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Newton’s method for nonlinear equations

Newton iteration for solving a nonlinear equation f(x) = 0:
L k+1) — (k) f/(x(k))—lf(x(k))

e f:R" — R'is a vector valued function f(x) = (fi(x), ..., fu(x))

e f’(x) isthe n X n Jacobian matrix at x:

oF
—fl(x), i,j=1,...,n
(9Xj

(f'(x))ij =

e xk+1) is the solution of the linearized equation at x(K):

FE )+ x®)(x - xMy =0

we denote the iterates by the simpler notation x; = x () if the meaning is clear
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Matrix norm

in this lecture, operator norms are used for square matrices:

| Ax]|
|Al| = sup
x#0 ||X||

the same (arbitrary) vector norm is used for ||Ax|| and ||x||

Properties (A, B are n X n matrices and x is an n-vector)

e identity matrix: ||I|| =1

e matrix—vector product: ||Ax|| < ||A]|||x]|

e submuiltiplicative property: ||AB|| < ||A||| B

e perturbation lemma: if A is invertible and ||[A~!B|| < 1, then A + B is invertible,

1A~

A+ B)! <
Ia+B) 7 <
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Proof of perturbation lemma
e A+ Bisinvertible: if (A + B)x = 0, then
Ilx[l = |A~" Bx|| < [|A~"B]|||x]]
if |[A~!B|| < 1 this is only possible if x = 0

o Y = (A+ B) ! satisfies (I + A~'B)Y = A~!; therefore

Y| = 1A' -A"!By|
< |A7Y + 1A BY ||
< AT +1A7BY)

from which the inequality in the lemma follows
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Lipschitz property
Lipschitz continuity of Jacobian

1f ) = ff DI < Bllx =yl forallx,y €D

e [3is a positive constant, D is an open convex set

e a common assumption in convergence theory of Newton’'s method

Two consequences

e deviation from linear approximation:

, B
1f () = F0) = =0l < Tl =ylI* forallx,yeD (1)
e distance between function values:

1£G) = FQI < 1Pl =l +5lly =+l forallvye D (2)

(proofs on next page)
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Proof

e inequality (1):
1
FO) = F) = F O —x) = /O (f (x+1(y = x)) = F/()) (v - x) di

1
fo (/e + 1y =) = £()) (v = )| dt

IA

1f () = f@x) = f ) (y =)l

IA

1
Iy x| /0 1 G+ 1y =) — ()l dr

1
Blly - x| fo ¢ di

= Ly -a?

IA

e inequality (2):

G =FOI < I DG =)+, () = fx) =) -x)ll

17 I =0l +5
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Assumptions

e there exists a solution x*
o f/(x*) is invertible with || f/(x*)7!|| < a

e f’is Lipschitz continuous on D = {x | ||x — x*|| < p}:

Lf(x) = ffDI < Bllx =yl forallx,y € D

e the starting point xq is in D and sufficiently close to x™*:

apllxo — x| <

DN | —
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Local convergence

Xee1 =Xk — ) (), k=0,1,...

under the assumptions on the previous page:
e the iteration is well defined, i.e., the Jacobian matrices f’(x;) are invertible
e the iterates converge quadratically to x*:

besr =¥ < apBlleg — x|

hence,

e 1\
aBllxk — x*| < (eBllxg - x*1)° < (_)
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Proof: suppose x; € D and aB||x;y —x*|| < 1/2
1. f’(x;) is invertible and || £/ (xz) || < 2«

this follows from the perturbation lemma with A = /(x*), B = f'(xx) — f(x®):

TAT B < 117G ) = FOO < aBlicg —x*I| < 1/2

and therefore
AT
1-]|A=1B|| —

17 G~ = 1A+ B) 7| <

2. |legsr = x*I| < apllxx —x*|?

this follows from the Lipschitz continuity of f’ (inequality (1)) and part 1:

Ixger = X5 = ek = /o) T f () — x|
£ )™ (FEX) = Fo) = £ =xp) |
) LG = fx) = F/ () (F = xp) |

2
< aBllxg — x|

IA

3. since ||xgs1 — x*|| < |lxk — x*]|, we have x;41 € D and af||xks1 —x*]| < 1/2

Newton’s method 14.9



Outline

e |ocal convergence
e Kantorovich theorem

e inexact Newton method



Motivation

Local convergence result: convergence if x( is sufficiently close to a solution

1

*
X0 =X || £ —
o =¥l < 5

e x* and a (upper bound on || f/(x*)~1||) are unknown

e assumes there exists a solution

Kantorovich theorem: a “semi-local” convergence result

e convergence conditions in terms of properties at the starting point

e existence of a solution is a consequence of the theorem, not an assumption

Newton’s method 14.10



Assumptions in Kantorovich theorem

e the Jacobian is Lipschitz continuous on an open convex set D:

