19. Primal-dual interior-point methods

- primal-dual central path equations
- infeasible primal-dual method
- primal-dual method for self-dual embedding

Symmetric cone program

Primal and dual problem

$$
\begin{array}{llll}
\operatorname{minimize} & c^{T} x & \text { maximize } & -b^{T} z \\
\text { subject to } & A x+s=b & \text { subject to } & A^{T} z+c=0 \\
& s \succeq 0 & & z \succeq 0
\end{array}
$$

inequalities are with respect to a symmetric cone

Optimality conditions

$$
\begin{gathered}
{\left[\begin{array}{l}
0 \\
s
\end{array}\right]=\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]+\left[\begin{array}{l}
c \\
b
\end{array}\right]} \\
(s, z) \succeq 0, \quad s^{T} z=0
\end{gathered}
$$

Central path equations

Barrier function: we use the log-det barrier of lecture 18

$$
\phi(x)=-\log \operatorname{det} x
$$

- a θ-normal barrier for K
- gradient is $\nabla \phi(x)=-x^{-1}$ (see page 18-14)

Primal-dual central path equations

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
s
\end{array}\right]=\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]+\left[\begin{array}{l}
c \\
b
\end{array}\right]} \\
& (s, z) \succ 0, \quad z=-\mu \nabla \phi(s)=\mu s^{-1}
\end{aligned}
$$

last condition can be written symmetrically as $s \circ z=\mu \mathbf{e}$

Scaling

Scaling matrix: we call a nonsingular W a scaling matrix if

- multiplications with W and W^{T} preserve the cone

$$
W \operatorname{int} K=\operatorname{int} K, \quad W^{T} \operatorname{int} K=\operatorname{int} K
$$

- inverses are transformed as $W x^{-1}=\left(W^{-T} x\right)^{-1}$

Scaled central path equations: for any scaling, central path is solution of

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
s
\end{array}\right]=\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]+\left[\begin{array}{l}
c \\
b
\end{array}\right]} \\
& (s, z) \succ 0, \quad\left(W^{-T} s\right) \circ(W z)=\mu \mathbf{e}
\end{aligned}
$$

Nesterov-Todd scaling

for a given pair $(\hat{s}, \hat{z}) \succ 0$, define

$$
W=W^{T}=P\left(w^{1 / 2}\right)
$$

where w satisfies $\hat{s}=P(w) \hat{z}$

- from page 18-21,

$$
w=P\left(\hat{z}^{-1 / 2}\right)\left(P\left(\hat{z}^{1 / 2}\right) \hat{s}\right)^{1 / 2}
$$

- multiplications by W and W^{-1} map \hat{s} and \hat{z} to the same point:

$$
W^{-1} \hat{s}=W \hat{z}=\lambda
$$

this implies that $\|\lambda\|_{2}^{2}=\hat{s}^{T} \hat{z}$

Nesterov-Todd scaling for nonnegative orthant

W is a positive diagonal scaling

$$
W=P\left(w^{1 / 2}\right)=\left[\begin{array}{cccc}
\sqrt{\hat{s}_{1} / \hat{z}_{1}} & 0 & \cdots & 0 \\
0 & \sqrt{\hat{s}_{2} / \hat{z}_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sqrt{\hat{s}_{p} / \hat{z}_{p}}
\end{array}\right]
$$

- scaling point is

$$
w=\left(\sqrt{\hat{s}_{1} / \hat{z}_{1}}, \sqrt{\hat{s}_{2} / \hat{z}_{2}}, \ldots, \sqrt{\hat{s}_{p} / \hat{z}_{p}}\right)
$$

- scaled \hat{s}, \hat{z} are

$$
\lambda=W^{-T} \hat{s}=W \hat{z}=\left(\sqrt{\hat{s}_{1} \hat{z}_{1}}, \sqrt{\hat{s}_{2} \hat{z}_{2}}, \ldots, \sqrt{\hat{s}_{p} \hat{z}_{p}}\right)
$$

