14. Newton's method

- local convergence
- Kantorovich theorem
- inexact Newton method

Newton's method for nonlinear equations

Newton iteration for solving a nonlinear equation $f(x)=0$:

$$
x^{(k+1)}=x^{(k)}-f^{\prime}\left(x^{(k)}\right)^{-1} f\left(x^{(k)}\right)
$$

- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a vector valued function $f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)$
- $f^{\prime}(x)$ is the $n \times n$ Jacobian matrix at x :

$$
\left(f^{\prime}(x)\right)_{i j}=\frac{\partial f_{i}}{\partial x_{j}}(x), \quad i, j=1, \ldots, n
$$

- $x^{(k+1)}$ is the solution of the linearized equation at $x^{(k)}$:

$$
f\left(x^{(k)}\right)+f^{\prime}\left(x^{(k)}\right)\left(x-x^{(k)}\right)=0
$$

we denote the iterates by the simpler notation $x_{k}=x^{(k)}$ if the meaning is clear

Matrix norm

in this lecture, operator norms are used for square matrices:

$$
\|A\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}
$$

the same (arbitrary) vector norm is used for $\|A x\|$ and $\|x\|$

Properties (A, B are $n \times n$ matrices and x is an n-vector)

- identity matrix: $\|I\|=1$
- matrix-vector product: $\|A x\| \leq\|A\|\|x\|$
- submultiplicative property: $\|A B\| \leq\|A\|\|B\|$
- perturbation lemma: if A is invertible and $\left\|A^{-1} B\right\|<1$, then $A+B$ is invertible,

$$
\left\|(A+B)^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|}{1-\left\|A^{-1} B\right\|}
$$

Proof of perturbation lemma

- $A+B$ is invertible: if $(A+B) x=0$, then

$$
\|x\|=\left\|A^{-1} B x\right\| \leq\left\|A^{-1} B\right\|\|x\|
$$

if $\left\|A^{-1} B\right\|<1$ this is only possible if $x=0$

- $Y=(A+B)^{-1}$ satisfies $\left(I+A^{-1} B\right) Y=A^{-1}$; therefore

$$
\begin{aligned}
\|Y\| & =\left\|A^{-1}-A^{-1} B Y\right\| \\
& \leq\left\|A^{-1}\right\|+\left\|A^{-1} B Y\right\| \\
& \leq\left\|A^{-1}\right\|+\left\|A^{-1} B\right\|\|Y\|
\end{aligned}
$$

from which the inequality in the lemma follows

Lipschitz property

Lipschitz continuity of Jacobian

$$
\left\|f^{\prime}(x)-f^{\prime}(y)\right\| \leq \beta\|x-y\| \quad \text { for all } x, y \in D
$$

- β is a positive constant, D is an open convex set
- a common assumption in convergence theory of Newton's method

Two consequences

- deviation from linear approximation:

$$
\begin{equation*}
\left\|f(y)-f(x)-f^{\prime}(x)(y-x)\right\| \leq \frac{\beta}{2}\|x-y\|^{2} \quad \text { for all } x, y \in D \tag{1}
\end{equation*}
$$

- distance between function values:

$$
\begin{equation*}
\|f(y)-f(x)\| \leq\left\|f^{\prime}(x)\right\|\|y-x\|+\frac{\beta}{2}\|y-x\|^{2} \quad \text { for all } x, y \in D \tag{2}
\end{equation*}
$$

(proofs on next page)

Proof

- inequality (1):

$$
\begin{aligned}
f(y)-f(x)-f^{\prime}(x)(y-x) & =\int_{0}^{1}\left(f^{\prime}(x+t(y-x))-f^{\prime}(x)\right)(y-x) d t \\
\left\|f(y)-f(x)-f^{\prime}(x)(y-x)\right\| & \leq \int_{0}^{1}\left\|\left(f^{\prime}(x+t(y-x))-f(x)\right)(y-x)\right\| d t \\
& \leq\|y-x\| \int_{0}^{1}\left\|f^{\prime}(x+t(y-x))-f(x)\right\| d t \\
& \leq \beta\|y-x\|^{2} \int_{0}^{1} t d t \\
& =\frac{\beta}{2}\|y-x\|^{2}
\end{aligned}
$$

