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Cutting-plane methods

• cutting planes

• localization methods
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Cutting-plane oracle

provides a black-box description of a convex set C

• when queried at x, oracle either asserts x ∈ C or returns a 6= 0, b with

aTx ≥ b, aTz ≤ b ∀z ∈ C

aTz = b defines a cutting plane, separating x and C

• cut is neutral if aTx = b: query point is on boundary of halfspace

• cut is deep if aTx > b: query point in interior of halfspace that is cut
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Localization method

goal: find a point in convex set C described by cutting-plane oracle

algorithm: choose bounded set P0 containing C; repeat for k ≥ 1:

• choose a point x(k) in Pk−1 and query the cutting-plane oracle at x(k)

• if x(k) ∈ C, return x(k); else, add cutting plane aTk z ≤ bk to Pk−1:

Pk = Pk−1 ∩ {z | aTk z ≤ bk}

terminate if Pk = ∅

variation: to keep Pk simple, choose Pk ⊇ Pk−1 ∩ {z | aTk z ≤ bk}

we’ll discuss specific algorithms later
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geometry

Pk−1

x(k) x(k)

ak ak

Pk

Pk gives uncertainty of C after iteration k
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Unconstrained minimization

C is optimal set for convex f

neutral cut: if f(x) > f⋆ and g ∈ ∂f(x), then a neutral cut at x is

gTz ≤ gTx

proof: gTz > gTx implies f(z) ≥ f(x) + gT (z − x) > f(x) > f⋆

interpretation: by evaluating g ∈ ∂f(x)

• we rule out halfspace in search for x ∈ C

• we get one ‘bit’ of info on C
g

x
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Deep cut for unconstrained minimization

suppose we know a number f̄ with

f(x) > f̄ ≥ f⋆

for example, f̄ is the smallest value of f found so far in an algorithm

deep cut: if f(x) > f⋆ and g ∈ ∂f(x), then a deep cut at x is given by

gTz ≤ gTx− f(x) + f̄

proof: gTz > gTx− f(x) + f̄ implies

f(z) ≥ f(x) + gT (z − x) > f̄ ≥ f⋆
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Feasibility problem

C is solution set of convex inequalities

fi(x) ≤ 0, i = 1, . . . ,m

deep cut: if x 6∈ C, find j with fj(x) > 0 and evaluate gj ∈ ∂fj(x);

gTj z ≤ gTj x− fj(x)

is a deep cut at x

proof: gTj z > gTj x− fj(x) implies z 6∈ C because

fj(z) ≥ fj(x) + gTj (z − x) > 0
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Inequality constrained problem

C is optimal set of convex problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

feasibility cut: if x is not feasible, say fj(x) > 0, we have a deep cut

gTj z ≤ gTj x− fj(x) where gj ∈ ∂fj(x)

objective cut: if x is feasible, but f0(x) > p⋆ + ǫ, we have a neutral cut

gT0 z ≤ gT0 x where g0 ∈ ∂f0(x)

moreover, if f̄ with f0(x) > f̄ ≥ p⋆ is known, we have a deep cut

gT0 z ≤ gT0 x− f0(x) + f̄
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Variational inequality

monotone mapping: a mapping F : Rn → Rn is monotone if

(F (x)− F (y))
T
(x− y) ≥ 0 ∀x, y

monotone variational inequality: given closed convex S, find x̂ ∈ S with

F (x̂)T (x− x̂) ≥ 0 ∀x ∈ S

S
x̂

−F (x̂)

equivalently, x̂ = PS (x̂− F (x̂)) where PS is projection on S
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Convex optimization problem as variational inequality

variational inequality with F (x) = ∇f(x):

x̂ ∈ S, ∇f(x̂)T (x− x̂) ≥ 0 ∀x ∈ S

• F is monotone if f is convex (see p. 1-9)

