1. Gradient method

- gradient method, first-order methods
- convex functions
- Lipschitz continuity of gradient
- strong convexity
- analysis of gradient method
Gradient method

to minimize a convex differentiable function f: choose an initial point x_0 and repeat

$$x_{k+1} = x_k - t_k \nabla f(x_k), \quad k = 0, 1, \ldots$$

step size t_k is constant or determined by line search

Advantages

- every iteration is inexpensive
- does not require second derivatives

Notation

- x_k can refer to kth element of a sequence, or to the kth component of vector x
- to avoid confusion, we sometimes use $x^{(k)}$ to denote elements of a sequence
Quadratic example

\[f(x) = \frac{1}{2}(x_1^2 + \gamma x_2^2) \quad \text{(with } \gamma > 1) \]

with exact line search and starting point \(x^{(0)} = (\gamma, 1) \)

\[
\frac{\|x^{(k)} - x^*\|_2}{\|x^{(0)} - x^*\|_2} = \left(\frac{\gamma - 1}{\gamma + 1} \right)^k
\]

where \(x^* = 0 \)

gradient method is often slow; convergence very dependent on scaling
Nondifferentiable example

\[f(x) = \sqrt{x_1^2 + \gamma x_2} \quad \text{if } |x_2| \leq x_1, \quad f(x) = \frac{x_1 + \gamma |x_2|}{\sqrt{1 + \gamma}} \quad \text{if } |x_2| > x_1 \]

with exact line search, starting point \(x^{(0)} = (\gamma, 1) \), converges to non-optimal point

gradient method does not handle nondifferentiable problems
First-order methods

address one or both shortcomings of the gradient method

Methods for nondifferentiable or constrained problems

• subgradient method
• proximal gradient method
• smoothing methods
• cutting-plane methods

Methods with improved convergence

• conjugate gradient method
• accelerated gradient method
• quasi-Newton methods
Outline

- gradient method, first-order methods
- **convex functions**
- Lipschitz continuity of gradient
- strong convexity
- analysis of gradient method
Convex function

A function f is convex if $\text{dom } f$ is a convex set and Jensen’s inequality holds:

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y) \quad \text{for all } x, y \in \text{dom } f, \theta \in [0, 1]$$

First-order condition

For (continuously) differentiable f, Jensen’s inequality can be replaced with

$$f(y) \geq f(x) + \nabla f(x)^T (y - x) \quad \text{for all } x, y \in \text{dom } f$$

Second-order condition

For twice differentiable f, Jensen’s inequality can be replaced with

$$\nabla^2 f(x) \succeq 0 \quad \text{for all } x \in \text{dom } f$$
Strictly convex function

f is strictly convex if $\text{dom } f$ is a convex set and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y) \quad \text{for all } x, y \in \text{dom } f, \ x \neq y, \text{ and } \theta \in (0, 1)$$

strict convexity implies that if a minimizer of f exists, it is unique

First-order condition

for differentiable f, strict Jensen’s inequality can be replaced with

$$f(y) > f(x) + \nabla f(x)^T(y - x) \quad \text{for all } x, y \in \text{dom } f, \ x \neq y$$

Second-order condition

note that $\nabla^2 f(x) > 0$ is not necessary for strict convexity (cf., $f(x) = x^4$)
Monotonicity of gradient

a differentiable function f is convex if and only if $\text{dom } f$ is convex and

$$(\nabla f(x) - \nabla f(y))^T (x - y) \geq 0 \quad \text{for all } x, y \in \text{dom } f$$

i.e., the gradient $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ is a monotone mapping

a differentiable function f is strictly convex if and only if $\text{dom } f$ is convex and

$$(\nabla f(x) - \nabla f(y))^T (x - y) > 0 \quad \text{for all } x, y \in \text{dom } f, x \neq y$$

i.e., the gradient $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ is a strictly monotone mapping
Proof

