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12. Primal–dual proximal methods

• primal–dual optimality conditions

• primal–dual hybrid gradient algorithm

• monotone operators

• proximal point algorithm
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Primal and dual problem

primal: minimize 5 (G) + 6(�G)
dual: maximize −6∗(I) − 5 ∗(−�) I)

• 5 and 6 are closed convex functions

• dual problem is Lagrange dual of reformulated problem

minimize 5 (G) + 6(H)
subject to �G = H

Optimality (Karush–Kuhn–Tucker) conditions (see pp. 5.21–5.24)

• primal feasibility: G ∈ dom 5 and �G = H ∈ dom 6

• (G, H) is a minimizer of the Lagrangian 5 (G) + 6(H) + I) (�G − H):

−�) I ∈ m 5 (G), I ∈ m6(H) (equivalently, H ∈ m6∗(I))
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Primal–dual optimality conditions

• the optimality conditions can be written symmetrically as

0 ∈
[

0 �)

−� 0

] [
G
I

]
+

[
m 5 (G)
m6∗(I)

]
• second term on right-hand side denotes the product set

m 5 (G) × m6∗(I) = {(D, {) | D ∈ m 5 (G), { ∈ m6∗(I)}

• solutions are saddle points of convex–concave function

5 (G) − 6∗(I) + I)�G

in this lecture we assume that the optimality conditions are solvable
(a sufficient condition is that primal is solvable and Slater’s condition holds)
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Outline

• primal–dual optimality conditions

• primal–dual hybrid gradient algorithm

• monotone operators

• proximal point algorithm



Primal–dual hybrid gradient (PDHG) method

0 ∈
[

0 �)

−� 0

] [
G
I

]
+

[
m 5 (G)
m6∗(I)

]

Algorithm

G:+1 = proxg 5 (G: − g�) I:)
I:+1 = proxf6∗(I: + f�(2G:+1 − G:))

• each iteration requires evaluations of proximal mappings of 5 and 6∗

• requires multiplications with � and �) , but no solutions of linear equations

• primal and dual step sizes g, f are positive and must satisfy fg‖�‖22 ≤ 1
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Example
same problem as on pp. 11.20–11.24
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• multiplications with � and �) require 2-D FFTs

• with periodic boundary conditions, cost/iteration is similar for the three methods
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Douglas–Rachford method derived from PDHG

minimize 5 (G) + 6(G)

• a special case of the standard problem on page 12.2 with � = �

• apply PDHG with f = g = 1:

G:+1 = prox 5 (G: − I:)
I:+1 = prox6∗(I: + 2G:+1 − G:)

• this is the primal–dual form of the Douglas–Rachford method on page 11.8
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PDHG derived from Douglas–Rachford method

apply the Douglas–Rachford splitting method to a reformulation of the problem:

minimize 5 (G) + 6(�G) minimize 5 (G) + 6(�G + �H)
subject to H = 0

• � is chosen to satisfy

��) + ��) = (1/U)� where 1/U ≥ ‖�‖22

for example, � = ((1/U)� − ��))1/2

• reformulated problem is equivalent to minimizing 5̃ (G, H) + 6̃(G, H) with

5̃ (G, H) = 5 (G) + X{0}(H), 6̃(G, H) = 6(�G + �H)

• after simplifications, DR applied to reformulated problem will reduce to PDHG
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Proximal operators for reformulated problem

• proximal operator of 5̃ (G, H) = 5 (G) + X{0}(H):

proxg 5̃ (G, H) =
[

proxg 5 (G)
0

]
• proximal operator of 6̃(G, H) = 6(�G + �H) follows from page 6.8 and page 6.7:

proxg6̃(G, H) =

[
G
H

]
− U

[
�)

�)

]
(�G + �H − prox(g/U)6(�G + �H)

=

[
G
H

]
− g

[
�)

�)

]
proxf6∗ (f(�G + �H))

where f = U/g

• proximal operator of 6̃∗ follows from Moreau identity (page 6.6)

prox(g6̃)∗(G, H) = g
[
�)

�)

]
proxf6∗(f(�G + �H))
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Douglas–Rachford algorithm applied to reformulated problem

minimize 5 (G) + X{0}(H)︸            ︷︷            ︸
5̃ (G,H)

+ 6(�G + �H)︸        ︷︷        ︸
6̃(G,H)

• primal–dual form of Douglas–Rachford algorithm (page 11.8) with step size g[
G:+1
H:+1

]
= proxg 5̃ (

[
G: − ?:
H: − @:

