definition does not assume convexity of f (and holds for — f if it holds for f)

e in the definition, || - || and || - ||« are a pair of dual norms:
T
u v
lu||« = sup — = sup ulv
v20 [0l o=

this implies a generalized Cauchy—Schwarz inequality

o] < ||lull]|v|| forall u, v
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Choice of horm

Equivalence of norms

e for any two norms || - ||a, || - ||p, there exist positive constants ¢y, ¢, such that
cillxllp < llxlla < calflx|lp forall x

e constants depend on dimension; for example, for x € R",

1
Il < llxlly < Vellxlz, —=lxlz < lIxlleo < llx]l2

i

Norm in definition of Lipschitz continuity

e without loss of generality we can use the Euclidean norm || - || = || - [l« = || - ||]2
e the parameter L depends on choice of norm

e in complexity bounds, choice of norm can simplify dependence on dimensions
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Quadratic upper bound

suppose V f is Lipschitz continuous with parameter L

e this implies (from the generalized Cauchy—Schwarz inequality) that
(VF) =V )" (x=y) < Lllx=ylI?* forallx,y edomf (1)

e if dom f is convex, (1) is equivalent to

) < F@+ @ (=0 + 2y =l forallx,y edomf (2
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Proof (equivalence of (1) and (2) if dom f is convex)

e consider arbitrary x, y € dom f and define g(¢) = f(x +t(y — x))
e 2(t) is defined for r € [0, 1] because dom f is convex

e if (1) holds, then

g'(1)=8'(0) = (Vf(x+1(y —x)) = V()" (y = x) < L|lx = y|1?

integrating from ¢ = 0to ¢ = 1 gives (2):

1
/ / L
f(y)=g(1) =g(0) + /O g()ydr < g(0)+g(0) +Zllx - ylI®
T L 2
= SO +VOT -0+l -yl
e conversely, if (2) holds, then (2) and the same inequality with x, y switched, i.e.,

£ < FO)+ V£ (=) + 5l = I

can be combined to give (V£ (x) - Vf(y)  (x —y) < L|x - y||2
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Consequence of quadratic upper bound
if dom f = R" and f has a minimizer x*, then
1 L
STIVA@IE < £(2) = f(*) < Sz =x*|? forall 2

e right-hand inequality follows from upper bound property (2) at x = x*, y = z

e |eft-hand inequality follows by minimizing quadratic upper bound for x = 7

inlff(y) < irylf (f(z)+Vf(z)T(y—Z)+§I|y—ZII2)

L2

e T LI~
= ||ir||1£111t1f(f(z)+tVf(z) v+ 2)

= inf (f(Z) - %(Vf(Z)TU)z)

[o]|=1

1) - 5 IV QI
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Co-coercivity of gradient

if fis convex with dom f = R" and V f is L-Lipschitz continuous, then

(V7 = VFON (=) 2 V7 ) - VFG)IE forallx.y

e this property is known as co-coercivity of V f (with parameter 1/L)
e co-coercivity in turn implies Lipschitz continuity of V f (by Cauchy—Schwarz)
e hence, for differentiable convex f with dom f = R”

Lipschitz continuity of Vf = upper bound property (2) (equivalently, (1))
= co-coercivity of V f
= Lipschitz continuity of V f

therefore the three properties are equivalent
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Proof of co-coercivity: define two convex functions fy, f, with domain R"

D =f@Q -V 'z, £ =2 -V 'z

e the two functions have L-Lipschitz continuous gradients

e 7 = x minimizes f,(z); from the left-hand inequality on page 1.14,

fO)=f@) -V ' (y-x) = £O)-f&)

1
> —||V 2
> VA

_ %nv FO) = V@)

e similarly, z = y minimizes f,(z); therefore
1
FO-fM -V (x-y) = 7 IVFG) - V@)l

combining the two inequalities shows co-coercivity
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Lipschitz continuity with respect to Euclidean norm

suppose f is convex with dom f = R”, and L-smooth for the Euclidean norm:

IVF(x) = Vil < Lllx =yl forallx,y

e the equivalent property (1) states that
(V@) =V ) (x=y) < L(x=-y) (x-y) forallx,y

e this is monotonicity of Lx — V f(x), i.e., equivalent to the property that

L
5||x||§ — f(x) is a convex function
e if f is twice differentiable, the Hessian of this function is LI — V2 £ (x):

Amax (V2 F(x)) < L forall x

is an equivalent characterization of L-smoothness
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Strongly convex function

f is strongly convex with parameter m > 0 if dom f is convex and

FOx+(1=0)y) <0 () +(1-0)f(») - 50(1 = O)lx = ¥
holds for all x, y € dom f, 6 € |0, 1]

e this is a stronger version of Jensen'’s inequality

e it holds if and only if it holds for f restricted to arbitrary lines:

flx+1(y =) = ke =y ©

is a convex function of ¢, for all x, y € dom f
e without loss of generality, we cantake || - || = || - ||»

e however, the strong convexity parameter m depends on the norm used
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Quadratic lower bound

if f is differentiable and m-strongly convex, then

fO) = f@+ V@ (v =x) + Sy =2l forallx,yedomf  (4)

e follows from the 1st order condition of convexity of (3)
e this implies that the sublevel sets of f are bounded

e if fis closed (has closed sublevel sets), it has a unique minimizer x* and

il =¥ < £(2) - F(*) < 5V QI forall z € dom £
m

(proof as on page 1.14)
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Strong monotonicity

differentiable f is strongly convex if and only if dom f is convex and

(Vf(x) =V N (x —y) = m|x — y||* forallx,y € dom f

this is called strong monotonicity (coercivity) of V f

Proof

e one direction follows from (4) and the same inequality with x and y switched

e for the other direction, assume V f is strongly monotone and define

g(1) = fx+1(y =) = 50k -y

then g’(¢) is nondecreasing, so g is convex
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Strong convexity with respect to Euclidean norm

