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19. Primal-dual interior-point methods

• primal-dual central path equations

• infeasible primal-dual method

• primal-dual method for self-dual embedding
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Symmetric cone program

Primal and dual problem

minimize cTx
subject to Ax+ s = b

s � 0

maximize −bTz
subject to ATz + c = 0

z � 0

inequalities are with respect to a symmetric cone

Optimality conditions[
0
s

]
=

[
0 AT

−A 0

] [
x
z

]
+

[
c
b

]

(s, z) � 0, sTz = 0
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Central path equations

Barrier function: we use the log-det barrier of lecture 18

φ(x) = − log detx

• a θ-normal barrier forK

• gradient is ∇φ(x) = −x−1 (see page 18-14)

Primal-dual central path equations[
0
s

]
=

[
0 AT

−A 0

] [
x
z

]
+

[
c
b

]

(s, z) � 0, z = −µ∇φ(s) = µs−1

last condition can be written symmetrically as s ◦ z = µ e
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Scaling

Scaling matrix: we call a nonsingularW a scaling matrix if

• multiplications withW andWT preserve the cone

W intK = intK, WT intK = intK

• inverses are transformed asWx−1 = (W−Tx)−1

Scaled central path equations: for any scaling, central path is solution of

[
0
s

]
=

[
0 AT

−A 0

] [
x
z

]
+

[
c
b

]

(s, z) � 0, (W−Ts) ◦ (Wz) = µ e
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Nesterov-Todd scaling

for a given pair (ŝ, ẑ) � 0, define

W = WT = P (w1/2)

where w satisfies ŝ = P (w)ẑ

• from page 18-21,

w = P (ẑ−1/2)
(
P (ẑ1/2)ŝ

)1/2
• multiplications byW andW−1 map ŝ and ẑ to the same point:

W−1ŝ = Wẑ = λ

this implies that ‖λ‖22 = ŝT ẑ
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Nesterov-Todd scaling for nonnegative orthant

W is a positive diagonal scaling

W = P (w1/2) =


√
ŝ1/ẑ1 0 · · · 0

0
√
ŝ2/ẑ2 · · · 0

... ... . . . ...
0 0 · · ·

√
ŝp/ẑp


• scaling point is

w =

(√
ŝ1/ẑ1,

√
ŝ2/ẑ2, . . . ,

√
ŝp/ẑp

)

• scaled ŝ, ẑ are

λ = W−T ŝ = Wẑ =
(√

ŝ1ẑ1,
√
ŝ2ẑ2, . . . ,

√
ŝpẑp

)
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Nesterov-Todd scaling for second-order cone

W is a hyperbolic Householder transformation

W = P (w1/2) = β(2vvT − J), J =

[
1 0
0 −I

]
and

β =
w̄TJw̄

2
, v =

1√
w̄TJw̄

w̄, w̄ = w1/2

scaling point w can be computed from

w = P (ẑ−1/2)
(
P (ẑ1/2)ŝ

)1/2
using the expressions for P and squareroot on pages 18-15, 18-17
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Nesterov-Todd scaling for positive semidefinite cone

W is a symmetric congruence transformation

Wy = vec
(
T 1/2 mat(y)T 1/2

)
where

T = Ẑ−1/2
(
Ẑ1/2ŜẐ1/2

)1/2
Ẑ−1/2

• T = RRT with R computed as on page 18-24

• a simpler, nonsymmetric scaling is

Wy = vec
(
RT mat(y)R

)
, WTy = vec

(
Rmat(y)RT

)
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Outline

• primal-dual central path equations

• infeasible primal-dual method

• primal-dual method for self-dual embedding



Basic primal-dual update

suppose the current iterates are ŝ, x̂, ẑ with ŝ � 0, ẑ � 0

• define µ = ŝT ẑ/θ and compute the NT scaling matrixW for ŝ, ẑ

• compute ∆s, ∆x, ∆z by linearizing the central path equation[
0
s

]
=

[
0 AT

−A 0

] [
x
z

]
+

[
c
b

]
(W−Ts) ◦ (Wz) = σµ e

around ŝ, x̂, ẑ, for some σ < 1

• make an update

(ŝ, x̂) := (ŝ, x̂) + αp(∆x,∆s), ẑ := ẑ + αd∆z

that preserves positivity of ŝ, ẑ
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Linearized central path equation