]
)[

?:+1
@:+1

]
= prox(g6̃)∗ (

[
?: + 2G:+1 − G:
@: + 2H:+1 − H:

]
)

• substitute expressions for proximal operators (with f defined as f = U/g)[
G:+1
H:+1

]
=

[
proxg 5 (G: − ?:)

0

]
[
?:+1
@:+1

]
= g

[
�)

�)

]
proxf6∗

(
f

[
� �

] [
?: + 2G:+1 − G:
@: + 2H:+1 − H:

] )
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First simplification

[
G:+1
H:+1

]
=

[
proxg 5 (G: − ?:)

0

]
[
?:+1
@:+1

]
= g

[
�)

�)

]
proxf6∗

(
f

[
� �

] [
?: + 2G:+1 − G:
@: + 2H:+1 − H:

] )

• from first step, H: = 0 for all : if we start with H0 = 0

• we remove the zero variable H: :

G:+1 = proxg 5 (G: − ?:)[
?:+1
@:+1

]
= g

[
�)

�)

]
proxf6∗

(
f

[
� �

] [
?:
@:

]
+ f�(2G:+1 − G:)

)
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Second simplification

G:+1 = proxg 5 (G: − ?:)[
?:+1
@:+1

]
= g

[
�)

�)

]
proxf6∗ (f(�?: + �@:) + f�(2G:+1 − G:))

• from step 2:
[
?:
@:

]
∈ range

[
�)

�)

]
for all : , if this holds for (?0, @0)

• since ��) + ��) = (1/U)� and f = U/g,[
?:
@:

]
= g

[
�)

�)

]
I: for a unique I: given by I: = f(�?: + �@:)

• a change of variables I: = f(�?: + �@:) gives

G:+1 = proxg 5 (G: − g�) I:), I:+1 = proxf6∗(I: + f�(2G:+1 − G:))

this is the PDHG algorithm with fg = U ≤ 1/‖�‖22
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PDHG with overrelaxation

Ḡ:+1 = proxg 5 (G: − g�) I:)
Ī:+1 = proxf6∗(I: + f�(2Ḡ:+1 − G:))[

G:+1
I:+1

]
=

[
G:
I:

]
+ d:

[
Ḡ:+1 − G:
Ī:+1 − I:

]
• d: ∈ (0, 2)
• convergence follows from convergence of Douglas–Rachford splitting method

• other types of acceleration exist for problems with strongly convex 5 or 6∗
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Outline

• primal–dual optimality conditions
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• monotone operators

• proximal point algorithm



Multivalued (set-valued) operator

Definition: operator � maps vectors G ∈ R= to sets � (G) ⊆ R=

• the domain and graph of � are defined as

dom � = {G ∈ R= | � (G) ≠ ∅}
gr(�) = {(G, H) ∈ R= × R= | G ∈ dom �, H ∈ � (G)}

• if � (G) is a singleton, we write � (G) = H instead of � (G) = {H}

Example: sign operator

� (G) =

−1 G < 0
[−1, 1] G = 0
1 G > 0

1

−1

gr(�)

G

� (G)
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Transformations as operations on graph

Inverse: �−1(G) = {H | G ∈ � (H)}

gr(�−1) =
[

0 �
� 0

]
gr(�)

Composition with scaling: (_�) (G) = _� (G) and (�_) (G) = � (_G)

gr(_�) =
[
� 0
0 _�

]
gr(�), gr(�_) =

[ (1/_)� 0
0 �

]
gr(�)

Addition to identity: (� + _�) (G) = {G + _H | H ∈ � (G)}

gr(� + _�) =
[
� 0
� _�

]
gr(�)

note that these are all linear operations on the graph
Primal–dual proximal methods 12.14



Example

1

−1

G

� (G)

1
−1

G

�−1(G)

_

−_
G

(� + _�) (G)

_

−_
G

(� + _�)−1(G)
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Monotone operator

Definition: � is a monotone operator if

(H − Ĥ)) (G − Ĝ) ≥ 0 for all G, Ĝ ∈ dom �, H ∈ � (G), Ĥ ∈ � (Ĝ)

in terms of the graph,[
G − Ĝ
H − Ĥ

]) [
0 �
� 0

] [
G − Ĝ
H − Ĥ

]
≥ 0 for all (G, H), (Ĝ, Ĥ) ∈ gr(�)

