L. Vandenberghe EE236C (Spring 2013-14)

Cutting-plane methods

e cutting planes

e localization methods



Cutting-plane oracle
provides a black-box description of a convex set C

e when queried at z, oracle either asserts x € C' or returns a # 0, b with

a,Tbe, a’z<b VzeC
a’z = b defines a cutting plane, separating = and C

e cut is neutral if a’z = b: query point is on boundary of halfspace

e cut is deep if a’z > b: query point in interior of halfspace that is cut
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Localization method

goal: find a point in convex set C' described by cutting-plane oracle

algorithm: choose bounded set Py containing C'; repeat for £ > 1:

e choose a point () in P,_; and query the cutting-plane oracle at z(*)

o if z(F) € C. return z(¥): else, add cutting plane a{z < by, to Pr_1:
Pr="Pr1N{z|aiz < by}

terminate if Pr. = ()

variation: to keep Py simple, choose Pr 2 Pr_1N{z | alz < by}

we'll discuss specific algorithms later
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geometry

Pi. gives uncertainty of C' after iteration k
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Unconstrained minimization

C' is optimal set for convex f

neutral cut: if f(x) > f* and g € 0f(x), then a neutral cut at z is

gTz < ng

proof: g7z > gl implies f(2) > f(z) + gL' (z — 2) > f(x) > f*

interpretation: by evaluating g € 0f(x)
e we rule out halfspace in search for x € C

e we get one ‘bit’ of info on C
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Deep cut for unconstrained minimization

suppose we know a number f with

fla) > f=f*

for example, f is the smallest value of f found so far in an algorithm

deep cut: if f(x) > f* and g € 0f(x), then a deep cut at x is given by

g z<g'z—flx)+ f

proof: g7z > gTx — f(x) + f implies

f(2) > f(x)+g"(z—2) > f> f*
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Feasibility problem

C' is solution set of convex inequalities

deep cut: if z & C, find j with f;(z) > 0 and evaluate g; € 0f;(x);

9; 2 < gjx— fi(z)
is a deep cut at x

proof: gz > glx — fj(x) implies z ¢ C because

fi(z) > fi(x) + ng(z —x)>0
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Inequality constrained problem

C' is optimal set of convex problem

minimize  fo(z)
subject to  fi(x) <0, i=1,...,m

feasibility cut: if x is not feasible, say f;(z) > 0, we have a deep cut

gfz < gfa: — fi(x) where g; € Of;(z)

objective cut: if x is feasible, but fo(x) > p* + €, we have a neutral cut
90z < gox where go € 9 fo(x)

moreover, if f with fo(x) > f > p* is known, we have a deep cut

gz <gox— folz)+ f
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Variational inequality

monotone mapping: a mapping F' : R” — R" is monotone if

(F(z) = F(y)' (x—y) >0 Va,y

monotone variational inequality: given closed convex S, find £ € .S with

F(&)'(x—2)>0 VezeSs

—F(z)

equivalently, £ = Pg (2 — F'(&)) where Pg is projection on S
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Convex optimization problem as variational inequality

variational inequality with F'(x) = V f(x):
x e S, Vi)' (x—2)>0 VYres

e F'is monotone if f is convex (see p. 1-9)

e variational inequality is optimality condition for convex problem

minimize  f(x)
subjectto z € S

(see EE236B page 4-9)

note: in the general variational inequality, F' is not necessarily a gradient
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Saddle-point problem

suppose f(u,v) is convex in u, concave in v, and U, V are convex sets

saddle point: (u,?0) € U x V is a saddle point if

flu,v) < f(a,0) < f(u, ) VueUwveV

variational inequality formulation (for differentiable f):
Vof(a,) 17 [ u—1
[ - )] [ AIZO V(u,v) e U x V

e U minimizes f(u,?) over u € U; ¥ minimizes — f (4, v) over v € V

e a variational inequality with F(u,v) = (V fy(u,v), =V fu(u,v))
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monotonicity of F'(u,v) = (V fy(u,v), =V fyu(u,v))

if f is convex-concave, then for all w = (u,v), W = (u, ?)

(F(w) = F(w))" (w — )
= (Vuf(w) = Vuf(@))" (u = a) = (Vof (w) = Vo f(@))" (v = 0)
> —fla,v) + fu,v) = f(u,0) + f(u,0) + f(u,?) = f(u,v)

+ f(@,v) = f(u,)

0
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Cutting planes for variational inequality

to generate cutting plane at x

o if x &S, use feasibility cut (cutting plane that separates x from 5)

e if x €5 and not a solution, use the cutting plane

Fx)'2 < F(x)'x

proof: if F'(x)12 > F(z)Tx then, by monotonicity,
F)'(z—2)>Fx)'(z—2) >0

therefore z is not a solution of the variational inequality
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Outline

e cutting planes

e cutting-plane methods



Choice of query point

should be near center of Pj,_1
j ! Pr—1 ’ Pr-1
Il Pr-1

want to pick z(*) so that Py is as small as possible, for any cut

i,
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Example: bisection in R

for minimizing differentiable convex f : R — R

given: interval Py = [l, u] containing z*
repeat:

= (l+u)/2;

if f'(z)<0,l:=x; elseu:=x

kD) P

Pri1

Cutting-plane methods

15



iteration complexity

length(Pr_1)  length(Po)
2 - 2k

length(Py) =

e length(P)) measures uncertainty in z*

e uncertainty is halved at each iteration (exactly one bit of info)

#steps required to reduce uncertainty (in z*) to below r:

length(Py) initial uncertainty

k = log, = log,

final uncertainty
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Specific cutting-plane algorithms

methods vary in choice of query point

center of gravity (CG) algorithm

z(*) is center of gravity of Pj_;

maximum volume ellipsoid (MVE) cutting-plane method

2(*) is center of maximum volume ellipsoid contained in Pj_1

Chebyshev center cutting-plane method

2(*) is center of largest ball contained in Pj_1

analytic center cutting-plane method (ACCPM) (next lecture)

2(¥) is analytic center of (inequalities defining) Py_1
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Lower bound on complexity

problem class: find x € C C R"

e (' is convex

e (C is contained in {z | ||%||c0 < R}
e (' contains an {,.-norm ball of radius r

e (' is described by a cutting-plane oracle

bound on complexity

no localization algorithm can guarantee a complexity lower than

R
n log, (Z)

iterations (queries to oracle)
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proof: suppose we run a localization algorithm for
k < nlogy(R/(2r)) iterations

we will construct a ‘resisting oracle’ for a hyperrectangle
C={zr|c—d=zx=<c+d}

that does not contain any of the k£ query points and satisfies

k >
oTk/n] =

max (|¢;| + d;) < R, min d; >
1 1

therefore, the algorithm failed to find a point in C' in k steps even though

7z —cleo <7y CCC iz ||zl < R}
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the oracle and ¢, d are constructed as follows: initially, c=0, d =R

at iteration j,

e definei=j —n|(j—1)/n| (i.e., cycle through the n coordinates)
e if x is the query point at iteration j, then

— if x; > ¢;, update ¢, d as
C;, \— Ci—di/Q, dz = dz/2

and return the cut el (z — ) <0

— if x; < ¢;, update ¢, d as
C;, - — Cz—l—dz/Q, dz = dz/2

and return the cut —e/ (z — ) <0
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Center of gravity algorithm

choose as z(¥) the center of gravity of Pr_1 (denoted CG(Px_1))

/ r dx

Pr—1

/ dx
Pr—1

") = CG(Pr_q) =

theorem: if S C R" convex, z., = CG(S), g # 0,
vol (S N {z | g"(xz — z4) <0}) < (1—1/e)vol(5)

(independent of dimension n)
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Convergence of CG cutting-plane method

assumptions

o PoC {z||2]loc < R}

e (' contains an ¢..-ball of radius r

iteration complexity

if (1), ... 2(®) & C, then C' C Py (no part of C is cut) and

(2r)" < vol(Py) < (1 _ 1) " vol(Py) < (1 _ 1) " 2Ry

€ €

therefore
nlog(R/r)

R
k< — 151 nlog, (=
— —log(1—1/e) e <'f“>
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advantages of CG-method

e guaranteed convergence
e affine-invariance

e iteration complexity is near optimal (see page 18)

disadvantage
finding *) = CG(Px_1) is much harder than original problem

(but, can modify CG-method to work with approximate CG computation)

Cutting-plane methods

23



Maximum volume ellipsoid method

z(%) is center of maximum volume ellipsoid in Py_;

e can be computed via convex optimization

e affine-invariant

complexity
e can show vol(Px4+1) < (1 —1/n) vol(Py)

e hence can bound number of steps:

nlog(R/r)
k< —log(1 —1/n)

~ n’log(R/T)

if cutting-plane oracle cost is not small, MVE is a good practical method

Cutting-plane methods



Extensions

multiple cuts

e oracle returns set of linear inequalities instead of just one, e.g.,

— all violated inequalities
— all inequalities (including shallow cuts)
— multiple deep cuts

e at each iteration, append (set of) new inequalities to those defining Py

nonlinear cuts

e use nonlinear convex inequalities instead of linear ones
e |ocalization set no longer a polyhedron

e some methods (e.g., ACCPM) still work
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Dropping constraints

the problem

e number of linear inequalities defining Pj increases at each iteration

e hence, computational effort to compute z(*T1) increases

solutions

e drop redundant constraints
e keep only a fixed number of (the most relevant) constraints

e at each iteration, replace localization set by upper bound

first two solutions discussed in lecture : third solution in lecture
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Epigraph cutting-plane method
cutting-plane method applied to epigraph form problem

minimize ¢
subject to  fy(x) <t
fz($)§0, izl,...,m

cutting-plane oracle (queried at x)

e if x is infeasible for original problem (say, f;(z) > 0), add cutting-plane
9; ! <
MEHE R ORI )
e if x is feasible for original problem, add two cutting-planes

3 [s)sma (AT [3]esenir wsonie
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