Nesterov-Todd scaling for second-order cone

W is a hyperbolic Householder transformation

$$
W=P\left(w^{1 / 2}\right)=\beta\left(2 v v^{T}-J\right), \quad J=\left[\begin{array}{cc}
1 & 0 \\
0 & -I
\end{array}\right]
$$

and

$$
\beta=\frac{\bar{w}^{T} J \bar{w}}{2}, \quad v=\frac{1}{\sqrt{\bar{w}^{T} J \bar{w}}} \bar{w}, \quad \bar{w}=w^{1 / 2}
$$

scaling point w can be computed from

$$
w=P\left(\hat{z}^{-1 / 2}\right)\left(P\left(\hat{z}^{1 / 2}\right) \hat{s}\right)^{1 / 2}
$$

using the expressions for P and squareroot on pages 18-15, 18-17

Nesterov-Todd scaling for positive semidefinite cone

W is a symmetric congruence transformation

$$
W y=\operatorname{vec}\left(T^{1 / 2} \operatorname{mat}(y) T^{1 / 2}\right)
$$

where

$$
T=\hat{Z}^{-1 / 2}\left(\hat{Z}^{1 / 2} \hat{S} \hat{Z}^{1 / 2}\right)^{1 / 2} \hat{Z}^{-1 / 2}
$$

- $T=R R^{T}$ with R computed as on page $18-24$
- a simpler, nonsymmetric scaling is

$$
W y=\operatorname{vec}\left(R^{T} \operatorname{mat}(y) R\right), \quad W^{T} y=\operatorname{vec}\left(R \operatorname{mat}(y) R^{T}\right)
$$

Outline

- primal-dual central path equations
- infeasible primal-dual method
- primal-dual method for self-dual embedding

Basic primal-dual update

suppose the current iterates are $\hat{s}, \hat{x}, \hat{z}$ with $\hat{s} \succ 0, \hat{z} \succ 0$

- define $\mu=\hat{s}^{T} \hat{z} / \theta$ and compute the NT scaling matrix W for \hat{s}, \hat{z}
- compute $\Delta s, \Delta x, \Delta z$ by linearizing the central path equation

$$
\begin{gathered}
{\left[\begin{array}{l}
0 \\
s
\end{array}\right]=\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]+\left[\begin{array}{l}
c \\
b
\end{array}\right]} \\
\left(W^{-T} s\right) \circ(W z)=\sigma \mu \mathbf{e}
\end{gathered}
$$

around $\hat{s}, \hat{x}, \hat{z}$, for some $\sigma<1$

- make an update

$$
(\hat{s}, \hat{x}):=(\hat{s}, \hat{x})+\alpha_{\mathrm{p}}(\Delta x, \Delta s), \quad \hat{z}:=\hat{z}+\alpha_{\mathrm{d}} \Delta z
$$

that preserves positivity of \hat{s}, \hat{z}

Linearized central path equation

define $\lambda=W^{-T} \hat{s}=W \hat{z}$ and

$$
r=\left[\begin{array}{l}
0 \\
\hat{s}
\end{array}\right]-\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
\hat{x} \\
\hat{z}
\end{array}\right]-\left[\begin{array}{l}
c \\
b
\end{array}\right]
$$

linearized central path equation

$$
\begin{aligned}
& {\left[\begin{array}{c}
0 \\
\Delta s
\end{array}\right]-\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta z
\end{array}\right]=-r} \\
& \lambda \circ\left(W \Delta z+W^{-T} \Delta s\right)=\sigma \mu \mathbf{e}-\lambda \circ \lambda
\end{aligned}
$$

second equation is linearization of

$$
\left(W^{-T}(\hat{s}+\Delta s)\right) \circ(W(\hat{z}+\Delta z))=\sigma \mu \mathbf{e}
$$