Monotone inclusion problem: find G ∈ �−1(0), i.e., solve

0 ∈ � (G)

this covers many equilibrium/optimality conditions as special cases
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Examples

we will encounter the following three types of monotone operators

• subdifferentials m 5 (G) of convex functions 5

• affine monotone operators: � (G) = �G + 3 is monotone if

� + �) � 0

• sums of the above; in particular,

� (G, I) =
[

0 �)

−� 0

] [
G
I

]
+

[
m 5 (G)
m6∗(I)

]
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Maximal monotone operator

graph is not properly contained in the graph of another monotone operator

maximal monotone

G

� (G)

monotone, but not maximal monotone

G

� (G)
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Conditions for maximal monotonicity

• the subdifferential of a closed convex function is maximal monotone

• affine monotone operators are maximal monotone

• (Minty’s theorem) a monotone operator � is maximal monotone if and only if

im(� + �) :=
⋃

G∈dom �

(G + � (G)) = R=

i.e., for every H ∈ R=, there exists an G such that H ∈ G + � (G)

• sums � + � of maximal monotone operators are not necessarily maximal

(sufficient condition: int dom � ∩ dom� ≠ ∅)
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Coercivity (strong monotonicity)

� is coercive with parameter ` > 0 if

(H − Ĥ)) (G − Ĝ) ≥ `‖G − Ĝ‖22 for all G, Ĝ ∈ dom �, H ∈ � (G), Ĥ ∈ � (Ĝ)

• � − `� is a monotone operator

• equivalently,[
G − Ĝ
H − Ĥ

]) [ −2`� �
� 0

] [
G − Ĝ
H − Ĥ

]
≥ 0 for all (G, H), (Ĝ, Ĥ) ∈ gr(�)

Examples

• subdifferential of strongly convex function

• affine operator � (G) = �G + 1 if � + �) � 0 (with ` = _min(� + �))/2)
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Co-coercivity

� is co-coercive with parameter W > 0 if �−1 is coercive

• � (G) is single-valued for G ∈ dom � and

(� (G) − � (Ĝ))) (G − Ĝ) ≥ W‖� (G) − � (Ĝ)‖22 for all G, Ĝ ∈ dom �

• equivalently,[
G − Ĝ
H − Ĥ

]) [
0 �
� −2W�

] [
G − Ĝ
H − Ĥ

]
≥ 0 for all (G, H), (Ĝ, Ĥ) ∈ gr(�)

• � is firmly nonexpansive if it is co-coercive with W = 1

Example: affine operator � (G) = �G + 1 with

� + �) � 2W�)� ⇐⇒ ‖2W� − � ‖2 ≤ 1

for symmetric positive definite �, this means _max(�) ≤ 1/W
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Lipschitz continuity

• � is Lipschitz continuous with parameter ! if it is single-valued on dom � and

‖� (G) − � (Ĝ)‖2 ≤ !‖G − Ĝ‖2 for all G, Ĝ ∈ dom �

• � is nonexpansive if it is Lipschitz continuous with ! = 1

Example: any affine � (G) = �G + 1 (parameter ! = ‖�‖2)

Relation to co-coercivity

• co-coercivity implies Lipschitz continuity (with ! = 1/W)
• Lipschitz continuity does not imply co-coercivity

• properties are equivalent for gradient of closed convex functions (page 1.15)
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Resolvent

the resolvent of an operator � is the operator

(� + _�)−1 (with _ > 0)

• inverse denotes the operator inverse:

H ∈ (� + _�)−1(G) ⇐⇒ G − H ∈ _� (H)

• graph of resolvent is a linear transformation of graph of �:

gr((� + _�)−1) =
[
� _�
� 0

]
gr(�)
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Examples

Subdifferential: resolvent is proximal mapping

(� + _m 5 )−1 (G) = prox_ 5 (G)

follows from subgradient characteriation of prox_ 5 (page 4.7)

H = prox_ 5 (G) ⇐⇒ G − H ∈ _m 5 (H)

Monotone affine mapping: resolvent of � (G) = �G + 1 is

(� + _�)−1(G) = (� + _�)−1(G − _1)

• inverse on right-hand side is standard matrix inverse

• � + _� is nonsingular for all _ ≥ 0 because � + �) � 0
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Monotonicity properties

• an operator is monotone if and only if its resolvent is firmly nonexpansive:

this follows from the matrix identity

_

[
0 �
� 0

]
=

[
� �
_� 0

] [
0 �
� −2�

] [
� _�
� 0

]
and the expression of the graph of the resolvent on page 12.23

• a monotone operator � is maximal monotone if and only

dom((� + _�)−1) = R=

follows from Minty’s theorem on page 12.19
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Proximal point algorithm

