L. Vandenberghe ECE236C (Spring 2022)

14. Newton's method

- local convergence
- Kantorovich theorem
- inexact Newton method

Newton's method for nonlinear equations

Newton iteration for solving a nonlinear equation f(x) = 0:

$$x^{(k+1)} = x^{(k)} - f'(x^{(k)})^{-1} f(x^{(k)})$$

- $f: \mathbf{R}^n \to \mathbf{R}^n$ is a vector valued function $f(x) = (f_1(x), \dots, f_n(x))$
- f'(x) is the $n \times n$ Jacobian matrix at x:

$$(f'(x))_{ij} = \frac{\partial f_i}{\partial x_j}(x), \quad i, j = 1, \dots, n$$

• $x^{(k+1)}$ is the solution of the linearized equation at $x^{(k)}$:

$$f(x^{(k)}) + f'(x^{(k)})(x - x^{(k)}) = 0$$

we denote the iterates by the simpler notation $x_k = x^{(k)}$ if the meaning is clear

Matrix norm

in this lecture, operator norms are used for square matrices:

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$$

the same (arbitrary) vector norm is used for ||Ax|| and ||x||

Properties (A, B are $n \times n$ matrices and x is an n-vector)

- identity matrix: ||I|| = 1
- matrix-vector product: $||Ax|| \le ||A|| ||x||$
- submultiplicative property: $||AB|| \le ||A|| ||B||$
- perturbation lemma: if A is invertible and $||A^{-1}B|| < 1$, then A + B is invertible,

$$||(A+B)^{-1}|| \le \frac{||A^{-1}||}{1-||A^{-1}B||}$$

Proof of perturbation lemma

• A + B is invertible: if (A + B)x = 0, then

$$||x|| = ||A^{-1}Bx|| \le ||A^{-1}B|| ||x||$$

if $||A^{-1}B|| < 1$ this is only possible if x = 0

• $Y = (A + B)^{-1}$ satisfies $(I + A^{-1}B)Y = A^{-1}$; therefore

$$||Y|| = ||A^{-1} - A^{-1}BY||$$

$$\leq ||A^{-1}|| + ||A^{-1}BY||$$

$$\leq ||A^{-1}|| + ||A^{-1}B||||Y||$$

from which the inequality in the lemma follows

Lipschitz property

Lipschitz continuity of Jacobian

$$||f'(x) - f'(y)|| \le \beta ||x - y||$$
 for all $x, y \in D$

- β is a positive constant, D is an open convex set
- a common assumption in convergence theory of Newton's method

Two consequences

deviation from linear approximation:

$$||f(y) - f(x) - f'(x)(y - x)|| \le \frac{\beta}{2} ||x - y||^2$$
 for all $x, y \in D$ (1)

distance between function values:

$$||f(y) - f(x)|| \le ||f'(x)|| ||y - x|| + \frac{\beta}{2} ||y - x||^2 \quad \text{for all } x, y \in D$$
 (2)

(proofs on next page)

Proof

• inequality (1):

$$f(y) - f(x) - f'(x)(y - x) = \int_0^1 (f'(x + t(y - x)) - f'(x)) (y - x) dt$$

$$||f(y) - f(x) - f'(x)(y - x)|| \le \int_0^1 ||f'(x + t(y - x)) - f(x)| (y - x)|| dt$$

$$\le ||y - x|| \int_0^1 ||f'(x + t(y - x)) - f(x)|| dt$$

$$\le \beta ||y - x||^2 \int_0^1 t dt$$

$$= \frac{\beta}{2} ||y - x||^2$$

• inequality (2):

$$||f(y) - f(x)|| \le ||f'(x)(y - x)|| + ||f(y) - f(x) - f'(x)(y - x)||$$

$$\le ||f'(x)|| ||(y - x)|| + \frac{\beta}{2} ||y - x||^2$$

Outline

- local convergence
- Kantorovich theorem
- inexact Newton method

Assumptions

- there exists a solution x^*
- $f'(x^*)$ is invertible with $||f'(x^*)^{-1}|| \le \alpha$
- f' is Lipschitz continuous on $D = \{x \mid ||x x^*|| < \rho\}$:

$$||f'(x) - f'(y)|| \le \beta ||x - y||$$
 for all $x, y \in D$

• the starting point x_0 is in D and sufficiently close to x^* :

$$\alpha\beta\|x_0 - x^{\star}\| \le \frac{1}{2}$$

Local convergence

$$x_{k+1} = x_k - f'(x_k)^{-1} f(x_k), \quad k = 0, 1, \dots$$

under the assumptions on the previous page:

- the iteration is well defined, *i.e.*, the Jacobian matrices $f'(x_k)$ are invertible
- the iterates converge quadratically to x^* :

$$||x_{k+1} - x^*|| \le \alpha \beta ||x_k - x^*||^2$$

hence,

$$\|\alpha\beta\|x_k - x^*\| \le (\alpha\beta\|x_0 - x^*\|)^{2^k} \le \left(\frac{1}{2}\right)^{2^k}$$

Proof: suppose $x_k \in D$ and $\alpha \beta ||x_k - x^*|| \le 1/2$

1. $f'(x_k)$ is invertible and $||f'(x_k)^{-1}|| \le 2\alpha$

this follows from the perturbation lemma with $A = f'(x^*)$, $B = f'(x_k) - f(x^*)$:

$$||A^{-1}B|| \le ||f'(x^*)^{-1}||||f'(x_k) - f(x^*)|| \le \alpha\beta||x_k - x^*|| \le 1/2$$

and therefore

$$||f'(x_k)^{-1}|| = ||(A+B)^{-1}|| \le \frac{||A^{-1}||}{1 - ||A^{-1}B||} \le 2\alpha$$

2. $||x_{k+1} - x^*|| \le \alpha \beta ||x_k - x^*||^2$

this follows from the Lipschitz continuity of f' (inequality (1)) and part 1:

$$||x_{k+1} - x^*|| = ||x_k - f'(x_k)^{-1} f(x_k) - x^*||$$

$$= ||f'(x_k)^{-1} (f(x^*) - f(x_k) - f'(x_k)(x^* - x_k))||$$

$$\leq ||f'(x_k)^{-1}|| ||f(x^*) - f(x_k) - f'(x_k)(x^* - x_k)||$$

$$\leq \alpha \beta ||x_k - x^*||^2$$

3. since $||x_{k+1} - x^*|| \le ||x_k - x^*||$, we have $x_{k+1} \in D$ and $\alpha \beta ||x_{k+1} - x^*|| \le 1/2$

Outline

- local convergence
- Kantorovich theorem
- inexact Newton method

Motivation

Local convergence result: convergence if x_0 is sufficiently close to a solution

$$||x_0 - x^*|| \le \frac{1}{2\alpha\beta}$$

- x^* and α (upper bound on $||f'(x^*)^{-1}||$) are unknown
- assumes there exists a solution

Kantorovich theorem: a "semi-local" convergence result

- convergence conditions in terms of properties at the starting point
- existence of a solution is a consequence of the theorem, not an assumption

Assumptions in Kantorovich theorem

• the Jacobian is Lipschitz continuous on an open convex set *D*:

$$||f'(x_0)^{-1}(f'(x) - f'(y))|| \le \gamma ||x - y||$$
 for all $x, y \in D$

- the Jacobian matrix $f'(x_0)$ at the starting point $x_0 \in D$ is invertible
- the norm $\eta := \|f'(x_0)^{-1}f(x_0)\|$ of the first Newton step is bounded by

$$\eta \gamma \leq \frac{1}{2}$$

• D contains the ball $B(x_0, r) = \{x \mid ||x - x_0|| \le r\}$, where

$$r = \frac{1 - \sqrt{1 - 2\gamma\eta}}{\gamma}$$

Kantorovich theorem

$$x_{k+1} = x_k - f'(x_k)^{-1} f(x_k), \quad k = 0, 1, \dots$$

under the assumptions on the previous page:

- the iteration is well defined, *i.e.*, the Jacobian matrices $f'(x_k)$ are invertible
- the iterates remain in $B(x_0, r)$
- the iterates converge to a solution x^* of f(x) = 0
- the following error bound holds:

$$||x_k - x^*|| \le \frac{(2\gamma\eta)^{2^k - 1}}{2^{k - 1}}\eta$$

Comments

• this is the affine-invariant version of the theorem: invariant under transformation

$$\tilde{f}(x) = Af(x)$$
, A nonsingular

- one can take $\gamma = \beta \|f(x_0)^{-1}\|$, with β on page 14.5, but β is not affine-invariant
- the complete theorem includes uniqueness of solution in a larger region
- theorem explains very fast local convergence; for example, if $\gamma \eta = 0.4$

k	$(2\gamma\eta)^{2^k-1}/2^{k-1}$
0	2.00000000000000000
1	0.80000000000000000
2	0.25600000000000000
3	0.0524288000000000
4	0.0043980465111040
5	0.0000618970019643
6	0.0000000245199287
7	0.00000000000000077

Newton method for quadratic scalar equation

we first examine the convergence of Newton's method applied to g(t) = 0, where

$$g(t) = \frac{\gamma}{2}t^2 - t + \eta$$
 with $\gamma > 0$, $\eta > 0$, $h := \gamma \eta \le \frac{1}{2}$

• the roots will be denoted by t^* and t^{**}

$$t^* = \frac{1 - \sqrt{1 - 2h}}{\gamma}, \qquad t^{**} = \frac{1 + \sqrt{1 - 2h}}{\gamma}$$

• the Newton iteration started at $t_0 = 0$ is

$$t_{k+1} = \frac{(\gamma/2)t_k^2 - \eta}{\gamma t_k - 1}$$

Iteration map

Newton iteration can be written as $t_{k+1} = \psi(t_k)$ where

$$\psi(t) = \frac{(\gamma/2)t^2 - \eta}{\gamma t - 1}$$

$$\gamma = 1, \, \eta = h = 3/8$$

$$\gamma = 1, \eta = h = 1/2$$

Recursions

to derive simple error bounds, we define $g_k(\tau)$ as g(t) scaled and centered at t_k :

$$g_k(\tau) = \frac{g(\tau + t_k)}{-g'(t_k)} = \frac{\gamma_k}{2}\tau^2 - \tau + \eta_k, \quad k = 0, 1, \dots$$

• coefficients γ_k , η_k , and $h_k = \gamma_k \eta_k$ satisfy the recursions (see next page)

$$\gamma_{k+1} = \frac{\gamma_k}{1 - h_k}, \qquad \eta_{k+1} = \frac{h_k \eta_k}{2(1 - h_k)}, \qquad h_{k+1} = \frac{h_k^2}{2(1 - h_k)^2}$$

with $\gamma_0 = \gamma$, $\eta_0 = \eta$, $h_0 = \gamma \eta$

• we denote the smallest root of g_k by r_k :

$$r_k = t^* - t_k = \frac{1 - \sqrt{1 - 2h_k}}{\gamma_k} = \frac{2\eta_k}{1 + \sqrt{1 - 2h_k}}$$

• Newton step for g_k at $\tau = 0$ is equal to Newton step for g at $t = t_k$:

$$\eta_k = t_{k+1} - t_k$$

Proof of recursions

• since *g* is quadratic,

$$\frac{\gamma_k}{2}\tau^2 - \tau + \eta_k = \frac{g(t_k + \tau)}{-g'(t_k)} = \frac{(g''(t_k)/2)\tau^2 + g'(t_k)\tau + g(t_k)}{-g'(t_k)}$$