Path-following algorithm

choose starting points $\hat{s}, \hat{x}, \hat{z}$ with $\hat{s} \succ 0, \hat{z} \succ 0$

1. compute residuals and evaluate stopping criteria

$$
r=\left[\begin{array}{l}
0 \\
\hat{s}
\end{array}\right]-\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
\hat{x} \\
\hat{z}
\end{array}\right]-\left[\begin{array}{l}
c \\
b
\end{array}\right]
$$

terminate if r and $\hat{s}^{T} \hat{z}$ are sufficiently small
2. compute scaling matrix W associated with (\hat{s}, \hat{z}) and set

$$
\lambda:=W^{-T} \hat{s}=W \hat{z}, \quad \mu:=\frac{\lambda^{T} \lambda}{\theta}=\frac{\hat{s}^{T} \hat{z}}{\theta}
$$

3. compute affine scaling direction by solving the linear equation

$$
\begin{gathered}
{\left[\begin{array}{c}
0 \\
\Delta s_{\mathrm{a}}
\end{array}\right]-\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x_{\mathrm{a}} \\
\Delta z_{\mathrm{a}}
\end{array}\right]=-r} \\
\lambda \circ\left(W \Delta z_{\mathrm{a}}+W^{-T} \Delta s_{\mathrm{a}}\right)=-\lambda \circ \lambda
\end{gathered}
$$

4. select barrier parameter

$$
\sigma=\left(\frac{\left(\hat{s}+\alpha_{\mathrm{p}} \Delta s_{\mathrm{a}}\right)^{T}\left(\hat{z}+\alpha_{\mathrm{d}} \Delta z_{\mathrm{a}}\right)}{\hat{s}^{T} \hat{z}}\right)^{\delta}
$$

where δ is an algorithm parameter (a typical value is $\delta=3$) and

$$
\begin{aligned}
& \alpha_{\mathrm{p}}=\sup \left\{\alpha \in[0,1] \mid \hat{s}+\alpha \Delta s_{\mathrm{a}} \succeq 0\right\} \\
& \alpha_{\mathrm{d}}=\sup \left\{\alpha \in[0,1] \mid \hat{z}+\alpha \Delta z_{\mathrm{a}} \succeq 0\right\}
\end{aligned}
$$

5. compute search direction by solving the linear equation

$$
\begin{aligned}
& {\left[\begin{array}{c}
0 \\
\Delta s
\end{array}\right]-\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta z
\end{array}\right]=-r} \\
& \lambda \circ\left(W \Delta z+W^{-T} \Delta s\right)=\sigma \mu \mathbf{e}-\lambda \circ \lambda
\end{aligned}
$$

6. update iterates

$$
\begin{aligned}
(\hat{x}, \hat{s}) & :=(\hat{x}, \hat{s})+\min \left\{1,0.99 \alpha_{\mathrm{p}}\right\}(\Delta x, \Delta s) \\
\hat{z} & :=\hat{z}+\min \left\{1,0.99 \alpha_{\mathrm{d}}\right\} \Delta z
\end{aligned}
$$

where

$$
\alpha_{\mathrm{p}}=\sup \{\alpha \geq 0 \mid \hat{s}+\alpha \Delta s \succeq 0\}, \quad \alpha_{\mathrm{d}}=\sup \{\alpha \geq 0 \mid \hat{z}+\alpha \Delta z \succeq 0\}
$$

return to step 1

Interpretation and discussion

- step 3: affine scaling direction solves linearized central path equation with $\sigma=0$, i.e., the linearized optimality conditions
- step 4 is a heuristic for choosing σ based on an estimate of the quality of the affine scaling direction
σ is small if a step in the affine scaling direction gives a large reduction in $\hat{s}^{T} \hat{z}$
- step 5: linear equation has same coefficient matrix as equation in step 3 if a direct method is used, we can reuse the factorization used in step 3, and solve the two equations at the cost of one