1 (x0) " (f/(x) = £/ ODII < yllx = y|| forallx,y € D

e the Jacobian matrix f”(xg) at the starting point xg € D is invertible

e the norm 77 := || f’(x0) ™! f(x0)|| of the first Newton step is bounded by

ny s

0| =

e D contains the ball B(xg,r) = {x | ||x — xo|| < r}, where

1 —+/1-2yn

Y

r =
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Kantorovich theorem

Xpat =xk — f(p) T fxr), k=0,1,...
under the assumptions on the previous page:

e the iteration is well defined, i.e., the Jacobian matrices f’(x;) are invertible
e the iterates remain in B(xq, )
e the iterates converge to a solution x* of f(x) =0

e the following error bound holds:
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Comments

e this is the affine-invariant version of the theorem: invariant under transformation
f(x) = Af(x), A nonsingular

e one can take y = 8| f(xo) "}, with B on page 14.5, but A is not affine-invariant
e the complete theorem includes uniqueness of solution in a larger region

e theorem explains very fast local convergence; for example, if yn = 0.4

k_ _
(2yn)? ~1/2k1

2.0000000000000000
0.8000000000000000
0.2560000000000000
0.0524288000000000
0.0043980465111040
0.0000618970019643
0.0000000245199287
0.0000000000000077

~N N Ut W= O

Newton’s method 14.13



Newton method for quadratic scalar equation

we first examine the convergence of Newton’s method applied to g(¢#) = 0, where

g(t):ztz—t+n withy >0, >0, h:=vyn<

2

e the roots will be denoted by r* and **

. 1=vV1-2h . l+V1-2nh

[ — , A =

Y Y

e the Newton iteration started at rj = O is

(y/2)t7 =7
vt — 1

lk+1 =

Newton’s method
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Iteration map

Newton iteration can be written as 7. = ¥ (#;) where

(y/2)1* -7
vt — 1

(1) =

y=1,n=h=1/2

—g(1) ‘ \ —g(1)
jtﬁgt) / ngt)
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Recursions

to derive simple error bounds, we define g, (1) as g(¢) scaled and centered at #;:

g(t+1) vk »
=—7°—7+n,, k=0,1,...
—-g'(tx) 2

gr(7) =
e coefficients yi, ni, and hy = yin; satisfy the recursions (see next page)

h h2
Yi+l = Yk Nk+1 = il i+l = K
A 2(1 = hg)’ 2(1 = hy)?

with yo =y, 0 =1, ho = yn

e we denote the smallest root of g, by ry:

1 =+vI1-=2h 21k
Yk I ++1—-2h

e Newton step for g; at T = 0 is equal to Newton step for g at t = 1:

I’kzt*—tkz

Nk = Tk+1 — Ik
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Proof of recursions
e since g is quadratic,

Yk 2 gt +1)  (g7(t)/2)T7 + g ()T + 8 (tk)
T T+Ng =

2 —g' (1) —g'(tx)

e recursion for yy:

8" (tkv1) g" (tr) Yk Yk
g/ (tk+mr) -8 () —8"(ti)nk  1—yime 1 - hy

Yk+1 =

e recursion for ny:

g(tr +np) B (8"(%)/2)77% B Ykni B hing
-g'(tk +n1) =g (te) — 8"tk 2(1 —yinr)  2(1 = hy)

Nk+1 =

e recursion for iy follows from hypi1 = Yies1Mk+1
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Error bounds

e Newton step ny = tr4+1 — t%:

k
(2h)2 -1
Mk < ok

n

(see next page)

o errorry =t* —ty:
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Proof of bound on ny,

e since hg < 1/2 the recursion for h; shows that

M
2hy = — < (2hy-1)?
(1= hg_1)?

e applying this recursively we obtain 2/ < (2h0)2k

e from the recursion for n; (and h; < 1/2):

_ -1k
2(1 = hg-1)

Nk < hg—1Mk-1

e applying this recursively and using the bound on & we obtain the bound on n:

IA

hi—1---hihongo
B k-1 k-2
= 27%2n0)* (2ho)* -+ (2ho)*(2ho) 10
— k—
275 (2ho)* "y

Mk
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Summary of proof of Kantorovich theorem

to prove the Kantorovich theorem (pp. 14.11-14.12), we show that

[Xk+1 = Xkl < tge1 — 11
where t; are the iterates in Newton’s method, started at 7y = 0, for

v,

—t+n=0
7 n

e 1 is called a majorizing sequence for the sequence x;

e the bounds for ¢, on page 14.18 provide bounds and convergence results for xy
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Consequences of majorization

t0=0,  lxger = x|l < g1 — 2 fork =20

e by the triangle inequality, if k > J,
k-1 k-1
Ik = x5l < D5 i = xill € D (Fie1 — 1) = 1 — 1
i:j l:]

e the inequality shows that x; is a Cauchy sequence, so it converges

e taking j = 0 shows that x; remains in the set B(x, ) (defined on page 14.11):

lxx — xol| <t — 19 < t* =r

e taking limits for k — oo shows the error bound on page 14.12:

271
_@h)

* * —_ .
Ix* —x;|| <7 —t;=r; < S n
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Details of proof of Kantorovich theorem

we prove that the following inequalities hold for k =0, 1, ...

