1. Gradient method

- gradient method, first-order methods
- convex functions
- Lipschitz continuity of gradient
- strong convexity
- analysis of gradient method

Gradient method

to minimize a convex differentiable function f : choose an initial point x_{0} and repeat

$$
x_{k+1}=x_{k}-t_{k} \nabla f\left(x_{k}\right), \quad k=0,1, \ldots
$$

step size t_{k} is constant or determined by line search

Advantages

- every iteration is inexpensive
- does not require second derivatives

Notation

- x_{k} can refer to k th element of a sequence, or to the k th component of vector x
- to avoid confusion, we sometimes use $x^{(k)}$ to denote elements of a sequence

Quadratic example

$$
f(x)=\frac{1}{2}\left(x_{1}^{2}+\gamma x_{2}^{2}\right) \quad(\text { with } \gamma>1)
$$

with exact line search and starting point $x^{(0)}=(\gamma, 1)$

$$
\frac{\left\|x^{(k)}-x^{\star}\right\|_{2}}{\left\|x^{(0)}-x^{\star}\right\|_{2}}=\left(\frac{\gamma-1}{\gamma+1}\right)^{k}
$$

where $x^{\star}=0$

gradient method is often slow; convergence very dependent on scaling

Nondifferentiable example

$$
f(x)=\sqrt{x_{1}^{2}+\gamma x_{2}^{2}} \quad \text { if }\left|x_{2}\right| \leq x_{1}, \quad f(x)=\frac{x_{1}+\gamma\left|x_{2}\right|}{\sqrt{1+\gamma}} \quad \text { if }\left|x_{2}\right|>x_{1}
$$

with exact line search, starting point $x^{(0)}=(\gamma, 1)$, converges to non-optimal point

gradient method does not handle nondifferentiable problems

First-order methods

address one or both shortcomings of the gradient method

Methods for nondifferentiable or constrained problems

- subgradient method
- proximal gradient method
- smoothing methods
- cutting-plane methods

Methods with improved convergence

- conjugate gradient method
- accelerated gradient method
- quasi-Newton methods

Outline

- gradient method, first-order methods
- convex functions
- Lipschitz continuity of gradient
- strong convexity
- analysis of gradient method

Convex function

a function f is convex if $\operatorname{dom} f$ is a convex set and Jensen's inequality holds:

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y) \quad \text { for all } x, y \in \operatorname{dom} f, \theta \in[0,1]
$$

First-order condition

for (continuously) differentiable f, Jensen's inequality can be replaced with

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \text { for all } x, y \in \operatorname{dom} f
$$

as in ECE236B, we use $b^{T} a$ for inner product of a and b

Second-order condition

for twice differentiable f, Jensen's inequality can be replaced with

$$
\nabla^{2} f(x) \geq 0 \quad \text { for all } x \in \operatorname{dom} f
$$

Strictly convex function

f is strictly convex if $\operatorname{dom} f$ is a convex set and
$f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y)$ for all $x, y \in \operatorname{dom} f, x \neq y$, and $\theta \in(0,1)$
strict convexity implies that if a minimizer of f exists, it is unique

First-order condition
for differentiable f, strict Jensen's inequality can be replaced with

$$
f(y)>f(x)+\nabla f(x)^{T}(y-x) \text { for all } x, y \in \operatorname{dom} f, x \neq y
$$

Second-order condition

note that $\nabla^{2} f(x)>0$ is not necessary for strict convexity (cf., $f(x)=x^{4}$)

Monotonicity of gradient

a differentiable function f is convex if and only if $\operatorname{dom} f$ is convex and

$$
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq 0 \quad \text { for all } x, y \in \operatorname{dom} f
$$

i.e., the gradient $\nabla f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a monotone mapping
a differentiable function f is strictly convex if and only if $\operatorname{dom} f$ is convex and

$$
(\nabla f(x)-\nabla f(y))^{T}(x-y)>0 \quad \text { for all } x, y \in \operatorname{dom} f, x \neq y
$$

i.e., the gradient $\nabla f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a strictly monotone mapping

Proof

- if f is differentiable and convex, then

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x), \quad f(x) \geq f(y)+\nabla f(y)^{T}(x-y)
$$

combining the inequalities gives $(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq 0$