Mehrotra correction

in step 5, solve

$$
\begin{gathered}
{\left[\begin{array}{c}
0 \\
\Delta s
\end{array}\right]-\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta z
\end{array}\right]=-r} \\
\lambda \circ\left(W \Delta z+W^{-T} \Delta s\right)=\sigma \mu \mathbf{e}-\lambda \circ \lambda-\left(W^{-T} \Delta s_{\mathrm{a}}\right) \circ\left(W \Delta z_{\mathrm{a}}\right)
\end{gathered}
$$

- extra term on the right-hand side is approximation of the second-order term in

$$
\left(W^{-T}(\hat{s}+\Delta s)\right) \circ(W(\hat{z}+\Delta z))=\sigma \mu \mathbf{e}
$$

- adding the correction typically saves a few iterations

Newton equations

steps 3 and 5 reduce to equations

$$
\left[\begin{array}{cc}
0 & A^{T} \\
A & -W^{T} W
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta z
\end{array}\right]=\left[\begin{array}{l}
d_{x} \\
d_{z}
\end{array}\right]
$$

usually solved by eliminating Δz :

$$
A^{T} W^{-1} W^{-T} A \Delta x=d_{x}+A^{T} W^{-1} W^{-T} d_{z}
$$

- a KKT system (see §10.4.2 in BV for a discussion of solution methods)
- since $W^{T} W=P(w)=\nabla^{2} \phi(w)^{-1}$,

$$
A^{T} W^{-1} W^{-T} A=A^{T} \nabla^{2} \phi(w) A
$$

the Hessian of the barrier function $\phi(b-A x)$ at the scaling point w

Quadratic cone program

$$
\begin{array}{ll}
\text { minimize } & (1 / 2) x^{T} Q x+q^{T} x \\
\text { subject to } & A x+s=b \\
& s \succeq 0
\end{array}
$$

Optimality conditions

$$
\left[\begin{array}{l}
0 \\
s
\end{array}\right]=\left[\begin{array}{cc}
Q & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]+\left[\begin{array}{l}
q \\
b
\end{array}\right], \quad(s, z) \succeq 0, \quad s^{T} z=0
$$

Central path

$$
\left[\begin{array}{l}
0 \\
s
\end{array}\right]=\left[\begin{array}{cc}
Q & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]+\left[\begin{array}{l}
q \\
b
\end{array}\right], \quad(s, z) \succ 0, \quad s \circ z=\mu \mathbf{e}
$$

Path-following algorithm

algorithm is almost identical to algorithm on page 19-11

- compute search directions from linearized central path equation; for example, step 5 becomes

$$
\begin{aligned}
& {\left[\begin{array}{c}
0 \\
\Delta s
\end{array}\right]-\left[\begin{array}{cc}
Q & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta z
\end{array}\right]=-r} \\
& \lambda \circ\left(W \Delta z+W^{-T} \Delta s\right)=\sigma \mu \mathbf{e}-\lambda \circ \lambda
\end{aligned}
$$

- use equal primal and dual step sizes
for example, in step 6,

$$
\alpha_{\mathrm{p}}=\alpha_{\mathrm{d}}=\sup \{\alpha \geq 0 \mid \hat{s}+\alpha \Delta s \succeq 0, \hat{z}+\alpha \Delta z \succeq 0\}
$$

Outline

- primal-dual central path equations
- infeasible primal-dual method
- primal-dual method for self-dual embedding

Extended self-dual embedding

minimize $\quad(\theta+1) \gamma$

$$
\begin{aligned}
\text { subject to } & {\left[\begin{array}{c}
0 \\
s \\
\kappa \\
0
\end{array}\right]=\left[\begin{array}{cccc}
0 & A^{T} & c & q_{x} \\
-A & 0 & b & q_{z} \\
-c^{T} & -b^{T} & 0 & q_{\tau} \\
-q_{x}^{T} & -q_{z}^{T} & -q_{\tau} & 0
\end{array}\right]\left[\begin{array}{c}
x \\
z \\
\tau \\
\theta
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\theta+1
\end{array}\right] } \\
& (s, \kappa, z, \tau) \succeq 0
\end{aligned}
$$

