L. Vandenberghe EE236C (Spring 2016)

19. Primal-dual interior-point methods

e primal-dual central path equations
e infeasible primal-dual method

e primal-dual method for self-dual embedding
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Symmetric cone program

Primal and dual problem

minimize ¢!z maximize —blz
subjectto Ax +s=10 subjectto Alz+c=0
s>~0 z>=0

inequalities are with respect to a symmetric cone

Optimality conditions

Primal-dual interior-point methods
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Central path equations

Barrier function: we use the log-det barrier of lecture 18
¢(x) = —logdet x

e a f-normal barrier for K

e gradientis V¢(xz) = —z~! (see page 18-14)
Primal-dual central path equations
01| 0 AT x n c
s| | =4 0 z b
(5,2) =0,  z=—pVe(s)=ps

last condition can be written symmetrically as so z = pe
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Scaling

Scaling matrix: we call a nonsingular W a scaling matrix if

e multiplications with W7 and W preserve the cone

Wint K =int K, W!lintK =intK

e inverses are transformed as Wa ! = (W—1z)~!

Scaled central path equations: for any scaling, central path is solution of

Primal-dual interior-point methods
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Nesterov-Todd scaling

for a given pair (3§, 2) = 0, define

W =wT = P(w'/?)

A

where w satisfies § = P(w)2

e from page 18-21,
1/2
w = P(371/2) (P(z«l/?)g)

e multiplications by W and W ~! map 5 and 2 to the same point:

W= ls=W3=\

this implies that || \||3 = 512

Primal-dual interior-point methods
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Nesterov-Todd scaling for nonnegative orthant

W is a positive diagonal scaling

W = P(w!/?) =

e scaling point is

w = (\/sl/zl, Ny M)

e scaled s, Z are

)\ = W_T§ = W2 = (\/ §1217 \V §2227 ey §p2p)
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Nesterov-Todd scaling for second-order cone

W is a hyperbolic Householder transformation

W = P(w'/?) = g2w® —J), J= [ ) - ]

0 —1
and T
w* Jw 1
B — ) U = w, w = w1/2
2 VT Jw

scaling point w can be computed from

1/2
w= P(371/2) (P(21/2)§>

using the expressions for P and squareroot on pages 18-15, 18-17

Primal-dual interior-point methods
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Nesterov-Todd scaling for positive semidefinite cone

W is a symmetric congruence transformation
Wy = vec (T1/2 mat(y)T1/2>

where
T — 7-1/2 (21/2§Z1/2) 1/2 5—1/2

o T = RR" with R computed as on page 18-24

e a simpler, nonsymmetric scaling is

Wy = vec (R" mat(y)R) , W'y = vec (Rmat(y)R")
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Outline

e primal-dual central path equations
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Basic primal-dual update
suppose the current iterates are s, x, Zwith s > 0, 2 > 0

e define 1 = 512/0 and compute the NT scaling matrix W for 3, 2

e compute As, Az, Az by linearizing the central path equation

T
HEERSIHEN
(W= Ls)o(Wz) =opue
around s, z, z, for some o < 1
e make an update
(5,2) := (5,2) + ap(Ax, As), Z:= 24 aqAz
that preserves positivity of s, 2
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Linearized central path equation

define A\ =W ~-15 = W2 and
(o] [ o A | |c
" s —A 0 2 b

linearized central path equation

0 | 0 A" Ar |
As —~-A 0 Az | =77
Ao (WAz+ W™ "As) =oue— Ao
second equation is linearization of

(W=T(54 As)) o (W(2+ Az)) =ope
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Path-following algorithm
choose starting points s, z, zwith s > 0, z > 0

1. compute residuals and evaluate stopping criteria

SHEFEHEN

terminate if r and §' 2 are sufficiently small

2. compute scaling matrix 1/ associated with (§, Z) and set
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3. compute affine scaling direction by solving the linear equation
0 B 0o AT Az, | B
As, A0 Az, | = "