- if ∇f is monotone, then $g^{\prime}(t) \geq g^{\prime}(0)$ for $t \geq 0$ and $t \in \operatorname{dom} g$, where

$$
g(t)=f(x+t(y-x)), \quad g^{\prime}(t)=\nabla f(x+t(y-x))^{T}(y-x)
$$

hence

$$
\begin{aligned}
f(y)=g(1)=g(0)+\int_{0}^{1} g^{\prime}(t) d t & \geq g(0)+g^{\prime}(0) \\
& =f(x)+\nabla f(x)^{T}(y-x)
\end{aligned}
$$

this is the first-order condition for convexity

Outline

- gradient method, first-order methods
- convex functions
- Lipschitz continuity of gradient
- strong convexity
- analysis of gradient method

Lipschitz continuous gradient

the gradient of f is Lipschitz continuous with parameter $L>0$ if

$$
\|\nabla f(x)-\nabla f(y)\|_{*} \leq L\|x-y\| \quad \text { for all } x, y \in \operatorname{dom} f
$$

- functions f with this property are also called L-smooth
- the definition does not assume convexity of f (and holds for $-f$ if it holds for f)
- in the definition, $\|\cdot\|$ and $\|\cdot\|_{*}$ are a pair of dual norms:

$$
\|u\|_{*}=\sup _{v \neq 0} \frac{u^{T} v}{\|v\|}=\sup _{\|v\|=1} u^{T} v
$$

this implies a generalized Cauchy-Schwarz inequality

$$
\left|u^{T} v\right| \leq\|u\|_{*}\|v\| \quad \text { for all } u, v
$$

Choice of norm

Equivalence of norms

- for any two norms $\|\cdot\|_{\mathrm{a}},\|\cdot\|_{\mathrm{b}}$, there exist positive constants c_{1}, c_{2} such that

$$
c_{1}\|x\|_{\mathrm{b}} \leq\|x\|_{\mathrm{a}} \leq c_{2}\|x\|_{\mathrm{b}} \quad \text { for all } x
$$

- constants depend on dimension; for example, for $x \in \mathbf{R}^{n}$,

$$
\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{n}\|x\|_{2}, \quad \frac{1}{\sqrt{n}}\|x\|_{2} \leq\|x\|_{\infty} \leq\|x\|_{2}
$$

Norm in definition of Lipschitz continuity

- without loss of generality we can use the Euclidean norm $\|\cdot\|=\|\cdot\|_{*}=\|\cdot\|_{2}$
- the parameter L depends on choice of norm
- in complexity bounds, choice of norm can simplify dependence on dimensions

Quadratic upper bound

suppose ∇f is Lipschitz continuous with parameter L

- this implies (from the generalized Cauchy-Schwarz inequality) that

$$
\begin{equation*}
(\nabla f(x)-\nabla f(y))^{T}(x-y) \leq L\|x-y\|^{2} \quad \text { for all } x, y \in \operatorname{dom} f \tag{1}
\end{equation*}
$$

- if $\operatorname{dom} f$ is convex, (1) is equivalent to

$$
\begin{equation*}
f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{L}{2}\|y-x\|^{2} \quad \text { for all } x, y \in \operatorname{dom} f \tag{2}
\end{equation*}
$$

Proof (equivalence of (1) and (2) if $\operatorname{dom} f$ is convex)

- consider arbitrary $x, y \in \operatorname{dom} f$ and define $g(t)=f(x+t(y-x))$
- $g(t)$ is defined for $t \in[0,1]$ because $\operatorname{dom} f$ is convex
- if (1) holds, then

$$
g^{\prime}(t)-g^{\prime}(0)=(\nabla f(x+t(y-x))-\nabla f(x))^{T}(y-x) \leq t L\|x-y\|^{2}
$$

integrating from $t=0$ to $t=1$ gives (2):

$$
\begin{aligned}
f(y)=g(1)=g(0)+\int_{0}^{1} g^{\prime}(t) d t & \leq g(0)+g^{\prime}(0)+\frac{L}{2}\|x-y\|^{2} \\
& =f(x)+\nabla f(x)^{T}(y-x)+\frac{L}{2}\|x-y\|^{2}
\end{aligned}
$$