- θ is the logarithmic degree or rank of the cone
- q_{x}, q_{z}, q_{τ} defined as

$$
\left[\begin{array}{c}
q_{x} \\
q_{z} \\
q_{\tau}
\end{array}\right]=\frac{\theta+1}{s_{0}^{T} z_{0}+1}\left(\left[\begin{array}{c}
0 \\
s_{0} \\
1
\end{array}\right]-\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
z_{0} \\
1
\end{array}\right]\right)
$$

s_{0}, x_{0}, z_{0} are arbitrary with $s_{0} \succ 0, z_{0} \succ 0$

Optimality condition

$$
\begin{aligned}
{\left[\begin{array}{c}
0 \\
s \\
\kappa \\
0
\end{array}\right]=} & {\left[\begin{array}{cccc}
0 & A^{T} & c & q_{x} \\
-A & 0 & b & q_{z} \\
-c^{T} & -b^{T} & 0 & q_{\tau} \\
-q_{x}^{T} & -q_{z}^{T} & -q_{\tau} & 0
\end{array}\right]\left[\begin{array}{c}
x \\
z \\
\tau \\
\gamma
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\theta+1
\end{array}\right] } \\
& (s, \kappa, z, \tau) \succeq 0, \quad s^{T} z+\kappa \tau=0
\end{aligned}
$$

- follows from self-dual property
- shows that $\gamma=0$ at optimum
- optimal solution gives nonzero solution of embedding of page 15-30

Properties of extended self-dual embedding

- problem is strictly feasible; a strictly feasible point is given by

$$
\begin{equation*}
(s, \kappa, x, z, \tau, \gamma)=\left(s_{0}, 1, x_{0}, z_{0}, 1, \frac{s_{0}^{T} z_{0}+1}{\theta+1}\right) \tag{1}
\end{equation*}
$$

- if $s, \kappa, x, z, \tau, \gamma$ satisfy equality constraint, then

$$
\gamma=\frac{s^{T} z+\kappa \tau}{\theta+1}
$$

(take inner product with (x, z, τ, γ) on two sides of the equality)

- this is the extended embedding of page 15-34, but using variable γ instead of θ, and with a coefficient $\theta+1$ in objective and right-hand side

Central path for extended embedding

$$
\begin{gathered}
{\left[\begin{array}{c}
0 \\
s \\
\kappa \\
0
\end{array}\right]=\left[\begin{array}{cccc}
0 & A^{T} & c & q_{x} \\
-A & 0 & b & q_{z} \\
-c^{T} & -b^{T} & 0 & q_{\tau} \\
-q_{x}^{T} & -q_{z}^{T} & -q_{\tau} & 0
\end{array}\right]\left[\begin{array}{c}
x \\
z \\
\tau \\
\gamma
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\theta+1
\end{array}\right]} \\
(s, \kappa, z, \tau) \succeq 0, \quad s \circ z=\mu \mathbf{e}, \quad \kappa \tau=\mu
\end{gathered}
$$

- inner product with (x, z, τ, γ) shows that on the central path

$$
\gamma=\frac{z^{T} s+\kappa \tau}{\theta+1}=\mu
$$

- initial point (1) is on the central path with $\mu=\left(s_{0}^{T} z_{0}+1\right) /(\theta+1)$

Simplified central path equations

$$
\begin{gathered}
{\left[\begin{array}{c}
0 \\
s \\
\kappa
\end{array}\right]=\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{c}
x \\
z \\
\tau
\end{array}\right]+\mu\left[\begin{array}{c}
q_{x} \\
q_{z} \\
q_{\tau}
\end{array}\right]} \\
(s, \kappa, z, \tau) \succeq 0, \quad s \circ z=\mu \mathbf{e}, \quad \kappa \tau=\mu
\end{gathered}
$$

