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Nonlinear least squares

minimize g(x) =
m∑

i=1
fi(x)2 = ‖ f (x)‖22

• f : Rn → Rm is a differentiable function f (x) = ( f1(x), . . . , fm(x)) of n-vector x

• in general, a nonconvex optimization problem

• linear least squares is special case with f (x) = Ax − b

x? = A+b, g(x?) = ‖(I − AA+)b‖22 = bT(I − AA+)b

A+ is the pseudo-inverse: A+ = (AT A)−1AT if A has full column rank

• as in lecture 14 we denote the m × n Jacobian matrix of f by f ′(x):

f ′(x) =

∇ f1(x)T

...

∇ fm(x)T


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Model fitting

minimize
N∑

i=1
( f̂ (u(i), θ) − v(i))2

• model f̂ (u, θ) depends on model parameters θ1, . . . , θp

• (u(1), v(1)), . . . , (u(N), v(N)) are data points

• the minimization is over the model parameters θ

Example f̂ (u, θ)
f̂ (u, θ) = θ1 exp(θ2u) cos(θ3u + θ4)

u
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Orthogonal distance regression

minimize the mean square distance of data points to graph of f̂ (u, θ)

Example: orthogonal distance regression with cubic polynomial

f̂ (u, θ) = θ1 + θ2u + θ3u2 + θ4u3

standard least squares fit
u

f̂ (u, θ)

orthogonal distance fit
u

f̂ (u, θ)
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Nonlinear least squares formulation

minimize
N∑

i=1

(
( f̂ (w(i), θ) − v(i))2 + ‖w(i) − u(i)‖22

)
• optimization variables are model parameters θ and N points w(i)

• ith term is squared distance of data point (u(i), v(i)) to point (w(i), f̂ (w(i), θ))

di

(w(i), f̂ (w(i), θ))

(u(i), v(i))

d2
i = ( f̂ (w(i), θ) − v(i))2 + ‖w(i) − u(i)‖2

2

• minimizing d2
i over w(i) gives squared distance of (u(i), v(i)) to graph

• minimizing
∑

i d2
i over w(1), . . . , w(N) and θ minimizes mean squared distance
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Location from multiple camera views

camera center

x′
x

principal axis

image plane

Camera model: described by parameters A ∈ R2×3, b ∈ R2, c ∈ R3, d ∈ R
• object at location x ∈ R3 creates image at location x′ ∈ R2 in image plane

x′ =
1

cT x + d
(Ax + b)

cT x + d > 0 if object is in front of the camera

• A, b, c, d characterize the camera, and its position and orientation
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Location from multiple camera views

• an object at location xex is viewed by l cameras (described by Ai, bi, ci, di)

• the image of the object in the image plane of camera i is at location

yi =
1

cT
i xex + di

(Aixex + bi) + vi

• vi is measurement or quantization error

• goal is to estimate 3-D location xex from the l observations y1, . . . , yl

Nonlinear least squares estimate: compute estimate x̂ by minimizing

l∑
i=1






 1
cT

i x + di
(Aix + bi) − yi






2

2
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Gauss–Newton method

minimize ‖ f (x)‖22 =
m∑

i=1
fi(x)2

start at some initial guess x0, and repeat for k = 1,2, . . .:

• linearize f around xk :

f (x) ≈ f (xk) + f ′(xk)(x − xk)

• substitute affine approximation for f in least squares problem:

minimize


 f (xk) + f ′(xk)(x − xk)



2
2

• take the solution of this linear least squares problem as xk+1
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Gauss–Newton update

least squares problem solved in iteration k:

minimize ‖ f ′(xk)(x − xk) + f (xk)‖22

• if f ′(xk) has full column rank, solution is given by

xk+1 = xk − ( f ′(xk)T f ′(xk))−1 f ′(xk)T f (xk)
= xk − f ′(xk)+ f (xk)

• Gauss–Newton step vk = xk+1 − xk is the solution of the linear LS problem

minimize ‖ f ′(xk)v + f (xk)‖22

• to improve convergence, can add line search and update xk+1 = xk + tkvk
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Newton and Gauss–Newton steps

minimize g(x) = ‖ f (x)‖22 =
m∑

i=1
fi(x)2

Newton step at x = xk :

vnt = −∇2g(x)−1∇g(x)

= −
(

f ′(x)T f ′(x) +
m∑

i=1
fi(x)∇2 fi(x)

)−1

f ′(x)T f (x)

Gauss–Newton step at x = xk (from previous page):

vgn = −
(

f ′(x)T f ′(x)
)−1

f ′(x)T f (x)

• this can be written as vgn = −H−1∇g(x) where H = 2 f ′(x)T f ′(x)
• H is the Hessian without the terms fi(x)∇2 fi(x)
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Comparison

Newton step

• requires second derivatives of f

• not always a descent direction (∇2g(x) is not necessarily positive definite)

• fast convergence near local minimum

Gauss–Newton step

• does not require second derivatives

• a descent direction: H = 2 f ′(x)T f ′(x) � 0 (if f ′(x) has full column rank)

• local convergence to x? is similar to Newton method if

m∑
i=1

fi(x?)∇2 fi(x?)

is small (e.g., f (x?) is small, or f is nearly affine around x?)
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Levenberg–Marquardt method

addresses two difficulties in Gauss–Newton method:

• how to update xk when columns of f ′(xk) are linearly dependent

• what to do when the Gauss–Newton update does not reduce ‖ f (x)‖22

Levenberg–Marquardt method

compute xk+1 by solving a regularized least squares problem

minimize ‖ f ′(xk)(x − xk) + f (xk)‖22 + λk ‖x − xk ‖22

• second term forces x to be close to xk where local approximation is accurate

• with λk > 0, always has a unique solution (no rank condition on f ′(xk))
• a proximal point update with convexified cost function

Gauss–Newton method 16.12



Levenberg–Marquardt update

regularized least squares problem solved in iteration k

minimize


 f ′(xk)(x − xk) + f (xk)



2
2 + λk ‖x − xk ‖22

• solution is given by

xk+1 = xk −
(

f ′(xk)T f ′(xk) + λk I
)−1

f ′(xk)T f (xk)

• Levenberg–Marquardt step vk = xk+1 − xk is

vk = −
(

f ′(xk)T f (xk) + λk I
)−1

f ′(xk)T f (xk)

= −1
2

(
f ′(xk)T f ′(xk) + λk I

)−1
∇g(xk)

• for λk = 0 this is the Gauss–Newton step (if defined); for large λk ,

vk ≈ −
1

2λk
∇g(xk)
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Regularization parameter

several strategies for adapting λk are possible; for example:

• at iteration k, compute the solution v of

minimize


 f ′(xk)v + f (xk)



2
2 + λk ‖v‖22

• if ‖ f (xk + v)‖22 < ‖ f (xk)‖22, take xk+1 = xk + v and decrease λ

• otherwise, do not update x (take xk+1 = xk), but increase λ

Some variations

• compare actual cost reduction with reduction predicted by linearized problem

• solve a least squares problem with trust region

minimize ‖ f ′(xk)v + f (xk)‖22
subject to ‖v‖2 ≤ γ
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Summary: Levenberg–Marquardt method

choose x0 and λ0 and repeat for k = 0,1, . . .:

1. evaluate f (xk) and A = f ′(xk)
2. compute solution of regularized least squares problem:

x̂ = xk − (AT A + λk I)−1AT f (xk)

3. define xk+1 and λk+1 as follows:{
xk+1 = x̂ and λk+1 = β1λk if ‖ f (x̂)‖22 < ‖ f (xk)‖22
xk+1 = xk and λk+1 = β2λk otherwise

• β1, β2 are constants with 0 < β1 < 1 < β2

• terminate if ∇g(xk) = 2AT f (xk) is sufficiently small
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Separable nonlinear least squares

minimize ‖A(y)x − b(y)‖22

• A : Rp→ Rm×n and b : Rp→ Rm are differentiable functions

• variables are x ∈ Rm and y ∈ Rp

• reduces to linear least squares if A(y) and b(y) are constant

Example: the separable structure is common in model fitting problems

minimize
N∑

i=1

(
f̂ (u(i), θ) − v(i)

)2

• model f̂ is linear combination of parameterized basis functions: θ = (x, y) and

f̂ (u, θ) = x1h1(u, y) + · · · + xphp(u, y)

• variables are coefficients x1, . . . , xp and parameters y
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Derivative notation

f (x, y) = A(y)x − b(y)

• y is a p-vector, x is an n-vector, A(y) is an m × n matrix

• we denote the rows of A(y) by ai(y)T , with ai(y) ∈ Rn:

A(y) =


a1(y)T
...

am(y)T


• the Jacobian of f (x, y) is the m × (n + p) matrix

f ′(x, y) = [
A(y) B(x, y) ]

, where B(x, y) =


xT a′1(y)...

xT a′m(y)

 − b′(y)

here a′i(y) ∈ Rn×p and b′(y) ∈ Rm×p are the Jacobian matrices of ai, b
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Gauss–Newton algorithm

minimize ‖ f (x, y)‖22 = ‖A(y)x − b(y)‖22

• in the Gauss–Newton algorithm we choose for xk+1, yk+1 the solution x, y of

minimize




[ A(yk) B(xk, yk)

] [
x

y − yk

]
− b(yk)





2

2

• if we eliminate x in this problem, we compute yk+1 by solving

minimize


(I − A(yk)A(yk)+

) (B(xk, yk)(y − yk) − b(yk))


2

2

from yk+1, we then find

xk+1 = A(yk)+ (b(yk) − B(xk, yk)(yk+1 − yk))
= argmin

x
‖A(yk)x + B(xk, yk)(yk+1 − yk) − b(yk)‖22
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Variable projection algorithm (VARPRO)

minimize ‖ f (x, y)‖22 = ‖A(y)x − b(y)‖22

• we can also eliminate x in the original nonlinear LS problem, before linearizing

• substituting x = A(y)+b(y) gives an equivalent nonlinear least squares problem

minimize


(I − A(y)A(y)+) b(y)



2
2

• the Gauss–Newton applied to this problem is known as variable projection

• to improve convergence, we can add a step size or use Levenberg–Marquardt
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Simplified variable projection

a further simplification results in the following iteration

1. compute x̂ = A(yk)+b(yk), by solving the linear least squares problem

minimize ‖A(yk)x − b(yk)‖22
2. compute yk+1 as the solution y of a second linear least squares problem

minimize


(I − A(yk)A(yk)+

) (B(x̂, yk)(y − yk) − b(yk))


2

2

Interpretation

• step 2 is equivalent to solving the linear least squares problem

minimize




[ A(yk) B(x̂, yk)

] [
x

y − yk

]
− b(yk)





2

2

in the variables x, y, and using the solution y as yk+1

• cf., GN update of p. 16.18: we replace xk in B(xk, yk) with a better estimate x̂
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