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Gradient method

to minimize a convex differentiable function 5 : choose an initial point G0 and repeat

G:+1 = G: − C:∇ 5 (G:), : = 0, 1, . . .

step size C: is constant or determined by line search

Advantages

• every iteration is inexpensive

• does not require second derivatives

Notation

• G: can refer to : th element of a sequence, or to the : th component of vector G

• to avoid confusion, we sometimes use G (:) to denote elements of a sequence
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Quadratic example

5 (G) = 1
2
(G2

1 + WG2
2) (with W > 1)

with exact line search and starting point G (0) = (W, 1)

‖G (:) − G★‖2
‖G (0) − G★‖2

=

(
W − 1
W + 1

) :
where G★ = 0
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gradient method is often slow; convergence very dependent on scaling
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Nondifferentiable example

5 (G) =
√
G2

1 + WG2
2 if |G2 | ≤ G1, 5 (G) = G1 + W |G2 |√

1 + W
if |G2 | > G1

with exact line search, starting point G (0) = (W, 1), converges to non-optimal point
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gradient method does not handle nondifferentiable problems
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First-order methods

address one or both shortcomings of the gradient method

Methods for nondifferentiable or constrained problems

• subgradient method

• proximal gradient method

• smoothing methods

• cutting-plane methods

Methods with improved convergence

• conjugate gradient method

• accelerated gradient method

• quasi-Newton methods
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Convex function

a function 5 is convex if dom 5 is a convex set and Jensen’s inequality holds:

5 (\G + (1 − \)H) ≤ \ 5 (G) + (1 − \) 5 (H) for all G, H ∈ dom 5 , \ ∈ [0, 1]

First-order condition

for (continuously) differentiable 5 , Jensen’s inequality can be replaced with

5 (H) ≥ 5 (G) + ∇ 5 (G)) (H − G) for all G, H ∈ dom 5

as in ECE236B, we use 1)0 for inner product of 0 and 1

Second-order condition

for twice differentiable 5 , Jensen’s inequality can be replaced with

∇2 5 (G) � 0 for all G ∈ dom 5
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Strictly convex function

5 is strictly convex if dom 5 is a convex set and

5 (\G + (1− \)H) < \ 5 (G) + (1− \) 5 (H) for all G, H ∈ dom 5 , G ≠ H, and \ ∈ (0, 1)

strict convexity implies that if a minimizer of 5 exists, it is unique

First-order condition

for differentiable 5 , strict Jensen’s inequality can be replaced with

5 (H) > 5 (G) + ∇ 5 (G)) (H − G) for all G, H ∈ dom 5 , G ≠ H

Second-order condition

note that ∇2 5 (G) � 0 is not necessary for strict convexity (cf., 5 (G) = G4)
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Monotonicity of gradient

a differentiable function 5 is convex if and only if dom 5 is convex and

(∇ 5 (G) − ∇ 5 (H))) (G − H) ≥ 0 for all G, H ∈ dom 5

i.e., the gradient ∇ 5 : R= → R= is a monotone mapping

a differentiable function 5 is strictly convex if and only if dom 5 is convex and

(∇ 5 (G) − ∇ 5 (H))) (G − H) > 0 for all G, H ∈ dom 5 , G ≠ H

i.e., the gradient ∇ 5 : R= → R= is a strictly monotone mapping
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Proof

• if 5 is differentiable and convex, then

5 (H) ≥ 5 (G) + ∇ 5 (G)) (H − G), 5 (G) ≥ 5 (H) + ∇ 5 (H)) (G − H)

combining the inequalities gives (∇ 5 (G) − ∇ 5 (H))) (G − H) ≥ 0

• if ∇ 5 is monotone, then 6′(C) ≥ 6′(0) for C ≥ 0 and C ∈ dom 6, where

6(C) = 5 (G + C (H − G)), 6′(C) = ∇ 5 (G + C (H − G))) (H − G)

hence

5 (H) = 6(1) = 6(0) +
∫ 1

0
6′(C) 3C ≥ 6(0) + 6′(0)