- inequality (2):

$$
\begin{aligned}
\|f(y)-f(x)\| & \leq\left\|f^{\prime}(x)(y-x)\right\|+\left\|f(y)-f(x)-f^{\prime}(x)(y-x)\right\| \\
& \leq\left\|f^{\prime}(x)\right\|\|(y-x)\|+\frac{\beta}{2}\|y-x\|^{2}
\end{aligned}
$$

Outline

- local convergence
- Kantorovich theorem
- inexact Newton method

Assumptions

- there exists a solution x^{\star}
- $f^{\prime}\left(x^{\star}\right)$ is invertible with $\left\|f^{\prime}\left(x^{\star}\right)^{-1}\right\| \leq \alpha$
- f^{\prime} is Lipschitz continuous on $D=\left\{x \mid\left\|x-x^{\star}\right\|<\rho\right\}$:

$$
\left\|f^{\prime}(x)-f^{\prime}(y)\right\| \leq \beta\|x-y\| \quad \text { for all } x, y \in D
$$

- the starting point x_{0} is in D and sufficiently close to x^{\star} :

$$
\alpha \beta\left\|x_{0}-x^{\star}\right\| \leq \frac{1}{2}
$$

Local convergence

$$
x_{k+1}=x_{k}-f^{\prime}\left(x_{k}\right)^{-1} f\left(x_{k}\right), \quad k=0,1, \ldots
$$

under the assumptions on the previous page:

- the iteration is well defined, i.e., the Jacobian matrices $f^{\prime}\left(x_{k}\right)$ are invertible
- the iterates converge quadratically to x^{\star} :

$$
\left\|x_{k+1}-x^{\star}\right\| \leq \alpha \beta\left\|x_{k}-x^{\star}\right\|^{2}
$$

hence,

$$
\alpha \beta\left\|x_{k}-x^{\star}\right\| \leq\left(\alpha \beta\left\|x_{0}-x^{\star}\right\|\right)^{2^{k}} \leq\left(\frac{1}{2}\right)^{2^{k}}
$$

Proof: suppose $x_{k} \in D$ and $\alpha \beta\left\|x_{k}-x^{\star}\right\| \leq 1 / 2$

1. $f^{\prime}\left(x_{k}\right)$ is invertible and $\left\|f^{\prime}\left(x_{k}\right)^{-1}\right\| \leq 2 \alpha$
this follows from the perturbation lemma with $A=f^{\prime}\left(x^{\star}\right), B=f^{\prime}\left(x_{k}\right)-f\left(x^{\star}\right)$:

$$
\left\|A^{-1} B\right\| \leq\left\|f^{\prime}\left(x^{\star}\right)^{-1}\right\|\left\|f^{\prime}\left(x_{k}\right)-f\left(x^{\star}\right)\right\| \leq \alpha \beta\left\|x_{k}-x^{\star}\right\| \leq 1 / 2
$$

and therefore

$$
\left\|f^{\prime}\left(x_{k}\right)^{-1}\right\|=\left\|(A+B)^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|}{1-\left\|A^{-1} B\right\|} \leq 2 \alpha
$$

2. $\left\|x_{k+1}-x^{\star}\right\| \leq \alpha \beta\left\|x_{k}-x^{\star}\right\|^{2}$
this follows from the Lipschitz continuity of f^{\prime} (inequality (1)) and part 1 :

$$
\begin{aligned}
\left\|x_{k+1}-x^{\star}\right\| & =\left\|x_{k}-f^{\prime}\left(x_{k}\right)^{-1} f\left(x_{k}\right)-x^{\star}\right\| \\
& =\left\|f^{\prime}\left(x_{k}\right)^{-1}\left(f\left(x^{\star}\right)-f\left(x_{k}\right)-f^{\prime}\left(x_{k}\right)\left(x^{\star}-x_{k}\right)\right)\right\| \\
& \leq\left\|f^{\prime}\left(x_{k}\right)^{-1}\right\|\left\|f\left(x^{\star}\right)-f\left(x_{k}\right)-f^{\prime}\left(x_{k}\right)\left(x^{\star}-x_{k}\right)\right\| \\
& \leq \alpha \beta\left\|x_{k}-x^{\star}\right\|^{2}
\end{aligned}
$$

3. since $\left\|x_{k+1}-x^{\star}\right\| \leq\left\|x_{k}-x^{\star}\right\|$, we have $x_{k+1} \in D$ and $\alpha \beta\left\|x_{k+1}-x^{\star}\right\| \leq 1 / 2$