• if \(f \) is differentiable and convex, then

\[
f(y) \geq f(x) + \nabla f(x)^T(y - x), \quad f(x) \geq f(y) + \nabla f(y)^T(x - y)
\]

combining the inequalities gives \((\nabla f(x) - \nabla f(y))^T(x - y) \geq 0\)

• if \(\nabla f \) is monotone, then \(g'(t) \geq g'(0) \) for \(t \geq 0 \) and \(t \in \text{dom } g \), where

\[
g(t) = f(x + t(y - x)), \quad g'(t) = \nabla f(x + t(y - x))^T(y - x)
\]

hence

\[
f(y) = g(1) = g(0) + \int_0^1 g'(t) \, dt \geq g(0) + g'(0)
\]

\[
= f(x) + \nabla f(x)^T(y - x)
\]

this is the first-order condition for convexity
Outline

• gradient method, first-order methods

• convex functions

• **Lipschitz continuity of gradient**

• strong convexity

• analysis of gradient method
Lipschitz continuous gradient

the gradient of f is *Lipschitz continuous* with parameter $L > 0$ if

$$
\|\nabla f(x) - \nabla f(y)\|_* \leq L \|x - y\| \quad \text{for all } x, y \in \text{dom } f
$$

- functions f with this property are also called *L-smooth*

- the definition does not assume convexity of f (and holds for $-f$ if it holds for f)

- in the definition, $\| \cdot \|$ and $\| \cdot \|_*$ are a pair of dual norms:

$$
\|u\|_* = \sup_{v \neq 0} \frac{u^T v}{\|v\|} = \sup_{\|v\| = 1} u^T v
$$

this implies a generalized Cauchy–Schwarz inequality

$$
|u^T v| \leq \|u\|_* \|v\| \quad \text{for all } u, v
$$
Choice of norm

Equivalence of norms

• for any two norms $\| \cdot \|_a$, $\| \cdot \|_b$, there exist positive constants c_1, c_2 such that

\[c_1 \| x \|_b \leq \| x \|_a \leq c_2 \| x \|_b \quad \text{for all } x \]

• constants depend on dimension; for example, for $x \in \mathbb{R}^n$,

\[\| x \|_2 \leq \| x \|_1 \leq \sqrt{n} \| x \|_2, \quad \frac{1}{\sqrt{n}} \| x \|_2 \leq \| x \|_\infty \leq \| x \|_2 \]

Norm in definition of Lipschitz continuity

• without loss of generality we can use the Euclidean norm $\| \cdot \| = \| \cdot \|_* = \| \cdot \|_2$

• the parameter L depends on choice of norm

• in complexity bounds, choice of norm can simplify dependence on dimensions
Quadratic upper bound

suppose \(\nabla f \) is Lipschitz continuous with parameter \(L \)

- this implies (from the generalized Cauchy–Schwarz inequality) that

\[
(\nabla f(x) - \nabla f(y))^T(x - y) \leq L\|x - y\|^2 \quad \text{for all } x, y \in \text{dom } f
\]

(1)

- if \(\text{dom } f \) is convex, (1) is equivalent to

\[
f(y) \leq f(x) + \nabla f(x)^T(y - x) + \frac{L}{2}\|y - x\|^2 \quad \text{for all } x, y \in \text{dom } f
\]

(2)
Proof (of the equivalence of (1) and (2) if $\text{dom } f$ is convex)