I )™ 0 < 7= Q

1/ )™ ) = fODI < yellx =yl forallx,y € D (4)
L/ Ce) ™ F )| < (5)

B(Xt4+1,7k+1) € B(xg,71) (6)

® v, Nk, hi, 'y are the sequences defined on page 14.16
e for k =0, inequalities (4) and (5) hold by assumption, since yo =y, n0 =17

e (5) is the majorization inequality ||xx+1 — Xk|| < 7k = tra1 — tk
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Proof by induction: suppose (4) and (5) hold at k = i, and (6) holds for k < i

e x;;1 € D because B(x;,r;) C--- C B(xo,79) € D and ||x;;1 —xi|| <n; < r;
e the inequality (4) at k =i implies that

1 )™ (o (i) = 7 G|

1) F (i) = 1)

< villxier — x|
< Yini
= B

invertibility of f/(x;41) and (3) at k = i follow from the perturbation lemma

e inequality (4) at k =i + 1 follows from (3) and (4) at k = i:

L i) @) = FLODN < I i)™ £ Gl )™ @) = £ O
< oyl
= yillx =yl
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e inequality (5) at k =i + 1 follows from (4) at k =i + 1: definev = x;41 — x

1/ (eie) ™ Ceiz)

1
= f’(xi+1)_1A (f'(xi + 1) — f'(x;)) vdt

1
< v||/0 ‘f/(xiﬂ)_l(f’(xi"‘tv)_f’(xi))
Yi+1 2
<
< Loy
YVie1n?
<
2
= N+

e inequality (6) at k =i follows from (5) atk =i+ 1 andr; = ri1 +1;

1
f ()™ (/0 I (xi +fv)vdf+f(xi))“

i

dt

Ix —xis1ll < ris1 = lx = x| < lx = x| + llxis1 = x| L i1 +mi = 1
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Limit
it remains to show that the limit x* solves the equation

e by the assumptions on page 14.11,

17/Go) Pl = I (o)™ F (ki) (eaen = 0
(' (o)™ (f () = £ (k) + D) (e = 20
(11077 ro) ™ (F/Cei) = £ o))+ 1) s =

< (yr+ D|lxk+r — xkl|

IA

e since ||xxy+1 — x|l — 0 and f is continuous,

Lf"(xo) " F ()T = lim L f(xo) ™ f (x| = 0
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Inexact Newton method

inexact Newton method for solving nonlinear equation f(x) = O:

-1
Xi+1 = Xk + 5k where sp = —f"(xx)™ f(xx)

e 5, iS an approximate solution of the Newton equation

[ (xi)s = = f (xp)

e goal is to reduce cost per iteration while retaining fast convergence
e in Newton-iterative methods, Newton equation is solved by iterative method

e an example is the Newton-CG method if f’(x) is symmetric positive definite
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Forcing condition

accept the inexact Newton step sy if

| f (xi) sk + Fx)ll < wrll f )l

e coefficient wy is called the forcing term
e wy limits relative error in the Newton equation
e provides a stopping condition in iterative method for solving Newton equation

® wy is constant or adjusted adaptively
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Effect on local convergence

Assumptions

e the equation has a solution x* and f’(x*) is invertible with || f/(x*) || < @

e f’is B-Lipschitz continuous in a neighborhood of x*

Local convergence result

e if x is sufficiently close to x*, the iterates x; converge to x*

e the following bound holds (see next page):
brer = x*N| < @B+ wi) bk — x*|I° + awil| £/ () |1k — x*]

e this shows how the forcing term determines the rate of convergence

wir =0 wi a small constant wr N\ 0

convergence: quadratic linear superlinear
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Proof.

Ixper = XX = g + s — x*
<l = £ )T ) = 2N+ L G T () se+ f )
< apfllxr — x** + wrll f )T Gl
< aBllxr —x*)* + 2wpall f(xp) |l
< afllxg - x*|? + 2w [nf'(x*)nnxk —x*| + §||xk - x*||?

= aB(1+wp)llxe — x| + 2wl £/ () b — x|

e line 3 follows from page 14.8 and the definition of wy
e on line 4 we use the first result on page 14.9

e on line 5 we apply (2) with y = x; and x = x*
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