= 5 (G) + ∇ 5 (G)) (H − G)

this is the first-order condition for convexity
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Lipschitz continuous gradient

the gradient of 5 is Lipschitz continuous with parameter ! > 0 if

‖∇ 5 (G) − ∇ 5 (H)‖∗ ≤ !‖G − H‖ for all G, H ∈ dom 5

• functions 5 with this property are also called !-smooth

• the definition does not assume convexity of 5 (and holds for − 5 if it holds for 5 )

• in the definition, ‖ · ‖ and ‖ · ‖∗ are a pair of dual norms:

‖D‖∗ = sup
{≠0

D){

‖{‖ = sup
‖{‖=1

D){

this implies a generalized Cauchy–Schwarz inequality

|D){ | ≤ ‖D‖∗‖{‖ for all D, {
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Choice of norm

Equivalence of norms

• for any two norms ‖ · ‖a, ‖ · ‖b, there exist positive constants 21, 22 such that

21‖G‖b ≤ ‖G‖a ≤ 22‖G‖b for all G

• constants depend on dimension; for example, for G ∈ R=,

‖G‖2 ≤ ‖G‖1 ≤
√
= ‖G‖2,

1√
=
‖G‖2 ≤ ‖G‖∞ ≤ ‖G‖2

Norm in definition of Lipschitz continuity

• without loss of generality we can use the Euclidean norm ‖ · ‖ = ‖ · ‖∗ = ‖ · ‖2
• the parameter ! depends on choice of norm

• in complexity bounds, choice of norm can simplify dependence on dimensions
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Quadratic upper bound

suppose ∇ 5 is Lipschitz continuous with parameter !

• this implies (from the generalized Cauchy–Schwarz inequality) that

(∇ 5 (G) − ∇ 5 (H))) (G − H) ≤ !‖G − H‖2 for all G, H ∈ dom 5 (1)

• if dom 5 is convex, (1) is equivalent to

5 (H) ≤ 5 (G) + ∇ 5 (G)) (H − G) + !
2
‖H − G‖2 for all G, H ∈ dom 5 (2)

5 (H) (G, 5 (G))
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Proof (equivalence of (1) and (2) if dom 5 is convex)

• consider arbitrary G, H ∈ dom 5 and define 6(C) = 5 (G + C (H − G))
• 6(C) is defined for C ∈ [0, 1] because dom 5 is convex

• if (1) holds, then

6′(C) − 6′(0) = (∇ 5 (G + C (H − G)) − ∇ 5 (G))) (H − G) ≤ C!‖G − H‖2

integrating from C = 0 to C = 1 gives (2):

5 (H) = 6(1) = 6(0) +
∫ 1

0
6′(C) 3C ≤ 6(0) + 6′(0) + !

2
‖G − H‖2

= 5 (G) + ∇ 5 (G)) (H − G) + !
2
‖G − H‖2

• conversely, if (2) holds, then (2) and the same inequality with G, H switched, i.e.,

5 (G) ≤ 5 (H) + ∇ 5 (H)) (G − H) + !
2
‖G − H‖2,

can be combined to give (∇ 5 (G) − ∇ 5 (H))) (G − H) ≤ !‖G − H‖2
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Consequence of quadratic upper bound

if dom 5 = R= and 5 has a minimizer G★, then

1
2!
‖∇ 5 (I)‖2∗ ≤ 5 (I) − 5 (G★) ≤ !

2
‖I − G★‖2 for all I

• right-hand inequality follows from upper bound property (2) at G = G★, H = I

• left-hand inequality follows by minimizing quadratic upper bound for G = I

inf
H
5 (H) ≤ inf

H

(
5 (I) + ∇ 5 (I)) (H − I) + !