- consider arbitrary $x, y \in \text{dom } f$ and define $g(t) = f(x + t(y - x))$
- $g(t)$ is defined for $t \in [0, 1]$ because $\text{dom } f$ is convex
- if (1) holds, then

$$g'(t) - g'(0) = (\nabla f(x + t(y - x)) - \nabla f(x))^T (y - x) \leq tL\|x - y\|^2$$

integrating from $t = 0$ to $t = 1$ gives (2):

$$f(y) = g(1) = g(0) + \int_0^1 g'(t) \, dt \leq g(0) + g'(0) + \frac{L}{2} \|x - y\|^2$$

$$= f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} \|x - y\|^2$$

- conversely, if (2) holds, then (2) and the same inequality with x, y switched, i.e.,

$$f(x) \leq f(y) + \nabla f(y)^T (x - y) + \frac{L}{2} \|x - y\|^2$$

can be combined to give $(\nabla f(x) - \nabla f(y))^T (x - y) \leq L \|x - y\|^2$
Consequence of quadratic upper bound

if dom \(f = \mathbb{R}^n \) and \(f \) has a minimizer \(x^* \), then

\[
\frac{1}{2L} \| \nabla f(z) \|^2 \leq f(z) - f(x^*) \leq \frac{L}{2} \| z - x^* \|^2 \quad \text{for all } z
\]

- right-hand inequality follows from upper bound property (2) at \(x = x^* \), \(y = z \)
- left-hand inequality follows by minimizing quadratic upper bound for \(x = z \)

\[
\inf_y f(y) \leq \inf_y \left(f(z) + \nabla f(z)^T (y - z) + \frac{L}{2} \| y - z \|^2 \right)
\]

\[
= \inf_{\| v \|=1} \inf_t \left(f(z) + t \nabla f(z)^T v + \frac{Lt^2}{2} \right)
\]

\[
= \inf_{\| v \|=1} \left(f(z) - \frac{1}{2L} (\nabla f(z)^T v)^2 \right)
\]

\[
= f(z) - \frac{1}{2L} \| \nabla f(z) \|^2
\]
Co-coercivity of gradient

If f is convex with $\text{dom } f = \mathbb{R}^n$ and ∇f is L-Lipschitz continuous, then

$$(\nabla f(x) - \nabla f(y))^T (x - y) \geq \frac{1}{L} \| \nabla f(x) - \nabla f(y) \|_2^2$$

for all x, y.

- this property is known as co-coercivity of ∇f (with parameter $1/L$)

- co-coercivity in turn implies Lipschitz continuity of ∇f (by Cauchy–Schwarz)

- hence, for differentiable convex f with $\text{dom } f = \mathbb{R}^n$

\[
\text{Lipschitz continuity of } \nabla f \quad \Rightarrow \quad \text{upper bound property (2) (equivalently, (1))} \\
\Rightarrow \quad \text{co-coercivity of } \nabla f \\
\Rightarrow \quad \text{Lipschitz continuity of } \nabla f
\]

therefore the three properties are equivalent
Proof of co-coercivity: define two convex functions f_x, f_y with domain \mathbb{R}^n

$$f_x(z) = f(z) - \nabla f(x)^T z, \quad f_y(z) = f(z) - \nabla f(y)^T z$$

- the two functions have L-Lipschitz continuous gradients
- $z = x$ minimizes $f_x(z)$; from the left-hand inequality on page 1.14,

$$f(y) - f(x) - \nabla f(x)^T (y - x) = f_x(y) - f_x(x)$$

$$\geq \frac{1}{2L} \norm{\nabla f_x(y)}^2_*$$

$$= \frac{1}{2L} \norm{\nabla f(y) - \nabla f(x)}^2_*$$

- similarly, $z = y$ minimizes $f_y(z)$; therefore

$$f(x) - f(y) - \nabla f(y)^T (x - y) \geq \frac{1}{2L} \norm{\nabla f(y) - \nabla f(x)}^2_*$$

combining the two inequalities shows co-coercivity
Lipschitz continuity with respect to Euclidean norm

supose f is convex with $\text{dom } f = \mathbb{R}^n$, and L-smooth for the Euclidean norm:

$$||\nabla f(x) - \nabla f(y)||_2 \leq L ||x - y||_2 \quad \text{for all } x, y$$

• the equivalent property (1) states that

$$(\nabla f(x) - \nabla f(y))^T (x - y) \leq L (x - y)^T (x - y) \quad \text{for all } x, y$$