Outline

- local convergence
- Kantorovich theorem
- inexact Newton method

Motivation

Local convergence result: convergence if x_{0} is sufficiently close to a solution

$$
\left\|x_{0}-x^{\star}\right\| \leq \frac{1}{2 \alpha \beta}
$$

- x^{\star} and α (upper bound on $\left\|f^{\prime}\left(x^{\star}\right)^{-1}\right\|$) are unknown
- assumes there exists a solution

Kantorovich theorem: a "semi-local" convergence result

- convergence conditions in terms of properties at the starting point
- existence of a solution is a consequence of the theorem, not an assumption

Assumptions in Kantorovich theorem

- the Jacobian is Lipschitz continuous on an open convex set D :

$$
\left\|f^{\prime}\left(x_{0}\right)^{-1}\left(f^{\prime}(x)-f^{\prime}(y)\right)\right\| \leq \gamma\|x-y\| \quad \text { for all } x, y \in D
$$

- the Jacobian matrix $f^{\prime}\left(x_{0}\right)$ at the starting point $x_{0} \in D$ is invertible
- the norm $\eta:=\left\|f^{\prime}\left(x_{0}\right)^{-1} f\left(x_{0}\right)\right\|$ of the first Newton step is bounded by

$$
\eta \gamma \leq \frac{1}{2}
$$

- D contains the ball $B\left(x_{0}, r\right)=\left\{x \mid\left\|x-x_{0}\right\| \leq r\right\}$, where

$$
r=\frac{1-\sqrt{1-2 \gamma \eta}}{\gamma}
$$

Kantorovich theorem

$$
x_{k+1}=x_{k}-f^{\prime}\left(x_{k}\right)^{-1} f\left(x_{k}\right), \quad k=0,1, \ldots
$$

under the assumptions on the previous page:

- the iteration is well defined, i.e., the Jacobian matrices $f^{\prime}\left(x_{k}\right)$ are invertible
- the iterates remain in $B\left(x_{0}, r\right)$
- the iterates converge to a solution x^{\star} of $f(x)=0$
- the following error bound holds:

$$
\left\|x_{k}-x^{\star}\right\| \leq \frac{(2 \gamma \eta)^{2^{k}-1}}{2^{k-1}} \eta
$$

Comments

- this is the affine-invariant version of the theorem: invariant under transformation

$$
\tilde{f}(x)=A f(x), \quad A \text { nonsingular }
$$

- one can take $\gamma=\beta\left\|f\left(x_{0}\right)^{-1}\right\|$, with β on page 14.5 , but β is not affine-invariant
- the complete theorem includes uniqueness of solution in a larger region
- theorem explains very fast local convergence; for example, if $\gamma \eta=0.4$

k	$(2 \gamma \eta)^{2^{k}-1} / 2^{k-1}$
0	2.0000000000000000
1	0.8000000000000000
2	0.2560000000000000
3	0.0524288000000000
4	0.0043980465111040
5	0.0000618970019643
6	0.0000000245199287
7	0.0000000000000077

Newton method for quadratic scalar equation

we first examine the convergence of Newton's method applied to $g(t)=0$, where

$$
g(t)=\frac{\gamma}{2} t^{2}-t+\eta \quad \text { with } \gamma>0, \quad \eta>0, \quad h:=\gamma \eta \leq \frac{1}{2}
$$

- the roots will be denoted by t^{\star} and $t^{\star \star}$

$$
t^{\star}=\frac{1-\sqrt{1-2 h}}{\gamma}, \quad t^{\star \star}=\frac{1+\sqrt{1-2 h}}{\gamma}
$$

- the Newton iteration started at $t_{0}=0$ is

$$
t_{k+1}=\frac{(\gamma / 2) t_{k}^{2}-\eta}{\gamma t_{k}-1}
$$

Iteration map

Newton iteration can be written as $t_{k+1}=\psi\left(t_{k}\right)$ where

$$
\psi(t)=\frac{(\gamma / 2) t^{2}-\eta}{\gamma t-1}
$$

Recursions

to derive simple error bounds, we define $g_{k}(\tau)$ as $g(t)$ scaled and centered at t_{k} :

$$
g_{k}(\tau)=\frac{g\left(\tau+t_{k}\right)}{-g^{\prime}\left(t_{k}\right)}=\frac{\gamma_{k}}{2} \tau^{2}-\tau+\eta_{k}, \quad k=0,1, \ldots
$$