- we eliminated variable γ because $\gamma=\mu$ on the central path
- we removed the 4th equality, because it is implied by the first three (this follows by taking inner product with (x, z, τ))
- can be seen as a 'shifted central path' for the embedding on page 15-30

Path-following algorithm

choose starting points $\hat{s}, \hat{x}, \hat{z}$, with $\hat{s} \succ 0, \hat{z} \succ 0$; set $\hat{\kappa}:=1, \hat{\tau}:=1$

1. compute residuals and evaluate stopping criteria

$$
r=\left[\begin{array}{l}
0 \\
\hat{s} \\
\hat{\kappa}
\end{array}\right]-\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\hat{x} \\
\hat{z} \\
\hat{\tau}
\end{array}\right]
$$

terminate if r and $\hat{s}^{T} \hat{z} / \tau^{2}$ are sufficiently small, or an approximate certificate of primal or dual infeasibility has been found
2. compute scaling matrix W associated with (\hat{s}, \hat{z}) and set

$$
\lambda:=W^{-T} \hat{s}=W \hat{z}, \quad \mu:=\frac{\hat{s}^{T} \hat{z}+\hat{\kappa} \hat{\tau}}{\theta+1}
$$

3. compute affine scaling direction by solving the linear equation

$$
\begin{gathered}
{\left[\begin{array}{c}
0 \\
\Delta s_{\mathrm{a}} \\
\Delta \kappa_{\mathrm{a}}
\end{array}\right]-\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x_{\mathrm{a}} \\
\Delta z_{\mathrm{a}} \\
\Delta \tau_{\mathrm{a}}
\end{array}\right]=-r} \\
\lambda \circ\left(W \Delta z_{\mathrm{a}}+W^{-T} \Delta s_{\mathrm{a}}\right)=-\lambda \circ \lambda, \quad \hat{\kappa} \Delta \tau_{\mathrm{a}}+\hat{\tau} \Delta \kappa_{\mathrm{a}}=-\hat{\kappa} \hat{\tau}
\end{gathered}
$$

4. select barrier parameter

$$
\sigma:=(1-\alpha)^{\delta}
$$

where δ is an algorithm parameter (typical value is $\delta=3$) and

$$
\alpha=\sup \left\{\alpha \in[0,1] \mid(\hat{s}, \hat{\kappa}, \hat{z}, \hat{\tau})+\alpha\left(\Delta s_{\mathrm{a}}, \Delta \kappa_{\mathrm{a}}, \Delta z_{\mathrm{a}}, \Delta \tau_{\mathrm{a}}\right) \succeq 0\right\}
$$

5. compute search direction by solving the linear equation

$$
\begin{gathered}
{\left[\begin{array}{c}
0 \\
\Delta s \\
\Delta \kappa
\end{array}\right]-\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta z \\
\Delta \tau
\end{array}\right]=-(1-\sigma) r} \\
\lambda \circ\left(W \Delta z+W^{-T} \Delta s\right)=\sigma \mu \mathbf{e}-\lambda \circ \lambda-\left(W^{-T} \Delta s_{\mathrm{a}}\right) \circ\left(W \Delta z_{\mathrm{a}}\right) \\
\hat{\kappa} \Delta \tau+\hat{\tau} \Delta \kappa=\sigma \mu-\hat{\kappa} \hat{\tau}-\Delta \kappa_{\mathrm{a}} \Delta \tau_{\mathrm{a}}
\end{gathered}
$$