• recursion for γ_k :

$$\gamma_{k+1} = \frac{g''(t_{k+1})}{-g'(t_k + \eta_k)} = \frac{g''(t_k)}{-g'(t_k) - g''(t_k)\eta_k} = \frac{\gamma_k}{1 - \gamma_k \eta_k} = \frac{\gamma_k}{1 - h_k}$$

• recursion for η_k :

$$\eta_{k+1} = \frac{g(t_k + \eta_k)}{-g'(t_k + \eta_k)} = \frac{(g''(t_k)/2)\eta_k^2}{-g'(t_k) - g''(t_k)\eta_k} = \frac{\gamma_k \eta_k^2}{2(1 - \gamma_k \eta_k)} = \frac{h_k \eta_k}{2(1 - h_k)}$$

• recursion for h_k follows from $h_{k+1} = \gamma_{k+1} \eta_{k+1}$

Error bounds

• Newton step $\eta_k = t_{k+1} - t_k$:

$$\eta_k \le \frac{(2h)^{2^k - 1}}{2^k} \eta$$

(see next page)

• error $r_k = t^* - t_k$:

$$r_k = \frac{2\eta_k}{1 + \sqrt{1 - 2h_k}} \le 2\eta_k \le \frac{(2h)^{2^k - 1}}{2^{k - 1}} \eta$$

Proof of bound on η_k

• since $h_0 \le 1/2$ the recursion for h_k shows that

$$2h_k = \frac{h_{k-1}^2}{(1 - h_{k-1})^2} \le (2h_{k-1})^2$$

- applying this recursively we obtain $2h_k \leq (2h_0)^{2^k}$
- from the recursion for η_k (and $h_k \leq 1/2$):

$$\eta_k = \frac{h_{k-1}\eta_{k-1}}{2(1 - h_{k-1})} \le h_{k-1}\eta_{k-1}$$

• applying this recursively and using the bound on h_k we obtain the bound on η_k :

$$\eta_k \leq h_{k-1} \cdots h_1 h_0 \eta_0
= 2^{-k} (2h_0)^{2^{k-1}} (2h_0)^{2^{k-2}} \cdots (2h_0)^2 (2h_0) \eta_0
= 2^{-k} (2h_0)^{2^k - 1} \eta_0$$

Summary of proof of Kantorovich theorem

to prove the Kantorovich theorem (pp. 14.11–14.12), we show that

$$||x_{k+1} - x_k|| \le t_{k+1} - t_k$$

where t_k are the iterates in Newton's method, started at $t_0 = 0$, for

$$\frac{\gamma}{2}t^2 - t + \eta = 0$$

- t_k is called a *majorizing sequence* for the sequence x_k
- the bounds for t_k on page 14.18 provide bounds and convergence results for x_k

Consequences of majorization

$$t_0 = 0,$$
 $||x_{k+1} - x_k|| \le t_{k+1} - t_k$ for $k \ge 0$

• by the triangle inequality, if $k \geq j$,

$$||x_k - x_j|| \le \sum_{i=j}^{k-1} ||x_{i+1} - x_i|| \le \sum_{i=j}^{k-1} (t_{i+1} - t_i) = t_k - t_j$$

- the inequality shows that x_k is a Cauchy sequence, so it converges
- taking j = 0 shows that x_k remains in the set $B(x_0, r)$ (defined on page 14.11):

$$||x_k - x_0|| \le t_k - t_0 \le t^* = r$$

• taking limits for $k \to \infty$ shows the error bound on page 14.12:

$$||x^* - x_j|| \le t^* - t_j = r_j \le \frac{(2h)^{2^j - 1}}{2^{j - 1}} \eta$$

Details of proof of Kantorovich theorem

we prove that the following inequalities hold for k = 0, 1, ...