• this is monotonicity of $Lx - \nabla f(x)$, i.e., equivalent to the property that

$$\frac{L}{2} ||x||_2^2 - f(x) \quad \text{is a convex function}$$

• if f is twice differentiable, the Hessian of this function is $LI - \nabla^2 f(x)$:

$$\lambda_{\text{max}}(\nabla^2 f(x)) \leq L \quad \text{for all } x$$

is an equivalent characterization of L-smoothness
Outline

- gradient method, first-order methods
- convex functions
- Lipschitz continuity of gradient
- strong convexity
- analysis of gradient method
Strongly convex function

A function f is strongly convex with parameter $m > 0$ if $\text{dom } f$ is convex and

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y) - \frac{m}{2}\theta(1 - \theta)\|x - y\|^2$$

holds for all $x, y \in \text{dom } f$, $\theta \in [0, 1]$.

- this is a stronger version of Jensen’s inequality
- it holds if and only if it holds for f restricted to arbitrary lines:

$$f(x + t(y - x)) - \frac{m}{2}t^2\|x - y\|^2$$

(3)

is a convex function of t, for all $x, y \in \text{dom } f$

- without loss of generality, we can take $\| \cdot \| = \| \cdot \|_2$
- however, the strong convexity parameter m depends on the norm used
Quadratic lower bound

if \(f \) is differentiable and \(m \)-strongly convex, then

\[
f(y) \geq f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} \|y - x\|^2 \quad \text{for all } x, y \in \text{dom } f
\]

(4)

- follows from the 1st order condition of convexity of (3)
- this implies that the sublevel sets of \(f \) are bounded
- if \(f \) is closed (has closed sublevel sets), it has a unique minimizer \(x^* \) and

\[
\frac{m}{2} \|z - x^*\|^2 \leq f(z) - f(x^*) \leq \frac{1}{2m} \|\nabla f(z)\|_*^2 \quad \text{for all } z \in \text{dom } f
\]

(proof as on page 1.14)
Strong monotonicity

differentiable f is strongly convex if and only if $\text{dom } f$ is convex and

$$(\nabla f(x) - \nabla f(y))^T (x - y) \geq m\|x - y\|^2 \quad \text{for all } x, y \in \text{dom } f$$

this is called strong monotonicity (coercivity) of ∇f

Proof

• one direction follows from (4) and the same inequality with x and y switched

• for the other direction, assume ∇f is strongly monotone and define

$$g(t) = f(x + t(y - x)) - \frac{m}{2}t^2\|x - y\|^2$$

then $g'(t)$ is nondecreasing, so g is convex
Strong convexity with respect to Euclidean norm

suppose f is m-strongly convex for the Euclidean norm:

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y) - \frac{m}{2}\theta(1 - \theta)\|x - y\|^2_2$$

for $x, y \in \text{dom } f$, $\theta \in [0, 1]$

• this is Jensen’s inequality for the function

$$h(x) = f(x) - \frac{m}{2}\|x\|^2_2$$

• therefore f is strongly convex if and only if h is convex

• if f is twice differentiable, h is convex if and only if $\nabla^2 f(x) - mI \succeq 0$, or

$$\lambda_{\min}(\nabla^2 f(x)) \geq m \quad \text{for all } x \in \text{dom } f$$
suppose f is m-strongly convex and L-smooth for $\| \cdot \|_2$, and $\text{dom } f = \mathbb{R}^n$

• then the function

$$h(x) = f(x) - \frac{m}{2}\|x\|_2^2$$

is convex and $(L - m)$-smooth:

$$0 \leq (\nabla h(x) - \nabla h(y))^T(x - y)$$
$$= (\nabla f(x) - \nabla f(y))^T(x - y) - m\|x - y\|_2^2$$
$$\leq (L - m)\|x - y\|_2^2$$