Monotone inclusion problem: given maximal monotone �, find G such that

0 ∈ � (G)

this is equivalent to finding a fixed point of the resolvent 'C = (� + C�)−1 of �:

G = 'C (G) ⇐⇒ G ∈ (� + C�) (G) ⇐⇒ 0 ∈ � (G)

Proximal point algorithm: fixed point iteration

G:+1 = 'C: (G:)

Proximal point algorithm with relaxation (relaxation parameter d: ∈ (0, 2)):

G:+1 = G: + d: ('C: (G:) − G:)
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Convergence

if �−1(0) ≠ ∅, proximal point algorithm converges

• with constant C: = C > 0 and d: = d ∈ (0, 2)
• with C: , d: varying and bounded away from their limits, i.e.,

C: ≥ Cmin > 0, 0 < dmin ≤ d: ≤ dmax < 2 for all :

proof relies on firm nonexpansiveness of resolvent
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Linear change of variables

make a change of variables G = �H, with � nonsingular:

� (H) = �)� (�H)

• graph of � is

gr (�) =
[
�−1 0
0 �)

]
gr (�)

• (maximal) monotonicity of � follows from (maximal) monotonicity of � and[
�−1 0
0 �)

]) [
0 �
� 0

] [
�−1 0
0 �)

]
=

[
0 �
� 0

]
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“Preconditioned” proximal point algorithm

H:+1 = (� + C:�)−1(H:)

• H:+1 is the solution H of the inclusion problem

1
C:
(H: − H) ∈ �)� (�H)

• in the original coordinates G = �H, this can be written as

1
C:
� (G: − G) ∈ � (G)

where � = �−)�−1 and G: = �H:
• we obtain a generalized proximal point update, with � � 0 substituted for �:

G:+1 = (� + C:�)−1(�G:)

the purpose is often to make the resolvents cheaper, not preconditioning
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Proximal method of multipliers

the proximal point algorithm applied to

� (G, I) =
[

0 �)

−� 0

] [
G
I

]
+

[
m 5 (G)
m6∗(I)

]
is known as the proximal method of multipliers

• basic iteration (without relaxation) is

(G:+1, I:+1) = (� + C�)−1(G: , I:)

• (G:+1, I:+1) is the solution of the monotone inclusion with variables G, I

0 ∈
[

0 �)

−� 0

] [
G
I

]
+

[
m 5 (G)
m6∗(I)

]
+ 1
C

[
G − G:
I − I:

]
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Evaluation of the resolvent

• equivalent inclusion problem

0 ∈


0 0 �)

0 0 −�
−� � 0



G
H
I

 +

m 5 (G)
m6(H)

0

 +
1
C


G − G:

0
I − I:


• this is the optimality condition of the optimization problem (variables G, H)

minimize 5 (G) + 6(H) + C
2
‖�G − H + (1/C)I: ‖22 +

1
2C
‖G − G: ‖22

(the augmented Lagrangian with an extra quadratic penalty term on G)

• from the minimizer (Ĝ, Ĥ), we make the update

G:+1 = Ĝ, I:+1 = I: + C (�Ĝ − Ĥ)
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PDHG and proximal point algorithm

apply “preconditioned” proximal point algorithm of page 12.29 with C: = g and

� =

[
� −g�)
−g� (g/f)�

]
• � is positive definite for fg‖�‖22 < 1

• G:+1 and I:+1 are the solution G, I of

1
g

[
� −g�)
−g� (g/f)�

] [
G: − G
I: − I

]
∈

[
0 �)

−� 0

] [
G
I

]
+

[
m 5 (G)
m6∗(I)

]
• this simplifies to

0 ∈ m 5 (G) + 1
g
(G − G: + g�) I:)

0 ∈ m6∗(I) + 1
f
(I − I: − f�(2G − G:))

can solve 1st inclusion for G; substitute solution in 2nd inclusion and solve for I
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PDHG and proximal point algorithm

0 ∈ m 5 (G) + 1
g
(G − G: + g�) I:)

0 ∈ m6∗(I) + 1
f
(I − I: − f�(2G − G:))

• solution of the two inclusions is

G:+1 = (� + gm 5 )−1(G: − g�) I:)
I:+1 = (� + fm6∗)−1(I: + f�(2G:+1 − G:))

• writing the solution in terms of prox operators gives the PDHG algorithm

G:+1 = proxg 5 (G: − g�) I:)
I:+1 = proxf6∗(I: + f�(2G:+1 − G:))
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