define λ = W−T ŝ = Wẑ and

r =

[
0
ŝ

]
−
[

0 AT

−A 0

] [
x̂
ẑ

]
−
[
c
b

]

linearized central path equation[
0

∆s

]
−
[

0 AT

−A 0

] [
∆x
∆z

]
= −r

λ ◦
(
W∆z +W−T∆s

)
= σµ e− λ ◦ λ

second equation is linearization of

(W−T (ŝ+ ∆s)) ◦ (W (ẑ + ∆z)) = σµ e
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Path-following algorithm

choose starting points ŝ, x̂, ẑ with ŝ � 0, ẑ � 0

1. compute residuals and evaluate stopping criteria

r =

[
0
ŝ

]
−
[

0 AT

−A 0

] [
x̂
ẑ

]
−
[
c
b

]

terminate if r and ŝT ẑ are sufficiently small

2. compute scaling matrixW associated with (ŝ, ẑ) and set

λ := W−T ŝ = Wẑ, µ :=
λTλ

θ
=
ŝT ẑ

θ
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3. compute affine scaling direction by solving the linear equation[
0

∆sa

]
−
[

0 AT

−A 0

] [
∆xa
∆za

]
= −r

λ ◦
(
W∆za +W−T∆sa

)
= −λ ◦ λ

4. select barrier parameter

σ =

(
(ŝ+ αp∆sa)

T (ẑ + αd∆za)

ŝT ẑ

)δ
where δ is an algorithm parameter (a typical value is δ = 3) and

αp = sup{α ∈ [0, 1] | ŝ+ α∆sa � 0}
αd = sup{α ∈ [0, 1] | ẑ + α∆za � 0}
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5. compute search direction by solving the linear equation[
0

∆s

]
−
[

0 AT

−A 0

] [
∆x
∆z

]
= −r

λ ◦ (W∆z +W−T∆s) = σµ e− λ ◦ λ

6. update iterates

(x̂, ŝ) := (x̂, ŝ) + min{1, 0.99αp}(∆x,∆s)
ẑ := ẑ + min{1, 0.99αd}∆z

where

αp = sup{α ≥ 0 | ŝ+ α∆s � 0}, αd = sup{α ≥ 0 | ẑ + α∆z � 0}

return to step 1
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Interpretation and discussion

• step 3: affine scaling direction solves linearized central path equation with
σ = 0, i.e., the linearized optimality conditions

• step 4 is a heuristic for choosing σ based on an estimate of the quality of the
affine scaling direction

σ is small if a step in the affine scaling direction gives a large reduction in ŝT ẑ

• step 5: linear equation has same coefficient matrix as equation in step 3

if a direct method is used, we can reuse the factorization used in step 3, and
solve the two equations at the cost of one
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Mehrotra correction

in step 5, solve [
0

∆s

]
−
[

0 AT

−A 0

] [
∆x
∆z

]
= −r

λ ◦ (W∆z +W−T∆s) = σµ e− λ ◦ λ− (W−T∆sa) ◦ (W∆za)

• extra term on the right-hand side is approximation of the second-order term in

(W−T (ŝ+ ∆s)) ◦ (W (ẑ + ∆z)) = σµ e

• adding the correction typically saves a few iterations
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Newton equations

steps 3 and 5 reduce to equations[
0 AT

A −WTW

] [
∆x
∆z

]
=

[
dx
dz

]
usually solved by eliminating ∆z:

ATW−1W−TA∆x = dx +ATW−1W−Tdz

• a KKT system (see §10.4.2 in BV for a discussion of solution methods)

• sinceWTW = P (w) = ∇2φ(w)−1,

ATW−1W−TA = AT∇2φ(w)A,

the Hessian of the barrier function φ(b−Ax) at the scaling point w
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Quadratic cone program

minimize (1/2)xTQx+ qTx
subject to Ax+ s = b

s � 0

Optimality conditions[
0
s

]
=

[
Q AT

−A 0

] [
x
z

]
+

[
q
b

]
, (s, z) � 0, sTz = 0

Central path[
0
s

]
=

[
Q AT

−A 0

] [
x
z

]
+

[
q
b

]
, (s, z) � 0, s ◦ z = µ e
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Path-following algorithm

algorithm is almost identical to algorithm on page 19-11

• compute search directions from linearized central path equation;

for example, step 5 becomes[
0

∆s

]
−
[

Q AT

−A 0

] [
∆x
∆z

]
= −r

λ ◦ (W∆z +W−T∆s) = σµ e− λ ◦ λ

• use equal primal and dual step sizes

for example, in step 6,

αp = αd = sup {α ≥ 0 | ŝ+ α∆s � 0, ẑ + α∆z � 0}
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Outline

• primal-dual central path equations

• infeasible primal-dual method

• primal-dual method for self-dual embedding



Extended self-dual embedding

minimize (θ + 1)γ

subject to


0
s
κ
0

 =


0 AT c qx
−A 0 b qz
−cT −bT 0 qτ
−qTx −qTz −qτ 0



x
z
τ
θ

+


0
0
0

θ + 1


(s, κ, z, τ) � 0

• θ is the logarithmic degree or rank of the cone

• qx, qz, qτ defined as qx
qz
qτ

 =
θ + 1

sT0 z0 + 1

 0
s0
1

−
 0 AT c
−A 0 b
−cT −bT 0

 x0
z0
1


s0, x0, z0 are arbitrary with s0 � 0, z0 � 0
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Optimality condition


0
s
κ
0

 =


0 AT c qx
−A 0 b qz
−cT −bT 0 qτ
−qTx −qTz −qτ 0



x
z
τ
γ

+


0
0
0

θ + 1


(s, κ, z, τ) � 0, sTz + κτ = 0

• follows from self-dual property

• shows that γ = 0 at optimum

• optimal solution gives nonzero solution of embedding of page 15-30
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Properties of extended self-dual embedding

• problem is strictly feasible; a strictly feasible point is given by

(s, κ, x, z, τ, γ) = (s0, 1, x0, z0, 1,
sT0 z0 + 1

θ + 1
) (1)

• if s, κ, x, z, τ, γ satisfy equality constraint, then

γ =
sTz + κτ

θ + 1

(take inner product with (x, z, τ, γ) on two sides of the equality)

• this is the extended embedding of page 15-34, but using variable γ instead of
θ, and with a coefficient θ + 1 in objective and right-hand side
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Central path for extended embedding


0
s
κ
0

 =


0 AT c qx
−A 0 b qz
−cT −bT 0 qτ
−qTx −qTz −qτ 0



x
z
τ
γ

+


0
0
0

θ + 1


(s, κ, z, τ) � 0, s ◦ z = µ e, κτ = µ

• inner product with (x, z, τ, γ) shows that on the central path

γ =
zTs+ κτ

θ + 1
= µ

• initial point (1) is on the central path with µ = (sT0 z0 + 1)/(θ + 1)
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Simplified central path equations

 0
s
κ

 =

 0 AT c
−A 0 b
−cT −bT 0

 x
z
τ

+ µ

 qx
qz
qτ


(s, κ, z, τ) � 0, s ◦ z = µ e, κτ = µ

• we eliminated variable γ because γ = µ on the central path

• we removed the 4th equality, because it is implied by the first three

(this follows by taking inner product with (x, z, τ))