- coefficients γ_{k}, η_{k}, and $h_{k}=\gamma_{k} \eta_{k}$ satisfy the recursions (see next page)

$$
\gamma_{k+1}=\frac{\gamma_{k}}{1-h_{k}}, \quad \eta_{k+1}=\frac{h_{k} \eta_{k}}{2\left(1-h_{k}\right)}, \quad h_{k+1}=\frac{h_{k}^{2}}{2\left(1-h_{k}\right)^{2}}
$$

with $\gamma_{0}=\gamma, \eta_{0}=\eta, h_{0}=\gamma \eta$

- we denote the smallest root of g_{k} by r_{k} :

$$
r_{k}=t^{\star}-t_{k}=\frac{1-\sqrt{1-2 h_{k}}}{\gamma_{k}}=\frac{2 \eta_{k}}{1+\sqrt{1-2 h_{k}}}
$$

- Newton step for g_{k} at $\tau=0$ is equal to Newton step for g at $t=t_{k}$:

$$
\eta_{k}=t_{k+1}-t_{k}
$$

Proof of recursions

- since g is quadratic,

$$
\frac{\gamma_{k}}{2} \tau^{2}-\tau+\eta_{k}=\frac{g\left(t_{k}+\tau\right)}{-g^{\prime}\left(t_{k}\right)}=\frac{\left(g^{\prime \prime}\left(t_{k}\right) / 2\right) \tau^{2}+g^{\prime}\left(t_{k}\right) \tau+g\left(t_{k}\right)}{-g^{\prime}\left(t_{k}\right)}
$$

- recursion for γ_{k} :

$$
\gamma_{k+1}=\frac{g^{\prime \prime}\left(t_{k+1}\right)}{-g^{\prime}\left(t_{k}+\eta_{k}\right)}=\frac{g^{\prime \prime}\left(t_{k}\right)}{-g^{\prime}\left(t_{k}\right)-g^{\prime \prime}\left(t_{k}\right) \eta_{k}}=\frac{\gamma_{k}}{1-\gamma_{k} \eta_{k}}=\frac{\gamma_{k}}{1-h_{k}}
$$

- recursion for η_{k} :

$$
\eta_{k+1}=\frac{g\left(t_{k}+\eta_{k}\right)}{-g^{\prime}\left(t_{k}+\eta_{k}\right)}=\frac{\left(g^{\prime \prime}\left(t_{k}\right) / 2\right) \eta_{k}^{2}}{-g^{\prime}\left(t_{k}\right)-g^{\prime \prime}\left(t_{k}\right) \eta_{k}}=\frac{\gamma_{k} \eta_{k}^{2}}{2\left(1-\gamma_{k} \eta_{k}\right)}=\frac{h_{k} \eta_{k}}{2\left(1-h_{k}\right)}
$$

- recursion for h_{k} follows from $h_{k+1}=\gamma_{k+1} \eta_{k+1}$

Error bounds

- Newton step $\eta_{k}=t_{k+1}-t_{k}$:

$$
\eta_{k} \leq \frac{(2 h)^{2^{k}-1}}{2^{k}} \eta
$$

(see next page)

- error $r_{k}=t^{\star}-t_{k}$:

$$
r_{k}=\frac{2 \eta_{k}}{1+\sqrt{1-2 h_{k}}} \leq 2 \eta_{k} \leq \frac{(2 h)^{2^{k}-1}}{2^{k-1}} \eta
$$

Proof of bound on η_{k}

- since $h_{0} \leq 1 / 2$ the recursion for h_{k} shows that

$$
2 h_{k}=\frac{h_{k-1}^{2}}{\left(1-h_{k-1}\right)^{2}} \leq\left(2 h_{k-1}\right)^{2}
$$

- applying this recursively we obtain $2 h_{k} \leq\left(2 h_{0}\right)^{2^{k}}$
- from the recursion for η_{k} (and $h_{k} \leq 1 / 2$):

$$
\eta_{k}=\frac{h_{k-1} \eta_{k-1}}{2\left(1-h_{k-1}\right)} \leq h_{k-1} \eta_{k-1}
$$