- conversely, if (2) holds, then (2) and the same inequality with x, y switched, i.e.,

$$
f(x) \leq f(y)+\nabla f(y)^{T}(x-y)+\frac{L}{2}\|x-y\|^{2}
$$

can be combined to give $(\nabla f(x)-\nabla f(y))^{T}(x-y) \leq L\|x-y\|^{2}$

Consequence of quadratic upper bound

if $\operatorname{dom} f=\mathbf{R}^{n}$ and f has a minimizer x^{\star}, then

$$
\frac{1}{2 L}\|\nabla f(z)\|_{*}^{2} \leq f(z)-f\left(x^{\star}\right) \leq \frac{L}{2}\left\|z-x^{\star}\right\|^{2} \quad \text { for all } z
$$

- right-hand inequality follows from upper bound property (2) at $x=x^{\star}, y=z$
- left-hand inequality follows by minimizing quadratic upper bound for $x=z$

$$
\begin{aligned}
\inf _{y} f(y) & \leq \inf _{y}\left(f(z)+\nabla f(z)^{T}(y-z)+\frac{L}{2}\|y-z\|^{2}\right) \\
& =\inf _{\|v\|=1} \inf _{t}\left(f(z)+t \nabla f(z)^{T} v+\frac{L t^{2}}{2}\right) \\
& =\inf _{\|v\|=1}\left(f(z)-\frac{1}{2 L}\left(\nabla f(z)^{T} v\right)^{2}\right) \\
& =f(z)-\frac{1}{2 L}\|\nabla f(z)\|_{*}^{2}
\end{aligned}
$$

Co-coercivity of gradient

if f is convex with $\operatorname{dom} f=\mathbf{R}^{n}$ and ∇f is L-Lipschitz continuous, then

$$
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq \frac{1}{L}\|\nabla f(x)-\nabla f(y)\|_{*}^{2} \quad \text { for all } x, y
$$

- this property is known as co-coercivity of ∇f (with parameter $1 / L$)
- co-coercivity in turn implies Lipschitz continuity of ∇f (by Cauchy-Schwarz)
- hence, for differentiable convex f with $\operatorname{dom} f=\mathbf{R}^{n}$

$$
\begin{aligned}
\text { Lipschitz continuity of } \nabla f & \Rightarrow \text { upper bound property (2) (equivalently, (1)) } \\
& \Rightarrow \text { co-coercivity of } \nabla f \\
& \Rightarrow \text { Lipschitz continuity of } \nabla f
\end{aligned}
$$

therefore the three properties are equivalent

Proof of co-coercivity: define two convex functions f_{x}, f_{y} with domain \mathbf{R}^{n}

$$
f_{x}(z)=f(z)-\nabla f(x)^{T} z, \quad f_{y}(z)=f(z)-\nabla f(y)^{T} z
$$

- the two functions have L-Lipschitz continuous gradients
- $z=x$ minimizes $f_{x}(z)$; from the left-hand inequality on page 1.14,

$$
\begin{aligned}
f(y)-f(x)-\nabla f(x)^{T}(y-x) & =f_{x}(y)-f_{x}(x) \\
& \geq \frac{1}{2 L}\left\|\nabla f_{x}(y)\right\|_{*}^{2} \\
& =\frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|_{*}^{2}
\end{aligned}
$$

- similarly, $z=y$ minimizes $f_{y}(z)$; therefore

$$
f(x)-f(y)-\nabla f(y)^{T}(x-y) \geq \frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|_{*}^{2}
$$

combining the two inequalities shows co-coercivity

Lipschitz continuity with respect to Euclidean norm

suppose f is convex with dom $f=\mathbf{R}^{n}$, and L-smooth for the Euclidean norm:

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2} \quad \text { for all } x, y
$$

- the equivalent property (1) states that

$$
(\nabla f(x)-\nabla f(y))^{T}(x-y) \leq L(x-y)^{T}(x-y) \quad \text { for all } x, y
$$

- this is monotonicity of $L x-\nabla f(x)$, i.e., equivalent to the property that

$$
\frac{L}{2}\|x\|_{2}^{2}-f(x) \quad \text { is a convex function }
$$

- if f is twice differentiable, the Hessian of this function is $L I-\nabla^{2} f(x)$:

$$
\lambda_{\max }\left(\nabla^{2} f(x)\right) \leq L \quad \text { for all } x
$$

is an equivalent characterization of L-smoothness

Outline

- gradient method, first-order methods
- convex functions
- Lipschitz continuity of gradient
- strong convexity
- analysis of gradient method

Strongly convex function

f is strongly convex with parameter $m>0$ if $\operatorname{dom} f$ is convex and