• co-coercivity of ∇h can be written as

$$(\nabla f(x) - \nabla f(y))^T (x - y) \geq \frac{mL}{m + L}\|x - y\|_2^2 + \frac{1}{m + L}\|\nabla f(x) - \nabla f(y)\|_2^2$$

for all $x, y \in \text{dom } f$
Outline

- gradient method, first-order methods
- convex functions
- Lipschitz continuity of gradient
- strong convexity
- analysis of gradient method
Analysis of gradient method

\[x_{k+1} = x_k - t_k \nabla f(x_k), \quad k = 0, 1, \ldots \]

with fixed step size or backtracking line search

Assumptions

1. \(f \) is convex and differentiable with \(\text{dom} \ f = \mathbb{R}^n \)

2. \(\nabla f(x) \) is \(L \)-Lipschitz continuous with respect to the Euclidean norm, with \(L > 0 \)

3. optimal value \(f^* = \inf_x f(x) \) is finite and attained at \(x^* \)
Basic gradient step

- from quadratic upper bound (page 1.12) with $y = x - t\nabla f(x)$:

 $$f(x - t\nabla f(x)) \leq f(x) - t(1 - \frac{Lt}{2}) \|\nabla f(x)\|_2^2$$

- therefore, if $x^+ = x - t\nabla f(x)$ and $0 < t \leq 1/L$,

 $$f(x^+) \leq f(x) - \frac{t}{2}\|\nabla f(x)\|_2^2 \quad (5)$$

- from (5) and convexity of f,

 $$f(x^+) - f^* \leq \nabla f(x)^T(x - x^*) - \frac{t}{2}\|\nabla f(x)\|_2^2$$

 $$= \frac{1}{2t} \left(\|x - x^*\|_2^2 - \|x - x^* - t\nabla f(x)\|_2^2 \right)$$

 $$= \frac{1}{2t} \left(\|x - x^*\|_2^2 - \|x^+ - x^*\|_2^2 \right) \quad (6)$$
Descent properties

assume $\nabla f(x) \neq 0$ and $0 < t \leq 1/L$

• the inequality (5) shows that

\[f(x^+) < f(x) \]

• the inequality (6) shows that

\[\|x^+ - x^*\|_2 < \|x - x^*\|_2 \]

in the gradient method, function value and distance to the optimal set decrease
Gradient method with constant step size

\[x_{k+1} = x_k - t \nabla f(x_k), \quad k = 0, 1, \ldots \]

- take \(x = x_{i-1}, \ x^+ = x_i \) in (6) and add the bounds for \(i = 1, \ldots, k \):

\[
\sum_{i=1}^{k} (f(x_i) - f^*) \leq \frac{1}{2t} \sum_{i=1}^{k} \left(\|x_{i-1} - x^*\|_2^2 - \|x_i - x^*\|_2^2 \right)
= \frac{1}{2t} \left(\|x_0 - x^*\|_2^2 - \|x_k - x^*\|_2^2 \right)
\leq \frac{1}{2t} \|x_0 - x^*\|_2^2
\]

- since \(f(x_i) \) is non-increasing (see (5))

\[
f(x_k) - f^* \leq \frac{1}{k} \sum_{i=1}^{k} (f(x_i) - f^*) \leq \frac{1}{2kt} \|x_0 - x^*\|_2^2
\]

Conclusion: number of iterations to reach \(f(x_k) - f^* \leq \epsilon \) is \(O(1/\epsilon) \)
Backtracking line search

initialize t_k at $\hat{t} > 0$ (for example, $\hat{t} = 1$) and take $t_k := \beta t_k$ until

$$f(x_k - t_k \nabla f(x_k)) < f(x_k) - \alpha t_k \|\nabla f(x_k)\|^2_2$$

$0 < \beta < 1$; we will take $\alpha = 1/2$ (mostly to simplify proofs)
Analysis for backtracking line search

line search with $\alpha = 1/2$, if f has a Lipschitz continuous gradient

$$f(x_k) - t(1 - \frac{tL}{2})\|\nabla f(x_k)\|_2^2$$

selected step size satisfies $t_k \geq t_{\min} = \min\{\hat{t}, \beta/L\}$
Gradient method with backtracking line search