• can be seen as a ‘shifted central path’ for the embedding on page 15-30
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Path-following algorithm

choose starting points ŝ, x̂, ẑ, with ŝ � 0, ẑ � 0; set κ̂ := 1, τ̂ := 1

1. compute residuals and evaluate stopping criteria

r =

 0
ŝ
κ̂

−
 0 AT c
−A 0 b
−cT −bT 0

 x̂
ẑ
τ̂


terminate if r and ŝT ẑ/τ2 are sufficiently small, or an approximate certificate of
primal or dual infeasibility has been found

2. compute scaling matrixW associated with (ŝ, ẑ) and set

λ := W−T ŝ = Wẑ, µ :=
ŝT ẑ + κ̂τ̂

θ + 1
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3. compute affine scaling direction by solving the linear equation 0
∆sa
∆κa

−
 0 AT c
−A 0 b
−cT −bT 0

 ∆xa
∆za
∆τa

 = −r

λ ◦
(
W∆za +W−T∆sa

)
= −λ ◦ λ, κ̂∆τa + τ̂∆κa = −κ̂τ̂

4. select barrier parameter
σ := (1− α)δ

where δ is an algorithm parameter (typical value is δ = 3) and

α = sup {α ∈ [0, 1] | (ŝ, κ̂, ẑ, τ̂) + α(∆sa,∆κa,∆za,∆τa) � 0}
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5. compute search direction by solving the linear equation 0
∆s
∆κ

−
 0 AT c
−A 0 b
−cT −bT 0

 ∆x
∆z
∆τ

 = −(1− σ)r

λ ◦ (W∆z +W−T∆s) = σµ e− λ ◦ λ− (W−T∆sa) ◦ (W∆za)

κ̂∆τ + τ̂∆κ = σµ− κ̂τ̂ −∆κa∆τa

6. update iterates

(ŝ, κ̂, x̂, ẑ, τ̂) := (ŝ, κ̂, x̂, ẑ, τ̂) + min{1, 0.99α} (∆s,∆κ,∆x,∆z,∆τ)

where α = sup {α ∈ [0, 1] | (ŝ, κ̂, ẑ, τ̂) + α(∆s,∆κ,∆z,∆τ) � 0}

return to step 1
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Properties (without proof)

• step 3: affine scaling direction satisfies

ŝT∆za + ẑT∆sa = −ŝT ẑ, κ̂∆τa + τ̂∆κa = −κ̂τ̂

∆sTa ∆za + ∆τa∆κa = 0

• step 5: search direction satisfies

ŝT∆z + κ̂∆τ + ẑT∆s+ τ̂∆κ = −(1− σ)(ŝT ẑ + κ̂τ̂)

∆sT∆z + ∆τ∆κ = 0
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Discussion

• step 4: expression for σ is based on simplifiying

σ =

(
(ŝ+ α∆sa)

T (ẑ + α∆za) + (κ̂+ α∆κa)(τ̂ + α∆τa)

ŝT ẑ + κ̂τ̂

)δ

• steps 5 and 6: gap and residual decrease linearly with α:

µ+ = (1− α(1− σ))µ, r+ = (1− α(1− σ))r,

if µ+ and r+ are the values of µ and r at the next iteration

• r = µq, with q defined on page 15-34 (a multiple of the initial residual)

• in step 5, −(1− σ)r = −r + σµq: the equation is the linearization of the
central path equation of page 19-23 for barrier parameter σµ
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Linear algebra complexity

• essentially the same as for the method on page 19-11

• eliminating ∆τ , ∆κ in steps 3 and 5 requires solution of an extra system[
0 AT

A −WTW

] [
∆x̃
∆z̃

]
=

[
c
b

]

• this increases the number of KKT systems solved per iteration to 3 (as
opposed to 2 in the method on page 19-11)
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