• variational inequality is optimality condition for convex problem

minimize f(x)
subject to x ∈ S

(see EE236B page 4–9)

note: in the general variational inequality, F is not necessarily a gradient
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Saddle-point problem

suppose f(u, v) is convex in u, concave in v, and U , V are convex sets

saddle point: (û, v̂) ∈ U × V is a saddle point if

f(û, v) ≤ f(û, v̂) ≤ f(u, v̂) ∀u ∈ U, v ∈ V

variational inequality formulation (for differentiable f):

[

∇uf(û, v̂)
−∇vf(û, v̂)

]T [

u− û
v − v̂

]

≥ 0 ∀(u, v) ∈ U × V

• û minimizes f(u, v̂) over u ∈ U ; v̂ minimizes −f(û, v) over v ∈ V

• a variational inequality with F (u, v) = (∇fu(u, v),−∇fv(u, v))
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monotonicity of F (u, v) = (∇fu(u, v),−∇fv(u, v))

if f is convex-concave, then for all w = (u, v), ŵ = (û, v̂)

(F (w)− F (ŵ))T (w − ŵ)

= (∇uf(w)−∇uf(ŵ))
T (u− û)− (∇vf(w)−∇vf(ŵ))

T (v − v̂)

≥ −f(û, v) + f(u, v)− f(u, v̂) + f(û, v̂) + f(u, v̂)− f(u, v)

+ f(û, v)− f(û, v̂)

= 0
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Cutting planes for variational inequality

to generate cutting plane at x

• if x 6∈ S, use feasibility cut (cutting plane that separates x from S)

• if x ∈ S and not a solution, use the cutting plane

F (x)Tz ≤ F (x)Tx

proof: if F (x)Tz > F (x)Tx then, by monotonicity,

F (z)T (z − x) ≥ F (x)T (z − x) > 0

therefore z is not a solution of the variational inequality
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Outline

• cutting planes

• cutting-plane methods



Choice of query point

should be near center of Pk−1

x(k) x(k)

Pk−1Pk−1

Pk Pk

x(k) x(k)

Pk−1 Pk−1

Pk

Pk

want to pick x(k) so that Pk is as small as possible, for any cut

Cutting-plane methods 14



Example: bisection in R

for minimizing differentiable convex f : R → R

given: interval P0 = [l, u] containing x⋆

repeat:
x := (l + u)/2;
if f ′(x) < 0, l := x; else u := x

Pk

Pk+1

x(k+1)
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iteration complexity

length(Pk) =
length(Pk−1)

2
=

length(P0)

2k

• length(Pk) measures uncertainty in x⋆

• uncertainty is halved at each iteration (exactly one bit of info)

#steps required to reduce uncertainty (in x⋆) to below r:

k = log2
length(P0)

r
= log2

initial uncertainty

final uncertainty
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Specific cutting-plane algorithms

methods vary in choice of query point

center of gravity (CG) algorithm

x(k) is center of gravity of Pk−1

maximum volume ellipsoid (MVE) cutting-plane method

x(k) is center of maximum volume ellipsoid contained in Pk−1

Chebyshev center cutting-plane method

x(k) is center of largest ball contained in Pk−1

analytic center cutting-plane method (ACCPM) (next lecture)

x(k) is analytic center of (inequalities defining) Pk−1
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Lower bound on complexity

problem class: find x ∈ C ⊆ Rn

• C is convex

• C is contained in {x | ‖x‖∞ ≤ R}

• C contains an ℓ∞-norm ball of radius r

• C is described by a cutting-plane oracle

2R

2r

C

bound on complexity

no localization algorithm can guarantee a complexity lower than

n log2

(

R

2r

)

iterations (queries to oracle)
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proof: suppose we run a localization algorithm for

k < n log2(R/(2r)) iterations

we will construct a ‘resisting oracle’ for a hyperrectangle

C = {x | c− d � x � c+ d}

that does not contain any of the k query points and satisfies

max
i

(|ci|+ di) ≤ R, min
i

di ≥
R

2⌈k/n⌉
≥ r

therefore, the algorithm failed to find a point in C in k steps even though

{x | ‖x− c‖∞ ≤ r} ⊆ C ⊆ {x | ‖x‖∞ ≤ R}
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the oracle and c, d are constructed as follows: initially, c = 0, d = R

at iteration j,

• define i = j − n⌊(j − 1)/n⌋ (i.e., cycle through the n coordinates)