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)-\frac{m}{2} \theta(1-\theta)\|x-y\|^{2}
$$

holds for all $x, y \in \operatorname{dom} f, \theta \in[0,1]$

- this is a stronger version of Jensen's inequality
- it holds if and only if it holds for f restricted to arbitrary lines:

$$
\begin{equation*}
f(x+t(y-x))-\frac{m}{2} t^{2}\|x-y\|^{2} \tag{3}
\end{equation*}
$$

is a convex function of t, for all $x, y \in \operatorname{dom} f$

- without loss of generality, we can take $\|\cdot\|=\|\cdot\|_{2}$
- however, the strong convexity parameter m depends on the norm used

Quadratic lower bound

if f is differentiable and m-strongly convex, then

$$
\begin{equation*}
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{m}{2}\|y-x\|^{2} \quad \text { for all } x, y \in \operatorname{dom} f \tag{4}
\end{equation*}
$$

- follows from the 1 st order condition of convexity of (3)
- this implies that the sublevel sets of f are bounded
- if f is closed (has closed sublevel sets), it has a unique minimizer x^{\star} and

$$
\frac{m}{2}\left\|z-x^{\star}\right\|^{2} \leq f(z)-f\left(x^{\star}\right) \leq \frac{1}{2 m}\|\nabla f(z)\|_{*}^{2} \quad \text { for all } z \in \operatorname{dom} f
$$

(proof as on page 1.14)

Strong monotonicity

differentiable f is strongly convex if and only if $\operatorname{dom} f$ is convex and

$$
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq m\|x-y\|^{2} \quad \text { for all } x, y \in \operatorname{dom} f
$$

this is called strong monotonicity (coercivity) of ∇f

Proof

- one direction follows from (4) and the same inequality with x and y switched
- for the other direction, assume ∇f is strongly monotone and define

$$
g(t)=f(x+t(y-x))-\frac{m}{2} t^{2}\|x-y\|^{2}
$$

then $g^{\prime}(t)$ is nondecreasing, so g is convex

Strong convexity with respect to Euclidean norm

suppose f is m-strongly convex for the Euclidean norm:

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)-\frac{m}{2} \theta(1-\theta)\|x-y\|_{2}^{2}
$$

for $x, y \in \operatorname{dom} f, \theta \in[0,1]$

- this is Jensen's inequality for the function

$$
h(x)=f(x)-\frac{m}{2}\|x\|_{2}^{2}
$$

- therefore f is strongly convex if and only if h is convex
- if f is twice differentiable, h is convex if and only if $\nabla^{2} f(x)-m I \geq 0$, or

$$
\lambda_{\min }\left(\nabla^{2} f(x)\right) \geq m \quad \text { for all } x \in \operatorname{dom} f
$$

Extension of co-coercivity

suppose f is m-strongly convex and L-smooth for $\|\cdot\|_{2}$, and $\operatorname{dom} f=\mathbf{R}^{n}$

- then the function

$$
h(x)=f(x)-\frac{m}{2}\|x\|_{2}^{2}
$$

is convex and $(L-m)$-smooth:

$$
\begin{aligned}
0 & \leq(\nabla h(x)-\nabla h(y))^{T}(x-y) \\
& =(\nabla f(x)-\nabla f(y))^{T}(x-y)-m\|x-y\|_{2}^{2} \\
& \leq(L-m)\|x-y\|_{2}^{2}
\end{aligned}
$$

- co-coercivity of ∇h can be written as

$$
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq \frac{m L}{m+L}\|x-y\|_{2}^{2}+\frac{1}{m+L}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}
$$

for all $x, y \in \operatorname{dom} f$

Outline

- gradient method, first-order methods
- convex functions
- Lipschitz continuity of gradient
- strong convexity
- analysis of gradient method

Analysis of gradient method

$$
x_{k+1}=x_{k}-t_{k} \nabla f\left(x_{k}\right), \quad k=0,1, \ldots
$$

with fixed step size or backtracking line search

Assumptions

1. f is convex and differentiable with $\operatorname{dom} f=\mathbf{R}^{n}$
2. $\nabla f(x)$ is L-Lipschitz continuous with respect to the Euclidean norm, with $L>0$
3. optimal value $f^{\star}=\inf _{x} f(x)$ is finite and attained at x^{\star}