$$||f'(x_{k+1})^{-1}f'(x_k)|| \le \frac{1}{1 - h_k}$$
 (3)

$$||f'(x_k)^{-1}(f'(x) - f'(y))|| \le \gamma_k ||x - y|| \quad \text{for all } x, y \in D$$
 (4)

$$||f'(x_k)^{-1}f(x_k)|| \le \eta_k \tag{5}$$

$$B(x_{k+1}, r_{k+1}) \subseteq B(x_k, r_k) \tag{6}$$

- γ_k , η_k , h_k , r_k are the sequences defined on page 14.16
- for k=0, inequalities (4) and (5) hold by assumption, since $\gamma_0=\gamma$, $\eta_0=\eta$
- (5) is the majorization inequality $||x_{k+1} x_k|| \le \eta_k = t_{k+1} t_k$

Proof by induction: suppose (4) and (5) hold at k = i, and (6) holds for k < i

- $x_{i+1} \in D$ because $B(x_i, r_i) \subseteq \cdots \subseteq B(x_0, r_0) \subseteq D$ and $||x_{i+1} x_i|| \le \eta_i \le r_i$
- the inequality (4) at k = i implies that

$$||f'(x_i)^{-1}f'(x_{i+1}) - I|| = ||f'(x_i)^{-1}(f'(x_{i+1}) - f'(x_i))||$$

$$\leq \gamma_i ||x_{i+1} - x_i||$$

$$\leq \gamma_i \eta_i$$

$$= h_i$$

invertibility of $f'(x_{i+1})$ and (3) at k = i follow from the perturbation lemma

• inequality (4) at k = i + 1 follows from (3) and (4) at k = i:

$$||f'(x_{i+1})^{-1}(f'(x) - f'(y))|| \leq ||f'(x_{i+1})^{-1}f'(x_i)|| ||f'(x_i)^{-1}(f'(x) - f'(y))||$$

$$\leq \frac{\gamma_i}{1 - h_i} ||x - y||$$

$$= \gamma_{i+1} ||x - y||$$

Newton's method

• inequality (5) at k = i + 1 follows from (4) at k = i + 1: define $v = x_{i+1} - x_i$,

$$||f'(x_{i+1})^{-1}f(x_{i+1})|| = ||f'(x_{i+1})^{-1} \left(\int_0^1 f'(x_i + tv)v dt + f(x_i) \right)||$$

$$= ||f'(x_{i+1})^{-1} \int_0^1 \left(f'(x_i + tv) - f'(x_i) \right) v dt||$$

$$\leq ||v|| \int_0^1 ||f'(x_{i+1})^{-1} (f'(x_i + tv) - f'(x_i))|| dt$$

$$\leq \frac{\gamma_{i+1}}{2} ||v||^2$$

$$\leq \frac{\gamma_{i+1} \eta_i^2}{2}$$

$$= \eta_{i+1}$$

• inequality (6) at k=i follows from (5) at k=i+1 and $r_i=r_{i+1}+\eta_i$

$$||x - x_{i+1}|| \le r_{i+1} \implies ||x - x_i|| \le ||x - x_{i+1}|| + ||x_{i+1} - x_i|| \le r_{i+1} + \eta_i = r_i$$

Limit

it remains to show that the limit x^* solves the equation

by the assumptions on page 14.11,

$$||f'(x_0)^{-1}f(x_k)|| = ||f'(x_0)^{-1}f'(x_k)(x_{k+1} - x_k)||$$

$$= ||(f'(x_0)^{-1}(f'(x_k) - f'(x_0)) + I)(x_{k+1} - x_k)||$$

$$\leq (||(f'(x_0)^{-1}(f'(x_k) - f'(x_0))|| + 1)||x_{k+1} - x_k||$$

$$\leq (\gamma r + 1)||x_{k+1} - x_k||$$

• since $||x_{k+1} - x_k|| \to 0$ and f is continuous,

$$||f'(x_0)^{-1}f(x^*)|| = \lim_{k \to \infty} ||f'(x_0)^{-1}f(x_k)|| = 0$$

Outline

- local convergence
- Kantorovich theorem
- inexact Newton method

Inexact Newton method

inexact Newton method for solving nonlinear equation f(x) = 0:

$$x_{k+1} = x_k + s_k$$
 where $s_k \approx -f'(x_k)^{-1} f(x_k)$

s_k is an approximate solution of the Newton equation

$$f'(x_k)s = -f(x_k)$$

- goal is to reduce cost per iteration while retaining fast convergence
- in Newton-iterative methods, Newton equation is solved by iterative method
- an example is the *Newton-CG method* if f'(x) is symmetric positive definite

Forcing condition

accept the inexact Newton step s_k if

$$||f'(x_k)s_k + f(x_k)|| \le \omega_k ||f(x_k)||$$

- coefficient ω_k is called the *forcing term*
- ω_k limits relative error in the Newton equation
- provides a stopping condition in iterative method for solving Newton equation
- ω_k is constant or adjusted adaptively

Effect on local convergence

Assumptions

- the equation has a solution x^* and $f'(x^*)$ is invertible with $||f'(x^*)^{-1}|| \le \alpha$
- f' is β -Lipschitz continuous in a neighborhood of x^*

Local convergence result

- if x_0 is sufficiently close to x^* , the iterates x_k converge to x^*
- the following bound holds (see next page):

$$||x_{k+1} - x^*|| \le \alpha \beta (1 + \omega_k) ||x_k - x^*||^2 + \alpha \omega_k ||f'(x^*)|| ||x_k - x^*||$$

this shows how the forcing term determines the rate of convergence

	$\omega_k = 0$	ω_k a small constant	$\omega_k \searrow 0$
convergence:	quadratic	linear	superlinear

Proof.

$$||x_{k+1} - x^{*}|| = ||x_{k} + s_{k} - x^{*}||$$

$$\leq ||x_{k} - f'(x_{k})^{-1} f(x_{k}) - x^{*}|| + ||f'(x_{k})^{-1} (f'(x_{k}) s_{k} + f(x_{k}))||$$

$$\leq \alpha \beta ||x_{k} - x^{*}||^{2} + \omega_{k} ||f(x_{k})^{-1}|| ||f(x_{k})||$$

$$\leq \alpha \beta ||x_{k} - x^{*}||^{2} + 2\omega_{k} \alpha ||f(x_{k})||$$

$$\leq \alpha \beta ||x_{k} - x^{*}||^{2} + 2\omega_{k} \alpha \left(||f'(x^{*})|| ||x_{k} - x^{*}|| + \frac{\beta}{2} ||x_{k} - x^{*}||^{2} \right)$$

$$= \alpha \beta (1 + \omega_{k}) ||x_{k} - x^{*}||^{2} + 2\omega_{k} \alpha_{k} ||f'(x^{*})|| ||x_{k} - x^{*}||$$

- line 3 follows from page 14.8 and the definition of ω_k
- on line 4 we use the first result on page 14.9
- on line 5 we apply (2) with $y = x_k$ and $x = x^*$

References

Newton method

- J. E. Dennis, Jr., and R. B. Schabel, *Numerical Methods for Unconstrained Optimization and Nonlinear Equations* (1996).
- P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms (2011).
- C. T. Kelley, *Iterative Methods for Linear and Nonlinear Equations* (1995).
- J. M. Ortega and W. C. Rheinboldt, *Iterative Solution of Nonlinear Equations in Several Variables* (2000).

Kantorovich theorem: the statement and proof of the theorem in the lecture follow

- P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms (2011), theorem 2.1.
- T. Yamamoto, A unified derivation of several error bounds for Newton's process, Journal of Computational and Applied Mathematics (1985).

Inexact Newton method

- C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations (1995), chapter 6.
- J. Nocedal and S. J. Wright, *Numerical Optimization* (2006), chapter 7.