Ao (WAza + W_TAsa) = —)\o\

4. select barrier parameter

o ((§ + apAsy) T (2 + oszza)) °

stz
where 0 is an algorithm parameter (a typical value is 6 = 3) and

ap, = sup{a€[0,1] |5+ alAs, =0}
ag = supf{a € [0,1]] 2+ alz, = 0}

Primal-dual interior-point methods
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. compute search direction by solving the linear equation
0 | 0 AT Ar | _
As ~A 0 Az | =7
Ao (WAz+ W TAs)=opue— Ao\

. update iterates

(z,5) = (2,8)+min{1,0.99q,}(Ax, As)
2+ min{1,0.99a4}Az

z
where
ap =sup{a > 0| § + alAs = 0}, ag =sup{a > 0| 2+ alAz = 0}

return to step 1
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Interpretation and discussion

e step 3: affine scaling direction solves linearized central path equation with
o = 0, i.e., the linearized optimality conditions

e step 4 is a heuristic for choosing o based on an estimate of the quality of the
affine scaling direction

o is small if a step in the affine scaling direction gives a large reduction in 57 2

e step 5: linear equation has same coefficient matrix as equation in step 3

if a direct method is used, we can reuse the factorization used in step 3, and
solve the two equations at the cost of one
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Mehrotra correction

in step 5, solve
0 | 0 AT Ar |
As —-A 0 Az |~
Ao (WAz+ W TAs)=cope— Aol — (W LTAs,) o (WAZ,)

e extra term on the right-hand side is approximation of the second-order term in

(W=T(5+As)) o (W(24+ Az)) =oue

e adding the correction typically saves a few iterations
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Newton equations

steps 3 and 5 reduce to equations
0 AT Az | | dy
A —-WTw Az | | d,
usually solved by eliminating Az:

ATW=WTAAx =d, + AW w14,

e a KKT system (see §10.4.2 in BV for a discussion of solution methods)
e since WIW = P(w) = VZ3¢p(w) ™1,
ATW=IWw 1A = ATV?p(w) A,
the Hessian of the barrier function ¢(b — Ax) at the scaling point w

Primal-dual interior-point methods
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Quadratic cone program

minimize (1/2)27Qx + ¢z
subjectto Ax+s=0b
s>0

Optimality conditions

HECE{IBEHREEE

Central path
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Path-following algorithm

algorithm is almost identical to algorithm on page 19-11

e compute search directions from linearized central path equation;

for example, step 5 becomes
0 | | @ AT Az |
As ~A 0 Az | =77
Ao(WAz+ W TAs)=ope— Ao

e use equal primal and dual step sizes

for example, in step 6,

ap =0aqg =sup{a >0 |5+ aAs>=0,2+aAz >0}
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Extended self-dual embedding

minimize (6 + 1)~y

0 0 AT c Qg x 0
. s | | A O b q, 2 0
subject to P e R L A ~ + 0
| 0 _—qg —ql’ —q- 0 | [0 0+ 1
(s,k,2,7) =0
e ( is the logarithmic degree or rank of the cone
® (., q., g, defined as
_ _ _ _ _ - oo _
4z 9 4+ 1 0 0 A C Lo
q- = T S0 — —A 0 b 20
g, | S0 TIN\ 1] | =T T o] | 1]

S, Lo, 2o are arbitrary with s > 0, z¢9 > 0
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Optimality condition

0 0 AT c Qg x 0
s | | A O b q. z 0
k| ' vl 0 g, T 0
0] |- —¢ —¢ O | |~v] [0+1]
(s,k,2,7) = 0, stz4+krT=0

e follows from self-dual property
e shows that v = 0 at optimum

e optimal solution gives nonzero solution of embedding of page 15-30
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Properties of extended self-dual embedding

e problem is strictly feasible; a strictly feasible point is given by

stzo+1
0+ 1

) (1)

(87 K, X, 2, T, ’Y) — (807 17 L0, 20, 17

o ifs, K, x, z, T, 7y satisfy equality constraint, then

st—Hm'
0+ 1

’y:

