L. Vandenberghe ECE236C (Spring 2020)

16. Gauss—Newton method

e definition and examples
e Gauss—Newton method
e Levenberg—Marquardt method

e separable nonlinear least squares
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Nonlinear least squares

minimize g(x) = Z fi(x)? = ||f(x)||§
i=1

e f:R"” — R"is adifferentiable function f(x) = (fi(x),..., fiu(x)) of n-vector x
e in general, a nonconvex optimization problem

e linear least squares is special case with f(x) = Ax — b
X*=ATh,  g(x*) = ||(I - AAN)D|3 = b (I - AAM)D

AT is the pseudo-inverse: A" = (AT A)~' AT if A has full column rank

e as in lecture 14 we denote the m X n Jacobian matrix of f by f’(x):

R
f(x) = :

VT
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Model fitting

N . .
minimize Z(f(u(’), 9) — v')?
i=1

e model f(u,8) depends on model parameters 6y, ..., 6,
e (M, oMy . ™ M) are data points

e the minimization is over the model parameters 6
Example Fu,0)

f(u,0) = 0, exp(6u) cos(93u + 64)
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Orthogonal distance regression

minimize the mean square distance of data points to graph of f(u, 6)

Example: orthogonal distance regression with cubic polynomial
f(u,0) = 0] + Oou + O3u” + Oqu°

f(u,6) f(u,6)

standard least squares fit orthogonal distance fit
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Nonlinear least squares formulation
N A . . . .
minimize Z ((f(w(l), 0) — U(l))2 n ||w(l) _ u(l)H%)
i=1

e optimization variables are model parameters 68 and N points w®

e ith term is squared distance of data point ('), v®) to point (w®, f(w'?), 9))

(@) @)
(u,0®),

i d? = (f(w®,0) = oD + [lw® - u®|2

(w®, f(w®,6))

e minimizing d? over w'” gives squared distance of (u"),v(")) to graph

e minimizing >; all.2 over wD, ..., w®™ and 6 minimizes mean squared distance
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Location from multiple camera views

xl /
o
/
o/ ® >
camera center principal axis
image plane

Camera model: described by parameters A €e R¥>3, b e R%, c e R?,d e R

e object at location x € R creates image at location x” € R? in image plane

1
xX =——(Ax+b
ch+d( )

c!'x + d > 0 if object is in front of the camera

e A, b, c, d characterize the camera, and its position and orientation
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Location from multiple camera views

e an object at location x. is viewed by [ cameras (described by A;, b;, ¢;, d;)

e the image of the object in the image plane of camera i is at location

|

Vi = 7 (AiXex + bi) + vj
Cl XeX + dl

e y; is measurement or quantization error

e goal is to estimate 3-D location x¢x from the [/ observations yy, ..., y;

Nonlinear least squares estimate: compute estimate X by minimizing

2

1
—(Aix + b;) — v;
CZ.TX N di( i l) Vi

MN

i=1

2
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Gauss—Newton method

m
L 2 2
minimize || f(0)II3 = > fi(x)
i=1
start at some initial guess xp, and repeat for k = 1,2,.. .

e linearize f around xy:
fx) ~ flxr) + f/(xe)(x = xk)
e substitute affine approximation for f in least squares problem:
minimize || f(x) + £/ Ge)(x = xo)|[5

e take the solution of this linear least squares problem as xj .
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Gauss—Newton update

least squares problem solved in iteration k:
minimize || f/(xx)(x = x) + £ ()l
e if f’(x;) has full column rank, solution is given by

Xer1 = = (F ) )T )T f ()
= xx— f ()" f(xe)

e Gauss—Newton step v = xi41 — Xxi is the solution of the linear LS problem

minimize || f'(xx)v + f(xk)||§

e to improve convergence, can add line search and update x; .1 = x; + ;v
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Newton and Gauss—Newton steps

m
minimize  g(x) = || f(x)[l3 = > fi(x)?
=1
Newton step at x = xy:

o = —VZg(x) 'Vg(x)

-1
_ -(f’<x>Tf'<x>+Zﬁ<x>v2ﬁ<x>) @) f ()
i=1

Gauss—Newton step at x = x; (from previous page):
-1
g = = (£ 7 0) £ ()

e this can be written as vy, = —H 'Vg(x) where H = 2f"(x)T f'(x)

e H is the Hessian without the terms fi(x)V? fi(x)
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Comparison