suppose f is m-strongly convex for the Euclidean norm:
FOx+(1=0)y) <0 () +(1-0)f(») = 50(1 = O)lx - I3

forx,y e dom f, 6 € [0, 1]

e this is Jensen’s inequality for the function

hx) = £(x) = Sl

e therefore f is strongly convex if and only if 4 is convex

e if f is twice differentiable, & is convex if and only if V2 f(x) — mI > 0, or

Amin(V2f(x)) = m forallx € dom f

Gradient method
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Extension of co-coercivity

suppose f is m-strongly convex and L-smooth for || - ||», and dom f = R"

e then the function -
h(x) = [ (x) = Zllxlly

is convex and (L — m)-smooth:

0 < (Vh(x)-Vh(y) (x-y)
= (Vf(x) =V ) (x—y) —mlx-yll;
< (L-m)|x-yl3

e co-coercivity of VA can be written as

mlL
m+ L

1
m+ L

(VFx) =V oD (x=-y) =

IVf(x) = VI3

Ix = yll5 +
forall x,y € dom f
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Analysis of gradient method

Xeel =Xk — 0 Vf(xk),  k=0,1,...

with fixed step size or backtracking line search

Assumptions

1. f is convex and differentiable with dom f = R”
2. V f(x) is L-Lipschitz continuous with respect to the Euclidean norm, with L > 0

3. optimal value f* = inf, f(x) is finite and attained at x*
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Basic gradient step

e from quadratic upper bound (page 1.12) with y = x —tV f(x):
Lt 5
fx =tV f(x) < fx) -t =) [Vl
e therefore, if x* =x —tVf(x)and0 <t < 1/L,

fG) < £ = SIVFIB 5)

e from (5) and convexity of f,

FE = < VAT (=5t = IV
1
— 5 (||x — x*ll% — ||x —x* - tVf(x)”;)
|
= 5= (I =13 = I = x*13) ©
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Descent properties

assume Vf(x) #0and0 <t < 1/L

e the inequality (5) shows that
fGxT) < f(x)

e the inequality (6) shows that

I = x|l < llx = x*|l2

in the gradient method, function value and distance to the optimal set decrease
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Gradient method with constant step size

Xel =Xk —EVf(xg), k=0,1,...

e take x = x;_1, x" = x; in (6) and add the bounds fori = 1, .. ., k:
k 1 k 5 5
S = < 5 0 (Iheien =218 = D = x*13)
i=1 Fia
1 * 12 *12
= 5= (Ibvo =21 = llxi. = *13)
1
< ollo - 213

e since f(x;) is non-increasing (see (5))
flx) = f* < —Z(f(xz) - ) < —IIxo -x*3

Conclusion: number of iterations to reach f(x;) — f* < eis O(1/€)
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Backtracking line search

initialize ¢ at 7 > 0 (for example, 7 = 1) and take ; := Bt until

f e =tV (xp) < fxg) — atelVF ()l

f (xx =tV f(xp))

fex) = atlVf(x)ll;

f ) =tV fxl3

0 < B < 1; we will take @ = 1/2 (mostly to simplify proofs)
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Analysis for backtracking line search

line search with @ = 1/2, if f has a Lipschitz continuous gradient

F) = (1= DIV F 0l

(v) = 21V £ I3

f (xk —tVf(x))
/

|
t=1/L

selected step size satisfies 7y > tmin = min{7, 8/L}
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Gradient method with backtracking line search

e from line search condition and convexity of f,

fl) < f) =210

< VL) (i = ) = 29 ()3

1
* * (12 * (12
7%+ 5 (e =315 = lhxier =215 )

e this implies ||x;;1 — x*||> < ||x; — x*]|, so we can replace #; with fiin < ¢;:

S (xis1) _f* <

*112 * 2)
= Xi—X — |[Xi=1 — X
57— (bt =215 = lict =13

e adding the upper bounds gives same 1/k bound as with constant step size

2
Ixo — x*113

* 1 X *
FO00) = £ < 2 3506 = ) < g
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Gradient method for strongly convex functions

better results exist if we add strong convexity to the assumptions on p. 1.23

Analysis for constant step size

ifx*=x—tVf(x)and0 <t <2/(m+L):

Ixt = x*|l5 = (lx—tVFx) - x5
= lx =x*13 = 20V (0) T (x = x*) + 2V F ()13
2mL 2
< (1—t —x*||?+1(t - ——)||V 2
< (-t =M +1(t = ——)IV/@)I];
sz )
< (1_tm+L)x_x*2

(step 3 follows from result on page 1.22)
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Distance to optimum

2mL
m+ L

e — x5 < Ko —x*3,  c=1-1

e implies (linear) convergence

2
o fort=2/(m+L),getc = (7—) withy = L/m
v+1

Bound on function value (from page 1.14)

L c*L
FO) = % < Sl = x*lly < —=llxo = 2™l

Conclusion: number of iterations to reach f(x;) — f* < €is O(log(1/¢))
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Limits on convergence rate of first-order methods
First-order method: any iterative algorithm that selects x;, 1 in the set
x0 + span{V f (xp), Vf(x1),..., Vf(xp)}
Problem class: any function that satisfies the assumptions on page 1.23

Theorem (Nesterov): for every integer k < (n — 1)/2 and every x, there exist
functions in the problem class such that for any first-order method

3 Lllxo — x*|3
_ xS 2
T =172 =012

e suggests 1/k rate for gradient method is not optimal

e more recent accelerated gradient methods have 1/ k? convergence (see later)
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