• from line search condition and convexity of f,

$$f(x_{i+1}) \leq f(x_i) - \frac{t_i}{2} \| \nabla f(x_i) \|^2$$

$$\leq f^* + \nabla f(x_i)^T (x_i - x^*) - \frac{t_i}{2} \| \nabla f(x_i) \|^2$$

$$= f^* + \frac{1}{2t_i} \left(\| x_i - x^* \|^2 - \| x_{i+1} - x^* \|^2 \right)$$

• this implies $\| x_{i+1} - x^* \|_2 \leq \| x_i - x^* \|_2$, so we can replace t_i with $t_{\text{min}} \leq t_i$:

$$f(x_{i+1}) - f^* \leq \frac{1}{2t_{\text{min}}} \left(\| x_i - x^* \|^2 - \| x_{i-1} - x^* \|^2 \right)$$

• adding the upper bounds gives same $1/k$ bound as with constant step size

$$f(x_k) - f^* \leq \frac{1}{k} \sum_{i=1}^{k} (f(x_i) - f^*) \leq \frac{1}{2kt_{\text{min}}} \| x_0 - x^* \|^2$$
Gradient method for strongly convex functions

better results exist if we add strong convexity to the assumptions on p. 1.23

Analysis for constant step size

if \(x^+ = x - t \nabla f(x) \) and \(0 < t \leq 2/(m + L) \):

\[
\| x^+ - x^* \|^2_2 = \| x - t \nabla f(x) - x^* \|^2_2 \\
= \| x - x^* \|^2_2 - 2t \nabla f(x)^T (x - x^*) + t^2 \| \nabla f(x) \|^2_2 \\
\leq (1 - t \frac{2mL}{m + L}) \| x - x^* \|^2_2 + t(t - \frac{2}{m + L}) \| \nabla f(x) \|^2_2 \\
\leq (1 - t \frac{2mL}{m + L}) \| x - x^* \|^2_2
\]

(step 3 follows from result on page 1.22)
Distance to optimum

\[\|x_k - x^*\|_2^2 \leq c^k \|x_0 - x^*\|_2^2, \quad c = 1 - t \frac{2mL}{m + L} \]

- implies (linear) convergence
- for \(t = 2/(m + L) \), get \(c = \left(\frac{\gamma - 1}{\gamma + 1} \right)^2 \) with \(\gamma = L/m \)

Bound on function value (from page 1.14)

\[f(x_k) - f^* \leq \frac{L}{2} \|x_k - x^*\|_2^2 \leq \frac{c^k L}{2} \|x_0 - x^*\|_2^2 \]

Conclusion: number of iterations to reach \(f(x_k) - f^* \leq \epsilon \) is \(O(\log(1/\epsilon)) \)
Limits on convergence rate of first-order methods

First-order method: any iterative algorithm that selects x_{k+1} in the set

$$x_0 + \text{span}\{\nabla f(x_0), \nabla f(x_1), \ldots, \nabla f(x_k)\}$$

Problem class: any function that satisfies the assumptions on page 1.23

Theorem (Nesterov): for every integer $k \leq (n - 1)/2$ and every x_0, there exist functions in the problem class such that for any first-order method

$$f(x_k) - f^* \geq \frac{3}{32} \frac{L\|x_0 - x^*\|_2^2}{(k + 1)^2}$$

- suggests $1/k$ rate for gradient method is not optimal
- more recent accelerated gradient methods have $1/k^2$ convergence (see later)
References

• Yu. Nesterov, *Lectures on Convex Optimization* (2018), section 2.1. (The result on page 1.32 is Theorem 2.1.7 in the book.)

• The example on page 1.4 is from N. Z. Shor, *Nondifferentiable Optimization and Polynomial Problems* (1998), page 37.