Newton step

e requires second derivatives of f
e not always a descent direction (Vzg(x) is not necessarily positive definite)

e fast convergence near local minimum

Gauss—Newton step

e does not require second derivatives
e adescent direction: H = 2f(x)! f'(x) > 0 (if f'(x) has full column rank)

e local convergence to x* is similar to Newton method if
S 2
2 iV fi(x™)
i=1
is small (e.g., f(x*)is small, or f is nearly affine around x*)
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Levenberg—Marquardt method

addresses two difficulties in Gauss—Newton method:

e how to update x; when columns of f’(x;) are linearly dependent

e what to do when the Gauss—Newton update does not reduce ||f(x)||§

Levenberg—Marquardt method

compute xj .1 by solving a regularized least squares problem
.. ) 2
minimize || f'(xx)(x — xz) + fx)lls + Akllx = xill3

e second term forces x to be close to x; where local approximation is accurate
e with A; > 0, always has a unique solution (no rank condition on f’(xy))

e a proximal point update with convexified cost function
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Levenberg—Marquardt update

regularized least squares problem solved in iteration k
L 2
minimize ||/ (xe)(x — x) + £Gx)||5 + Ak llx = xill5
e solution is given by
/ T 7 -1 / T
Xk+1 = Xk — (f (xk)" f (xp) + Al ) S ()" f (xx)

e |evenberg—Marquardt step vy = Xp41 — X IS

e = (" 0+ ) G f )

1
= —% (f'(xk)Tf'(Xk)+/1k1) Ve(xk)

e for A; = 0 this is the Gauss—Newton step (if defined); for large Ay,

1

NV
Uk 0 g(xi)
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Regularization parameter

several strategies for adapting A are possible; for example:

e atiteration k£, compute the solution v of

minimize || (x)o + £()||s + Aol

o if || f(xk +0)lI5 < lf(x)ll5, take xg41 = xi + v and decrease A

e otherwise, do not update x (take x;,; = xi), but increase A

Some variations

e compare actual cost reduction with reduction predicted by linearized problem

e solve a least squares problem with trust region

minimize || f"(x)v + f(x)ll3
subjectto ||v]|]x < vy
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Summary: Levenberg—Marquardt method

choose xg and Ag and repeat for k = 0, 1,. . .

1. evaluate f(x;)and A = f'(xy)

2. compute solution of regularized least squares problem:

f=xp—(ATA+ D)7 AT £(xp)

3. define x;1 and A, as follows:

{ Xer1 = £ and Aggr = B IR < 1 (xo)ll3

Xi+] = X and Agy1 = BrAdr  otherwise

e (31, Brareconstants with0 < 81 <1 < B

e terminate if Vg(xz) = 24T f(x;) is sufficiently small
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Separable nonlinear least squares

minimize  ||A(y)x — b(Y)”%

e A:RP - R™" and b : R” — R™ are differentiable functions
e variables are x € R and y € R?

e reduces to linear least squares if A(y) and b(y) are constant

Example: the separable structure is common in model fitting problems
N N2
minimize Z (f(u(l), 0) — v(’))
i=1

e model f is linear combination of parameterized basis functions: 6 = (x, y) and

f\(u’ 9) = X]hl(u,y) +-e- xphp(u’ y)
e variables are coefficients xi, ..., x, and parameters y
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Derivative notation

f(x,y) = A(y)x — b(y)

e yis a p-vector, x is an n-vector, A(y) is an m X n matrix

e we denote the rows of A(y) by a;(y)!, with g;(y) € R":

Ca(y)
A(y) = =

I am(y)T ]
e the Jacobian of f(x,y) is the m X (n + p) matrix
Xl (y)

: - b'(y)
xlal,(y) |

f(x,y)=| A(y) B(x,y) |,  where B(x,y) =

here a;(y) € R™? and b'(y) € R"™*? are the Jacobian matrices of a;, b
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Gauss—Newton algorithm

minimize || £(x, »)|l5 = [|A()x — b(»)|I3

e in the Gauss—Newton algorithm we choose for x;.1, yr+1 the solution x, y of

2
X

Y~ Yk

minimize H[ A(yk) B(xi, yk) | [ ] — b(yk)

2

e if we eliminate x in this problem, we compute y; .1 by solving
L 2
minimize  |(7 = AG)AGR)"Y) (Bl v = i) = b))
from yr41, we then find

Xkl = AT (k) = B(xk, yi) k41 — Vi)
argmin [|A(yi)x + B(xk, i) Ok+1 = Yi) = bl
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Variable projection algorithm (VARPRO)

minimize  ||£(x, y)|l5 = [IA()x — b(»)I3

e we can also eliminate x in the original nonlinear LS problem, before linearizing

e substituting x = A(y)"b(y) gives an equivalent nonlinear least squares problem
L 2
minimize  ||(1 - A()A()T) bO)|;

e the Gauss—Newton applied to this problem is known as variable projection

e to improve convergence, we can add a step size or use Levenberg—Marquardt
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Simplified variable projection
a further simplification results in the following iteration
1. compute £ = A(yx)"b(y), by solving the linear least squares problem
minimize || A(yx)x = b(y)ll3

2. compute y;,1 as the solution y of a second linear least squares problem
L . 2
minimize  ||(I — Ay A(ye)*) (B(E,y)(y — yk) — b))

Interpretation

e step 2 is equivalent to solving the linear least squares problem

2
X

minimize H[ A(yr) B yi) | [ N

] — b(yk)

2

in the variables x, y, and using the solution y as yj1

e cf., GN update of p. 16.18: we replace xj in B(xg, y;) with a better estimate X
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