2
‖H − I‖2

)
= inf

‖{‖=1
inf
C

(
5 (I) + C∇ 5 (I)){ + !C

2

2

)
= inf

‖{‖=1

(
5 (I) − 1

2!
(∇ 5 (I)){)2

)
= 5 (I) − 1

2!
‖∇ 5 (I)‖2∗
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Co-coercivity of gradient

if 5 is convex with dom 5 = R= and ∇ 5 is !-Lipschitz continuous, then

(∇ 5 (G) − ∇ 5 (H))) (G − H) ≥ 1
!
‖∇ 5 (G) − ∇ 5 (H)‖2∗ for all G, H

• this property is known as co-coercivity of ∇ 5 (with parameter 1/!)

• co-coercivity in turn implies Lipschitz continuity of ∇ 5 (by Cauchy–Schwarz)

• hence, for differentiable convex 5 with dom 5 = R=

Lipschitz continuity of ∇ 5 ⇒ upper bound property (2) (equivalently, (1))
⇒ co-coercivity of ∇ 5
⇒ Lipschitz continuity of ∇ 5

therefore the three properties are equivalent
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Proof of co-coercivity: define two convex functions 5G, 5H with domain R=

5G (I) = 5 (I) − ∇ 5 (G)) I, 5H (I) = 5 (I) − ∇ 5 (H)) I

• the two functions have !-Lipschitz continuous gradients

• I = G minimizes 5G (I); from the left-hand inequality on page 1.14,

5 (H) − 5 (G) − ∇ 5 (G)) (H − G) = 5G (H) − 5G (G)
≥ 1

2!
‖∇ 5G (H)‖2∗

=
1

2!
‖∇ 5 (H) − ∇ 5 (G)‖2∗

• similarly, I = H minimizes 5H (I); therefore

5 (G) − 5 (H) − ∇ 5 (H)) (G − H) ≥ 1
2!
‖∇ 5 (H) − ∇ 5 (G)‖2∗

combining the two inequalities shows co-coercivity
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Lipschitz continuity with respect to Euclidean norm

suppose 5 is convex with dom 5 = R=, and !-smooth for the Euclidean norm:

‖∇ 5 (G) − ∇ 5 (H)‖2 ≤ !‖G − H‖2 for all G, H

• the equivalent property (1) states that

(∇ 5 (G) − ∇ 5 (H))) (G − H) ≤ ! (G − H)) (G − H) for all G, H

• this is monotonicity of !G − ∇ 5 (G), i.e., equivalent to the property that

!

2
‖G‖22 − 5 (G) is a convex function

• if 5 is twice differentiable, the Hessian of this function is !� − ∇2 5 (G):

_max(∇2 5 (G)) ≤ ! for all G

is an equivalent characterization of !-smoothness
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Strongly convex function

5 is strongly convex with parameter < > 0 if dom 5 is convex and

5 (\G + (1 − \)H) ≤ \ 5 (G) + (1 − \) 5 (H) − <
2
\ (1 − \)‖G − H‖2

holds for all G, H ∈ dom 5 , \ ∈ [0, 1]

• this is a stronger version of Jensen’s inequality

• it holds if and only if it holds for 5 restricted to arbitrary lines:

5 (G + C (H − G)) − <
2
C2‖G − H‖2 (3)

is a convex function of C, for all G, H ∈ dom 5

• without loss of generality, we can take ‖ · ‖ = ‖ · ‖2
• however, the strong convexity parameter < depends on the norm used
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Quadratic lower bound

if 5 is differentiable and <-strongly convex, then

5 (H) ≥ 5 (G) + ∇ 5 (G)) (H − G) + <
2
‖H − G‖2 for all G, H ∈ dom 5 (4)

5 (H)

(G, 5 (G))

• follows from the 1st order condition of convexity of (3)