• if x is the query point at iteration j, then

– if xi ≥ ci, update c, d as

ci := ci − di/2, di := di/2

and return the cut eTi (z − x) ≤ 0

– if xi < ci, update c, d as

ci := ci + di/2, di := di/2

and return the cut −eTi (z − x) ≤ 0
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Center of gravity algorithm

choose as x(k) the center of gravity of Pk−1 (denoted CG(Pk−1))

x(k) = CG(Pk−1) =

∫

Pk−1

x dx

∫

Pk−1

dx

theorem: if S ⊆ Rn convex, xcg = CG(S), g 6= 0,

vol
(

S ∩
{

x | gT (x− xcg) ≤ 0
})

≤ (1− 1/e)vol(S)

(independent of dimension n)
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Convergence of CG cutting-plane method

assumptions

• P0 ⊆ {x | ‖x‖∞ ≤ R}

• C contains an ℓ∞-ball of radius r

iteration complexity

if x(1), . . . , x(k) 6∈ C, then C ⊆ Pk (no part of C is cut) and

(2r)n ≤ vol(Pk) ≤

(

1−
1

e

)k

vol(P0) ≤

(

1−
1

e

)k

(2R)n

therefore

k ≤
n log(R/r)

− log(1− 1/e)
= 1.51n log2

(

R

r

)
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advantages of CG-method

• guaranteed convergence

• affine-invariance

• iteration complexity is near optimal (see page 18)

disadvantage

finding x(k) = CG(Pk−1) is much harder than original problem

(but, can modify CG-method to work with approximate CG computation)
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Maximum volume ellipsoid method

x(k) is center of maximum volume ellipsoid in Pk−1

• can be computed via convex optimization

• affine-invariant

complexity

• can show vol(Pk+1) ≤ (1− 1/n)vol(Pk)

• hence can bound number of steps:

k ≤
n log(R/r)

− log(1− 1/n)
≈ n2 log(R/r)

if cutting-plane oracle cost is not small, MVE is a good practical method
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Extensions

multiple cuts

• oracle returns set of linear inequalities instead of just one, e.g.,

– all violated inequalities
– all inequalities (including shallow cuts)
– multiple deep cuts

• at each iteration, append (set of) new inequalities to those defining Pk

nonlinear cuts

• use nonlinear convex inequalities instead of linear ones

• localization set no longer a polyhedron

• some methods (e.g., ACCPM) still work
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Dropping constraints

the problem

• number of linear inequalities defining Pk increases at each iteration

• hence, computational effort to compute x(k+1) increases

solutions

• drop redundant constraints

• keep only a fixed number of (the most relevant) constraints

• at each iteration, replace localization set by upper bound

first two solutions discussed in lecture ; third solution in lecture
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Epigraph cutting-plane method

cutting-plane method applied to epigraph form problem

minimize t
subject to f0(x) ≤ t

fi(x) ≤ 0, i = 1, . . . ,m

cutting-plane oracle (queried at x)

• if x is infeasible for original problem (say, fj(x) > 0), add cutting-plane

[

gj
0

]T [

z
t

]

≤ gTj x− fj(x) (gj ∈ ∂fj(x))

• if x is feasible for original problem, add two cutting-planes

[

0
1

]T [

z
t

]

≤ f0(x),

[

g0
−1

]T [

z
t

]

≤ gT0 x−f0(x) (g0 ∈ ∂f0(x))
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