- applying this recursively and using the bound on h_{k} we obtain the bound on η_{k} :

$$
\begin{aligned}
\eta_{k} & \leq h_{k-1} \cdots h_{1} h_{0} \eta_{0} \\
& =2^{-k}\left(2 h_{0}\right)^{2^{k-1}}\left(2 h_{0}\right)^{2^{k-2}} \cdots\left(2 h_{0}\right)^{2}\left(2 h_{0}\right) \eta_{0} \\
& =2^{-k}\left(2 h_{0}\right)^{2^{k}-1} \eta_{0}
\end{aligned}
$$

Summary of proof of Kantorovich theorem

to prove the Kantorovich theorem (pp. 14.11-14.12), we show that

$$
\left\|x_{k+1}-x_{k}\right\| \leq t_{k+1}-t_{k}
$$

where t_{k} are the iterates in Newton's method, started at $t_{0}=0$, for

$$
\frac{\gamma}{2} t^{2}-t+\eta=0
$$

- t_{k} is called a majorizing sequence for the sequence x_{k}
- the bounds for t_{k} on page 14.18 provide bounds and convergence results for x_{k}

Consequences of majorization

$$
t_{0}=0, \quad\left\|x_{k+1}-x_{k}\right\| \leq t_{k+1}-t_{k} \quad \text { for } k \geq 0
$$

- by the triangle inequality, if $k \geq j$,

$$
\left\|x_{k}-x_{j}\right\| \leq \sum_{i=j}^{k-1}\left\|x_{i+1}-x_{i}\right\| \leq \sum_{i=j}^{k-1}\left(t_{i+1}-t_{i}\right)=t_{k}-t_{j}
$$

- the inequality shows that x_{k} is a Cauchy sequence, so it converges
- taking $j=0$ shows that x_{k} remains in the set $B\left(x_{0}, r\right)$ (defined on page 14.11):

$$
\left\|x_{k}-x_{0}\right\| \leq t_{k}-t_{0} \leq t^{\star}=r
$$

- taking limits for $k \rightarrow \infty$ shows the error bound on page 14.12:

$$
\left\|x^{\star}-x_{j}\right\| \leq t^{\star}-t_{j}=r_{j} \leq \frac{(2 h)^{2^{j}-1}}{2^{j-1}} \eta
$$

Details of proof of Kantorovich theorem

we prove that the following inequalities hold for $k=0,1, \ldots$

$$
\begin{gather*}
\left\|f^{\prime}\left(x_{k+1}\right)^{-1} f^{\prime}\left(x_{k}\right)\right\| \leq \frac{1}{1-h_{k}} \tag{3}\\
\left\|f^{\prime}\left(x_{k}\right)^{-1}\left(f^{\prime}(x)-f^{\prime}(y)\right)\right\| \leq \gamma_{k}\|x-y\| \quad \text { for all } x, y \in D \tag{4}\\
\left\|f^{\prime}\left(x_{k}\right)^{-1} f\left(x_{k}\right)\right\| \leq \eta_{k} \tag{5}\\
B\left(x_{k+1}, r_{k+1}\right) \subseteq B\left(x_{k}, r_{k}\right) \tag{6}
\end{gather*}
$$

- $\gamma_{k}, \eta_{k}, h_{k}, r_{k}$ are the sequences defined on page 14.16
- for $k=0$, inequalities (4) and (5) hold by assumption, since $\gamma_{0}=\gamma, \eta_{0}=\eta$
- (5) is the majorization inequality $\left\|x_{k+1}-x_{k}\right\| \leq \eta_{k}=t_{k+1}-t_{k}$

Proof by induction: suppose (4) and (5) hold at $k=i$, and (6) holds for $k<i$

- $x_{i+1} \in D$ because $B\left(x_{i}, r_{i}\right) \subseteq \cdots \subseteq B\left(x_{0}, r_{0}\right) \subseteq D$ and $\left\|x_{i+1}-x_{i}\right\| \leq \eta_{i} \leq r_{i}$
- the inequality (4) at $k=i$ implies that

$$
\begin{aligned}
\left\|f^{\prime}\left(x_{i}\right)^{-1} f^{\prime}\left(x_{i+1}\right)-I\right\| & =\left\|f^{\prime}\left(x_{i}\right)^{-1}\left(f^{\prime}\left(x_{i+1}\right)-f^{\prime}\left(x_{i}\right)\right)\right\| \\
& \leq \gamma_{i}\left\|x_{i+1}-x_{i}\right\| \\
& \leq \gamma_{i} \eta_{i} \\
& =h_{i}
\end{aligned}
$$

invertibility of $f^{\prime}\left(x_{i+1}\right)$ and (3) at $k=i$ follow from the perturbation lemma