• this implies that the sublevel sets of 5 are bounded

• if 5 is closed (has closed sublevel sets), it has a unique minimizer G★ and

<

2
‖I − G★‖2 ≤ 5 (I) − 5 (G★) ≤ 1

2<
‖∇ 5 (I)‖2∗ for all I ∈ dom 5

(proof as on page 1.14)
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Strong monotonicity

differentiable 5 is strongly convex if and only if dom 5 is convex and

(∇ 5 (G) − ∇ 5 (H))) (G − H) ≥ <‖G − H‖2 for all G, H ∈ dom 5

this is called strong monotonicity (coercivity) of ∇ 5

Proof

• one direction follows from (4) and the same inequality with G and H switched

• for the other direction, assume ∇ 5 is strongly monotone and define

6(C) = 5 (G + C (H − G)) − <
2
C2‖G − H‖2

then 6′(C) is nondecreasing, so 6 is convex
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Strong convexity with respect to Euclidean norm

suppose 5 is <-strongly convex for the Euclidean norm:

5 (\G + (1 − \)H) ≤ \ 5 (G) + (1 − \) 5 (H) − <
2
\ (1 − \)‖G − H‖22

for G, H ∈ dom 5 , \ ∈ [0, 1]

• this is Jensen’s inequality for the function

ℎ(G) = 5 (G) − <
2
‖G‖22

• therefore 5 is strongly convex if and only if ℎ is convex

• if 5 is twice differentiable, ℎ is convex if and only if ∇2 5 (G) − <� � 0, or

_min(∇2 5 (G)) ≥ < for all G ∈ dom 5
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Extension of co-coercivity

suppose 5 is <-strongly convex and !-smooth for ‖ · ‖2, and dom 5 = R=

• then the function
ℎ(G) = 5 (G) − <

2
‖G‖22

is convex and (! − <)-smooth:

0 ≤ (∇ℎ(G) − ∇ℎ(H))) (G − H)
= (∇ 5 (G) − ∇ 5 (H))) (G − H) − <‖G − H‖22
≤ (! − <)‖G − H‖22

• co-coercivity of ∇ℎ can be written as

(∇ 5 (G) − ∇ 5 (H))) (G − H) ≥ <!

< + ! ‖G − H‖
2
2 +

1
< + ! ‖∇ 5 (G) − ∇ 5 (H)‖

2
2

for all G, H ∈ dom 5
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Analysis of gradient method

G:+1 = G: − C:∇ 5 (G:), : = 0, 1, . . .

with fixed step size or backtracking line search

Assumptions

1. 5 is convex and differentiable with dom 5 = R=

2. ∇ 5 (G) is !-Lipschitz continuous with respect to the Euclidean norm, with ! > 0

3. optimal value 5★ = infG 5 (G) is finite and attained at G★
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Basic gradient step

• from quadratic upper bound (page 1.12) with H = G − C∇ 5 (G):

5 (G − C∇ 5 (G)) ≤ 5 (G) − C (1 − !C
2
) ‖∇ 5 (G)‖22

• therefore, if G+ = G − C∇ 5 (G) and 0 < C ≤ 1/!,

5 (G+) ≤ 5 (G) − C
2
‖∇ 5 (G)‖22 (5)

• from (5) and convexity of 5 ,

5 (G+) − 5★ ≤ ∇ 5 (G)) (G − G★) − C
2
‖∇ 5 (G)‖22

=
1
2C

(
‖G − G★‖22 −



G − G★ − C∇ 5 (G)

2
2

)
=

1
2C

(
‖G − G★‖22 − ‖G+ − G★‖22

)
(6)
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Descent properties

assume ∇ 5 (G) ≠ 0 and 0 < C ≤ 1/!

• the inequality (5) shows that
5 (G+) < 5 (G)

• the inequality (6) shows that

‖G+ − G★‖2 < ‖G − G★‖2

in the gradient method, function value and distance to the optimal set decrease
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Gradient method with constant step size

G:+1 = G: − C∇ 5 (G:), : = 0, 1, . . .