Basic gradient step

- from quadratic upper bound (page 1.12) with $y=x-t \nabla f(x)$:

$$
f(x-t \nabla f(x)) \leq f(x)-t\left(1-\frac{L t}{2}\right)\|\nabla f(x)\|_{2}^{2}
$$

- therefore, if $x^{+}=x-t \nabla f(x)$ and $0<t \leq 1 / L$,

$$
\begin{equation*}
f\left(x^{+}\right) \leq f(x)-\frac{t}{2}\|\nabla f(x)\|_{2}^{2} \tag{5}
\end{equation*}
$$

- from (5) and convexity of f,

$$
\begin{align*}
f\left(x^{+}\right)-f^{\star} & \leq \nabla f(x)^{T}\left(x-x^{\star}\right)-\frac{t}{2}\|\nabla f(x)\|_{2}^{2} \\
& =\frac{1}{2 t}\left(\left\|x-x^{\star}\right\|_{2}^{2}-\left\|x-x^{\star}-t \nabla f(x)\right\|_{2}^{2}\right) \\
& =\frac{1}{2 t}\left(\left\|x-x^{\star}\right\|_{2}^{2}-\left\|x^{+}-x^{\star}\right\|_{2}^{2}\right) \tag{6}
\end{align*}
$$

Descent properties

assume $\nabla f(x) \neq 0$ and $0<t \leq 1 / L$

- the inequality (5) shows that

$$
f\left(x^{+}\right)<f(x)
$$

- the inequality (6) shows that

$$
\left\|x^{+}-x^{\star}\right\|_{2}<\left\|x-x^{\star}\right\|_{2}
$$

in the gradient method, function value and distance to the optimal set decrease

Gradient method with constant step size

$$
x_{k+1}=x_{k}-t \nabla f\left(x_{k}\right), \quad k=0,1, \ldots
$$

- take $x=x_{i-1}, x^{+}=x_{i}$ in (6) and add the bounds for $i=1, \ldots, k$:

$$
\begin{aligned}
\sum_{i=1}^{k}\left(f\left(x_{i}\right)-f^{\star}\right) & \leq \frac{1}{2 t} \sum_{i=1}^{k}\left(\left\|x_{i-1}-x^{\star}\right\|_{2}^{2}-\left\|x_{i}-x^{\star}\right\|_{2}^{2}\right) \\
& =\frac{1}{2 t}\left(\left\|x_{0}-x^{\star}\right\|_{2}^{2}-\left\|x_{k}-x^{\star}\right\|_{2}^{2}\right) \\
& \leq \frac{1}{2 t}\left\|x_{0}-x^{\star}\right\|_{2}^{2}
\end{aligned}
$$

- since $f\left(x_{i}\right)$ is non-increasing (see (5))

$$
f\left(x_{k}\right)-f^{\star} \leq \frac{1}{k} \sum_{i=1}^{k}\left(f\left(x_{i}\right)-f^{\star}\right) \leq \frac{1}{2 k t}\left\|x_{0}-x^{\star}\right\|_{2}^{2}
$$

Conclusion: number of iterations to reach $f\left(x_{k}\right)-f^{\star} \leq \epsilon$ is $O(1 / \epsilon)$

Backtracking line search

initialize t_{k} at $\hat{t}>0$ (for example, $\hat{t}=1$) and take $t_{k}:=\beta t_{k}$ until

$$
f\left(x_{k}-t_{k} \nabla f\left(x_{k}\right)\right)<f\left(x_{k}\right)-\alpha t_{k}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}
$$

$0<\beta<1$; we will take $\alpha=1 / 2$ (mostly to simplify proofs)

Analysis for backtracking line search

line search with $\alpha=1 / 2$, if f has a Lipschitz continuous gradient

selected step size satisfies $t_{k} \geq t_{\text {min }}=\min \{\hat{t}, \beta / L\}$

Gradient method with backtracking line search

- from line search condition and convexity of f,

$$
\begin{aligned}
f\left(x_{i+1}\right) & \leq f\left(x_{i}\right)-\frac{t_{i}}{2}\left\|\nabla f\left(x_{i}\right)\right\|_{2}^{2} \\
& \leq f^{\star}+\nabla f\left(x_{i}\right)^{T}\left(x_{i}-x^{\star}\right)-\frac{t_{i}}{2}\left\|\nabla f\left(x_{i}\right)\right\|_{2}^{2} \\
& =f^{\star}+\frac{1}{2 t_{i}}\left(\left\|x_{i}-x^{\star}\right\|_{2}^{2}-\left\|x_{i+1}-x^{\star}\right\|_{2}^{2}\right)
\end{aligned}
$$