6. update iterates

$$
\begin{aligned}
& (\hat{s}, \hat{\kappa}, \hat{x}, \hat{z}, \hat{\tau}):=(\hat{s}, \hat{\kappa}, \hat{x}, \hat{z}, \hat{\tau})+\min \{1,0.99 \alpha\}(\Delta s, \Delta \kappa, \Delta x, \Delta z, \Delta \tau) \\
& \text { where } \alpha=\sup \{\alpha \in[0,1] \mid(\hat{s}, \hat{\kappa}, \hat{z}, \hat{\tau})+\alpha(\Delta s, \Delta \kappa, \Delta z, \Delta \tau) \succeq 0\}
\end{aligned}
$$

return to step 1

Properties (without proof)

- step 3: affine scaling direction satisfies

$$
\begin{gathered}
\hat{s}^{T} \Delta z_{\mathrm{a}}+\hat{z}^{T} \Delta s_{\mathrm{a}}=-\hat{s}^{T} \hat{z}, \quad \hat{\kappa} \Delta \tau_{\mathrm{a}}+\hat{\tau} \Delta \kappa_{\mathrm{a}}=-\hat{\kappa} \hat{\tau} \\
\Delta s_{\mathrm{a}}^{T} \Delta z_{\mathrm{a}}+\Delta \tau_{\mathrm{a}} \Delta \kappa_{\mathrm{a}}=0
\end{gathered}
$$

- step 5: search direction satisfies

$$
\begin{gathered}
\hat{s}^{T} \Delta z+\hat{\kappa} \Delta \tau+\hat{z}^{T} \Delta s+\hat{\tau} \Delta \kappa=-(1-\sigma)\left(\hat{s}^{T} \hat{z}+\hat{\kappa} \hat{\tau}\right) \\
\Delta s^{T} \Delta z+\Delta \tau \Delta \kappa=0
\end{gathered}
$$

Discussion

- step 4: expression for σ is based on simplifiying

$$
\sigma=\left(\frac{\left(\hat{s}+\alpha \Delta s_{\mathrm{a}}\right)^{T}\left(\hat{z}+\alpha \Delta z_{\mathrm{a}}\right)+\left(\hat{\kappa}+\alpha \Delta \kappa_{\mathrm{a}}\right)\left(\hat{\tau}+\alpha \Delta \tau_{\mathrm{a}}\right)}{\hat{s}^{T} \hat{z}+\hat{\kappa} \hat{\tau}}\right)^{\delta}
$$

- steps 5 and 6: gap and residual decrease linearly with α :

$$
\mu^{+}=(1-\alpha(1-\sigma)) \mu, \quad r^{+}=(1-\alpha(1-\sigma)) r
$$

if μ^{+}and r^{+}are the values of μ and r at the next iteration

- $r=\mu q$, with q defined on page 15-34 (a multiple of the initial residual)
- in step $5,-(1-\sigma) r=-r+\sigma \mu q$: the equation is the linearization of the central path equation of page 19-23 for barrier parameter $\sigma \mu$

Linear algebra complexity

- essentially the same as for the method on page 19-11
- eliminating $\Delta \tau, \Delta \kappa$ in steps 3 and 5 requires solution of an extra system

$$
\left[\begin{array}{cc}
0 & A^{T} \\
A & -W^{T} W
\end{array}\right]\left[\begin{array}{c}
\Delta \tilde{x} \\
\Delta \tilde{z}
\end{array}\right]=\left[\begin{array}{l}
c \\
b
\end{array}\right]
$$

- this increases the number of KKT systems solved per iteration to 3 (as opposed to 2 in the method on page 19-11)

References

implementations of primal-dual algorithms based on Nesterov-Todd scaling

- J.F. Sturm, Implementation of interior-point methods for mixed semidefinite and second order cone optimization problems, Optimization methods and Software (2002).

An overview of Sedumi.

- R.H. Tütüncü, K.C. Toh, M.J. Todd, Solving semidefinite-quadratic-linear programs using SDPT3, Mathematical Programming (2003).

An overview of SDPT3.

- CVXOPT (cvxopt.org)

The conelp and coneqp solvers are implementations of the algorithms in on page 19-24 and page 19-18.