• take G = G8−1, G+ = G8 in (6) and add the bounds for 8 = 1, . . . , : :

:∑
8=1
( 5 (G8) − 5★) ≤ 1

2C

:∑
8=1

(
‖G8−1 − G★‖22 − ‖G8 − G★‖22

)
=

1
2C

(
‖G0 − G★‖22 − ‖G: − G★‖22

)
≤ 1

2C
‖G0 − G★‖22

• since 5 (G8) is non-increasing (see (5))

5 (G:) − 5★ ≤
1
:

:∑
8=1
( 5 (G8) − 5★) ≤ 1

2:C
‖G0 − G★‖22

Conclusion: number of iterations to reach 5 (G:) − 5★ ≤ n is $ (1/n)
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Backtracking line search

initialize C: at Ĉ > 0 (for example, Ĉ = 1) and take C: := VC: until

5 (G: − C:∇ 5 (G:)) < 5 (G:) − UC: ‖∇ 5 (G:)‖22

5 (G: − C∇ 5 (G:))

5 (G:) − C‖∇ 5 (G:)‖2
2

5 (G:) − UC‖∇ 5 (G:)‖2
2

C

0 < V < 1; we will take U = 1/2 (mostly to simplify proofs)
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Analysis for backtracking line search

line search with U = 1/2, if 5 has a Lipschitz continuous gradient

C = 1/!

5 (G:) − C (1 − C!

2
)‖∇ 5 (G:)‖2

2

5 (G:) − C

2
‖∇ 5 (G:)‖2

2

5 (G: − C∇ 5 (G:))

selected step size satisfies C: ≥ Cmin = min{Ĉ, V/!}
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Gradient method with backtracking line search

• from line search condition and convexity of 5 ,

5 (G8+1) ≤ 5 (G8) − C82 ‖∇ 5 (G8)‖
2
2

≤ 5★ + ∇ 5 (G8)) (G8 − G★) − C82 ‖∇ 5 (G8)‖
2
2

= 5★ + 1
2C8

(
‖G8 − G★‖22 − ‖G8+1 − G★‖22

)
• this implies ‖G8+1 − G★‖2 ≤ ‖G8 − G★‖, so we can replace C8 with Cmin ≤ C8:

5 (G8+1) − 5★ ≤
1

2Cmin

(
‖G8 − G★‖22 − ‖G8−1 − G★‖22

)
• adding the upper bounds gives same 1/: bound as with constant step size

5 (G:) − 5★ ≤
1
:

:∑
8=1
( 5 (G8) − 5★) ≤ 1

2:Cmin
‖G0 − G★‖22
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Gradient method for strongly convex functions

better results exist if we add strong convexity to the assumptions on p. 1.23

Analysis for constant step size

if G+ = G − C∇ 5 (G) and 0 < C ≤ 2/(< + !):

‖G+ − G★‖22 = ‖G − C∇ 5 (G) − G★‖22
= ‖G − G★‖22 − 2C∇ 5 (G)) (G − G★) + C2‖∇ 5 (G)‖22
≤ (1 − C 2<!

< + ! )‖G − G
★‖22 + C (C −

2
< + ! )‖∇ 5 (G)‖

2
2

≤ (1 − C 2<!
< + ! )‖G − G

★‖22

(step 3 follows from result on page 1.22)
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Distance to optimum

‖G: − G★‖22 ≤ 2: ‖G0 − G★‖22, 2 = 1 − C 2<!
< + !

• implies (linear) convergence

• for C = 2/(< + !), get 2 =
(
W − 1
W + 1

)2
with W = !/<

Bound on function value (from page 1.14)

5 (G:) − 5★ ≤
!

2
‖G: − G★‖22 ≤

2:!

2
‖G0 − G★‖22

Conclusion: number of iterations to reach 5 (G:) − 5★ ≤ n is $ (log(1/n))
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Limits on convergence rate of first-order methods

First-order method: any iterative algorithm that selects G:+1 in the set

G0 + span{∇ 5 (G0),∇ 5 (G1), . . . ,∇ 5 (G:)}

Problem class: any function that satisfies the assumptions on page 1.23

Theorem (Nesterov): for every integer : ≤ (= − 1)/2 and every G0, there exist
functions in the problem class such that for any first-order method

5 (G:) − 5★ ≥
3
32
!‖G0 − G★‖22
(: + 1)2

• suggests 1/: rate for gradient method is not optimal

• more recent accelerated gradient methods have 1/:2 convergence (see later)
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