- this implies $\left\|x_{i+1}-x^{\star}\right\|_{2} \leq\left\|x_{i}-x^{\star}\right\|$, so we can replace t_{i} with $t_{\min } \leq t_{i}$:

$$
f\left(x_{i+1}\right)-f^{\star} \leq \frac{1}{2 t_{\min }}\left(\left\|x_{i}-x^{\star}\right\|_{2}^{2}-\left\|x_{i-1}-x^{\star}\right\|_{2}^{2}\right)
$$

- adding the upper bounds gives same $1 / k$ bound as with constant step size

$$
f\left(x_{k}\right)-f^{\star} \leq \frac{1}{k} \sum_{i=1}^{k}\left(f\left(x_{i}\right)-f^{\star}\right) \leq \frac{1}{2 k t_{\min }}\left\|x_{0}-x^{\star}\right\|_{2}^{2}
$$

Gradient method for strongly convex functions

better results exist if we add strong convexity to the assumptions on p. 1.23

Analysis for constant step size
if $x^{+}=x-t \nabla f(x)$ and $0<t \leq 2 /(m+L)$:

$$
\begin{aligned}
\left\|x^{+}-x^{\star}\right\|_{2}^{2} & =\left\|x-t \nabla f(x)-x^{\star}\right\|_{2}^{2} \\
& =\left\|x-x^{\star}\right\|_{2}^{2}-2 t \nabla f(x)^{T}\left(x-x^{\star}\right)+t^{2}\|\nabla f(x)\|_{2}^{2} \\
& \leq\left(1-t \frac{2 m L}{m+L}\right)\left\|x-x^{\star}\right\|_{2}^{2}+t\left(t-\frac{2}{m+L}\right)\|\nabla f(x)\|_{2}^{2} \\
& \leq\left(1-t \frac{2 m L}{m+L}\right)\left\|x-x^{\star}\right\|_{2}^{2}
\end{aligned}
$$

(step 3 follows from result on page 1.22)

Distance to optimum

$$
\left\|x_{k}-x^{\star}\right\|_{2}^{2} \leq c^{k}\left\|x_{0}-x^{\star}\right\|_{2}^{2}, \quad c=1-t \frac{2 m L}{m+L}
$$

- implies (linear) convergence
- for $t=2 /(m+L)$, get $c=\left(\frac{\gamma-1}{\gamma+1}\right)^{2}$ with $\gamma=L / m$

Bound on function value (from page 1.14)

$$
f\left(x_{k}\right)-f^{\star} \leq \frac{L}{2}\left\|x_{k}-x^{\star}\right\|_{2}^{2} \leq \frac{c^{k} L}{2}\left\|x_{0}-x^{\star}\right\|_{2}^{2}
$$

Conclusion: number of iterations to reach $f\left(x_{k}\right)-f^{\star} \leq \epsilon$ is $O(\log (1 / \epsilon))$

Limits on convergence rate of first-order methods

First-order method: any iterative algorithm that selects x_{k+1} in the set

$$
x_{0}+\operatorname{span}\left\{\nabla f\left(x_{0}\right), \nabla f\left(x_{1}\right), \ldots, \nabla f\left(x_{k}\right)\right\}
$$

Problem class: any function that satisfies the assumptions on page 1.23

Theorem (Nesterov): for every integer $k \leq(n-1) / 2$ and every x_{0}, there exist functions in the problem class such that for any first-order method

$$
f\left(x_{k}\right)-f^{\star} \geq \frac{3}{32} \frac{L\left\|x_{0}-x^{\star}\right\|_{2}^{2}}{(k+1)^{2}}
$$

- suggests $1 / k$ rate for gradient method is not optimal
- more recent accelerated gradient methods have $1 / k^{2}$ convergence (see later)

References

- A. Beck, First-Order Methods in Optimization (2017), chapter 5.
- Yu. Nesterov, Lectures on Convex Optimization (2018), section 2.1. (The result on page 1.32 is Theorem 2.1.7 in the book.)
- B. T. Polyak, Introduction to Optimization (1987), section 1.4.
- The example on page 1.4 is from N. Z. Shor, Nondifferentiable Optimization and Polynomial Problems (1998), page 37.