(take inner product with (x, z, 7, ) on two sides of the equality)

e this is the extended embedding of page 15-34, but using variable ~ instead of
6, and with a coefficient § + 1 in objective and right-hand side

Primal-dual interior-point methods 19-21



Central path for extended embedding

0 0 AT c Qg x 0
s | | A O b q. z 0
k| | —=cI' =b" 0 g, T 0
0] |- —¢ —¢ O | |~v] [0+1]
(s,k,2,7) = 0, soz=pue, KT = U

e inner product with (x, z, 7, ) shows that on the central path

ZTS—I—KJT
0+ 1

v = = p
e initial point (1) is on the central path with ;1 = (sl 29 +1)/(0 + 1)
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Simplified central path equations

[ 0 | 0 AT c |l [ = ] [ gy |
s | = —A 0 b zZ | +Hr| g
| K _—cT —bTO__T_ | qr
(s,k,2,7) = 0, soz=[e, KT = [

e we eliminated variable v because v = p on the central path

e we removed the 4th equality, because it is implied by the first three

(this follows by taking inner product with (z, z, 7))

e can be seen as a ‘shifted central path’ for the embedding on page 15-30

Primal-dual interior-point methods
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Path-following algorithm

choose starting points s, z, z, with s > 0, 2 > 0;setx := 1,7 :=1

1. compute residuals and evaluate stopping criteria

0 AT ¢
—A 0 b
—c' —pT" 0 ]

=
|

K> > O
|

2 W X

terminate if  and §7 2 / 72 are sufficiently small, or an approximate certificate of
primal or dual infeasibility has been found

2. compute scaling matrix W associated with (3, 2) and set

/\TA
S Z K
A=W Ts =Wz = AT

Y
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3. compute affine scaling direction by solving the linear equation

0
As,
I AR,

0 AT ¢
—A 0 b

-8 0

Ao (WAza + W_TAsa) = —Ao\,

4. select barrier parameter

o= (1-a)°

C Aw,

Az,

] AT,

where ¢ is an algorithm parameter (typical value is 0 = 3) and

a=sup{a € [0,1] | (5 &, 2,7) + a(Asy, Ak, Azy, AT,) = 0}
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5. compute search direction by solving the linear equation

0
As
I Ak

0 AT ¢
—A 0 b

- 0 |

[ Az
Az

_AT

= —(1—o)r

Ao (WAz+ W TAs)=cope— Aol — (W LTAs,) o (WAZ,)

6. update iterates

AAAAA

RAT +TAK = op — RT — AR, AT,

where o = sup{a € [0,1] | (§,%,2,7) + a(As, Ak, Az, A1) = 0}

return to step 1

Primal-dual interior-point methods
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Properties (without proof)

e step 3: affine scaling direction satisfies

§'Az, 4+ 3T As, = =812, EAT,+ TAK, = —RT

AsaTAza + A1, Ak, =0

e step 5: search direction satisfies

S'A2 4+ RAT+ 3T As+ 7Ak = —(1 — 0) (8" 2 + /1)

AsTAz + ATAk =0

Primal-dual interior-point methods
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Discussion

e step 4: expression for o is based on simplifiying

(54 aAs.)T (3 + alzy) + (k + alry) (7 + aAr)\’
o =
§T + it

e steps 5 and 6: gap and residual decrease linearly with «:
pr=01-al-0o)p, rT=(1-al-oa))r

if w1 and r* are the values of ;1 and r at the next iteration
e 7 = uq, with g defined on page 15-34 (a multiple of the initial residual)

e instep 5, —(1 — o)r = —r + ougq: the equation is the linearization of the
central path equation of page 19-23 for barrier parameter o
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Linear algebra complexity

e essentially the same as for the method on page 19-11

e eliminating A7, Ak in steps 3 and 5 requires solution of an extra system
0 AT Az | | c
A —WTw AZ | | b

e this increases the number of KKT systems solved per iteration to 3 (as
opposed to 2 in the method on page 19-11)
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