- inequality (4) at $k=i+1$ follows from (3) and (4) at $k=i$:

$$
\begin{aligned}
\left\|f^{\prime}\left(x_{i+1}\right)^{-1}\left(f^{\prime}(x)-f^{\prime}(y)\right)\right\| & \leq\left\|f^{\prime}\left(x_{i+1}\right)^{-1} f^{\prime}\left(x_{i}\right)\right\|\left\|f^{\prime}\left(x_{i}\right)^{-1}\left(f^{\prime}(x)-f^{\prime}(y)\right)\right\| \\
& \leq \frac{\gamma_{i}}{1-h_{i}}\|x-y\| \\
& =\gamma_{i+1}\|x-y\|
\end{aligned}
$$

- inequality (5) at $k=i+1$ follows from (4) at $k=i+1$: define $v=x_{i+1}-x_{i}$,

$$
\begin{aligned}
\left\|f^{\prime}\left(x_{i+1}\right)^{-1} f\left(x_{i+1}\right)\right\| & =\left\|f^{\prime}\left(x_{i+1}\right)^{-1}\left(\int_{0}^{1} f^{\prime}\left(x_{i}+t v\right) v d t+f\left(x_{i}\right)\right)\right\| \\
& =\left\|f^{\prime}\left(x_{i+1}\right)^{-1} \int_{0}^{1}\left(f^{\prime}\left(x_{i}+t v\right)-f^{\prime}\left(x_{i}\right)\right) v d t\right\| \\
& \leq\|v\| \int_{0}^{1}\left\|f^{\prime}\left(x_{i+1}\right)^{-1}\left(f^{\prime}\left(x_{i}+t v\right)-f^{\prime}\left(x_{i}\right)\right)\right\| d t \\
& \leq \frac{\gamma_{i+1}}{2}\|v\|^{2} \\
& \leq \frac{\gamma_{i+1} \eta_{i}^{2}}{2} \\
& =\eta_{i+1}
\end{aligned}
$$

- inequality (6) at $k=i$ follows from (5) at $k=i+1$ and $r_{i}=r_{i+1}+\eta_{i}$

$$
\left\|x-x_{i+1}\right\| \leq r_{i+1} \quad \Longrightarrow \quad\left\|x-x_{i}\right\| \leq\left\|x-x_{i+1}\right\|+\left\|x_{i+1}-x_{i}\right\| \leq r_{i+1}+\eta_{i}=r_{i}
$$

Limit

it remains to show that the limit x^{\star} solves the equation

- by the assumptions on page 14.11,

$$
\begin{aligned}
\left\|f^{\prime}\left(x_{0}\right)^{-1} f\left(x_{k}\right)\right\| & =\left\|f^{\prime}\left(x_{0}\right)^{-1} f^{\prime}\left(x_{k}\right)\left(x_{k+1}-x_{k}\right)\right\| \\
& =\left\|\left(f^{\prime}\left(x_{0}\right)^{-1}\left(f^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{0}\right)\right)+I\right)\left(x_{k+1}-x_{k}\right)\right\| \\
& \leq\left(\left\|\left(f^{\prime}\left(x_{0}\right)^{-1}\left(f^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{0}\right)\right) \|+1\right)\right\| x_{k+1}-x_{k} \|\right. \\
& \leq(\gamma r+1)\left\|x_{k+1}-x_{k}\right\|
\end{aligned}
$$

- since $\left\|x_{k+1}-x_{k}\right\| \rightarrow 0$ and f is continuous,

$$
\left\|f^{\prime}\left(x_{0}\right)^{-1} f\left(x^{\star}\right)\right\|=\lim _{k \rightarrow \infty}\left\|f^{\prime}\left(x_{0}\right)^{-1} f\left(x_{k}\right)\right\|=0
$$

Outline

- local convergence
- Kantorovich theorem
- inexact Newton method

Inexact Newton method

inexact Newton method for solving nonlinear equation $f(x)=0$:

$$
x_{k+1}=x_{k}+s_{k} \quad \text { where } s_{k} \approx-f^{\prime}\left(x_{k}\right)^{-1} f\left(x_{k}\right)
$$

- s_{k} is an approximate solution of the Newton equation

$$
f^{\prime}\left(x_{k}\right) s=-f\left(x_{k}\right)
$$

- goal is to reduce cost per iteration while retaining fast convergence
- in Newton-iterative methods, Newton equation is solved by iterative method
- an example is the Newton-CG method if $f^{\prime}(x)$ is symmetric positive definite

Forcing condition

accept the inexact Newton step s_{k} if

$$
\left\|f^{\prime}\left(x_{k}\right) s_{k}+f\left(x_{k}\right)\right\| \leq \omega_{k}\left\|f\left(x_{k}\right)\right\|
$$

- coefficient ω_{k} is called the forcing term
- ω_{k} limits relative error in the Newton equation
- provides a stopping condition in iterative method for solving Newton equation
- ω_{k} is constant or adjusted adaptively

Effect on local convergence

Assumptions

- the equation has a solution x^{\star} and $f^{\prime}\left(x^{\star}\right)$ is invertible with $\left\|f^{\prime}\left(x^{\star}\right)^{-1}\right\| \leq \alpha$
- f^{\prime} is β-Lipschitz continuous in a neighborhood of x^{\star}

Local convergence result

- if x_{0} is sufficiently close to x^{\star}, the iterates x_{k} converge to x^{\star}
- the following bound holds (see next page):

$$
\left\|x_{k+1}-x^{\star}\right\| \leq \alpha \beta\left(1+\omega_{k}\right)\left\|x_{k}-x^{\star}\right\|^{2}+\alpha \omega_{k}\left\|f^{\prime}\left(x^{\star}\right)\right\|\left\|x_{k}-x^{\star}\right\|
$$

- this shows how the forcing term determines the rate of convergence

	$\omega_{k}=0$	ω_{k} a small constant
convergence:	quadratic	$\omega_{k} \searrow 0$

Proof.

$$
\begin{aligned}
\left\|x_{k+1}-x^{\star}\right\| & =\left\|x_{k}+s_{k}-x^{\star}\right\| \\
& \leq\left\|x_{k}-f^{\prime}\left(x_{k}\right)^{-1} f\left(x_{k}\right)-x^{\star}\right\|+\left\|f^{\prime}\left(x_{k}\right)^{-1}\left(f^{\prime}\left(x_{k}\right) s_{k}+f\left(x_{k}\right)\right)\right\| \\
& \leq \alpha \beta\left\|x_{k}-x^{\star}\right\|^{2}+\omega_{k}\left\|f\left(x_{k}\right)^{-1}\right\|\left\|f\left(x_{k}\right)\right\| \\
& \leq \alpha \beta\left\|x_{k}-x^{\star}\right\|^{2}+2 \omega_{k} \alpha\left\|f\left(x_{k}\right)\right\| \\
& \leq \alpha \beta\left\|x_{k}-x^{\star}\right\|^{2}+2 \omega_{k} \alpha\left(\left\|f^{\prime}\left(x^{\star}\right)\right\|\left\|x_{k}-x^{\star}\right\|+\frac{\beta}{2}\left\|x_{k}-x^{\star}\right\|^{2}\right) \\
& =\alpha \beta\left(1+\omega_{k}\right)\left\|x_{k}-x^{\star}\right\|^{2}+2 \omega_{k} \alpha_{k}\left\|f^{\prime}\left(x^{\star}\right)\right\|\left\|x_{k}-x^{\star}\right\|
\end{aligned}
$$

- line 3 follows from page 14.8 and the definition of ω_{k}
- on line 4 we use the first result on page 14.9
- on line 5 we apply (2) with $y=x_{k}$ and $x=x^{\star}$

References

Newton method

- J. E. Dennis, Jr., and R. B. Schabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1996).
- P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms (2011).
- C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations (1995).
- J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (2000).

Kantorovich theorem: the statement and proof of the theorem in the lecture follow

- P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms (2011), theorem 2.1.
- T. Yamamoto, A unified derivation of several error bounds for Newton's process, Journal of Computational and Applied Mathematics (1985).

Inexact Newton method

- C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations (1995), chapter 6.
- J. Nocedal and S. J. Wright, Numerical Optimization (2006), chapter 7.

