
L. Vandenberghe ECE236C (Spring 2022)

12. Primal–dual proximal methods

• primal–dual optimality conditions

• primal–dual hybrid gradient algorithm

• monotone operators

• proximal point algorithm

12.1

Primal and dual problem

primal: minimize 5 (G) + 6(�G)
dual: maximize −6∗(I) − 5 ∗(−�) I)

• 5 and 6 are closed convex functions

• dual problem is Lagrange dual of reformulated problem

minimize 5 (G) + 6(H)
subject to �G = H

Optimality (Karush–Kuhn–Tucker) conditions (see pp. 5.21–5.24)

• primal feasibility: G ∈ dom 5 and �G = H ∈ dom 6

• (G, H) is a minimizer of the Lagrangian 5 (G) + 6(H) + I) (�G − H):

−�) I ∈ m 5 (G), I ∈ m6(H) (equivalently, H ∈ m6∗(I))

Primal–dual proximal methods 12.2

Primal–dual optimality conditions

• the optimality conditions can be written symmetrically as

0 ∈
[

0 �)

−� 0

] [
G
I

]
+

[
m 5 (G)
m6∗(I)

]
• second term on right-hand side denotes the product set

m 5 (G) × m6∗(I) = {(D, {) | D ∈ m 5 (G), { ∈ m6∗(I)}

• solutions are saddle points of convex–concave function

5 (G) − 6∗(I) + I)�G

in this lecture we assume that the optimality conditions are solvable
(a sufficient condition is that primal is solvable and Slater’s condition holds)

Primal–dual proximal methods 12.3

Outline

• primal–dual optimality conditions

• primal–dual hybrid gradient algorithm

• monotone operators

• proximal point algorithm

Primal–dual hybrid gradient (PDHG) method

0 ∈
[

0 �)

−� 0

] [
G
I

]
+

[
m 5 (G)
m6∗(I)

]

Algorithm

G:+1 = proxg 5 (G: − g�) I:)
I:+1 = proxf6∗(I: + f�(2G:+1 − G:))

• each iteration requires evaluations of proximal mappings of 5 and 6∗

• requires multiplications with � and �) , but no solutions of linear equations

• primal and dual step sizes g, f are positive and must satisfy fg‖�‖22 ≤ 1

Primal–dual proximal methods 12.4

Example
same problem as on pp. 11.20–11.24

0 100 200 300 400 50010−6

10−5

10−4

10−3

10−2

10−1

100

iteration

re
la

tiv
e

pr
im

al
su

bo
pt

im
al

ity

ADMM
primal DR

PDHG

• multiplications with � and �) require 2-D FFTs

• with periodic boundary conditions, cost/iteration is similar for the three methods

Primal–dual proximal methods 12.5

Douglas–Rachford method derived from PDHG

minimize 5 (G) + 6(G)

• a special case of the standard problem on page 12.2 with � = �

• apply PDHG with f = g = 1:

G:+1 = prox 5 (G: − I:)
I:+1 = prox6∗(I: + 2G:+1 − G:)

• this is the primal–dual form of the Douglas–Rachford method on page 11.8

Primal–dual proximal methods 12.6

PDHG derived from Douglas–Rachford method

apply the Douglas–Rachford splitting method to a reformulation of the problem:

minimize 5 (G) + 6(�G) minimize 5 (G) + 6(�G + �H)
subject to H = 0

• � is chosen to satisfy

��) + ��) = (1/U)� where 1/U ≥ ‖�‖22

for example, � = ((1/U)� − ��))1/2

• reformulated problem is equivalent to minimizing 5̃ (G, H) + 6̃(G, H) with

5̃ (G, H) = 5 (G) + X{0}(H), 6̃(G, H) = 6(�G + �H)

• after simplifications, DR applied to reformulated problem will reduce to PDHG

Primal–dual proximal methods 12.7

Proximal operators for reformulated problem

• proximal operator of 5̃ (G, H) = 5 (G) + X{0}(H):

proxg 5̃ (G, H) =
[

proxg 5 (G)
0

]
• proximal operator of 6̃(G, H) = 6(�G + �H) follows from page 6.8 and page 6.7:

proxg6̃(G, H) =

[
G
H

]
− U

[
�)

�)

]
(�G + �H − prox(g/U)6(�G + �H)

=

[
G
H

]
− g

[
�)

�)

]
proxf6∗ (f(�G + �H))

where f = U/g

• proximal operator of 6̃∗ follows from Moreau identity (page 6.6)

prox(g6̃)∗(G, H) = g
[
�)

�)

]
proxf6∗(f(�G + �H))

Primal–dual proximal methods 12.8

Douglas–Rachford algorithm applied to reformulated problem

minimize 5 (G) + X{0}(H)︸ ︷︷ ︸
5̃ (G,H)

+ 6(�G + �H)︸ ︷︷ ︸
6̃(G,H)

• primal–dual form of Douglas–Rachford algorithm (page 11.8) with step size g[
G:+1
H:+1

]
= proxg 5̃ (

[
G: − ?:
H: − @:

]
)[

?:+1
@:+1

]
= prox(g6̃)∗ (

[
?: + 2G:+1 − G:
@: + 2H:+1 − H:

]
)

• substitute expressions for proximal operators (with f defined as f = U/g)[
G:+1
H:+1

]
=

[
proxg 5 (G: − ?:)

0

]
[
?:+1
@:+1

]
= g

[
�)

�)

]
proxf6∗

(
f

[
� �

] [
?: + 2G:+1 − G:
@: + 2H:+1 − H:

])
Primal–dual proximal methods 12.9

First simplification

[
G:+1
H:+1

]
=

[
proxg 5 (G: − ?:)

0

]
[
?:+1
@:+1

]
= g

[
�)

�)

]
proxf6∗

(
f

[
� �

] [
?: + 2G:+1 − G:
@: + 2H:+1 − H:

])

• from first step, H: = 0 for all : if we start with H0 = 0

• we remove the zero variable H: :

G:+1 = proxg 5 (G: − ?:)[
?:+1
@:+1

]
= g

[
�)

�)

]
proxf6∗

(
f

[
� �

] [
?:
@:

]
+ f�(2G:+1 − G:)

)

Primal–dual proximal methods 12.10

Second simplification

G:+1 = proxg 5 (G: − ?:)[
?:+1
@:+1

]
= g

[
�)

�)

]
proxf6∗ (f(�?: + �@:) + f�(2G:+1 − G:))

• from step 2:
[
?:
@:

]
∈ range

[
�)

�)

]
for all : , if this holds for (?0, @0)

• since ��) + ��) = (1/U)� and f = U/g,[
?:
@:

]
= g

[
�)

�)

]
I: for a unique I: given by I: = f(�?: + �@:)

• a change of variables I: = f(�?: + �@:) gives

G:+1 = proxg 5 (G: − g�) I:), I:+1 = proxf6∗(I: + f�(2G:+1 − G:))

this is the PDHG algorithm with fg = U ≤ 1/‖�‖22
Primal–dual proximal methods 12.11

PDHG with overrelaxation

Ḡ:+1 = proxg 5 (G: − g�) I:)
Ī:+1 = proxf6∗(I: + f�(2Ḡ:+1 − G:))[

G:+1
I:+1

]
=

[
G:
I:

]
+ d:

[
Ḡ:+1 − G:
Ī:+1 − I:

]
• d: ∈ (0, 2)
• convergence follows from convergence of Douglas–Rachford splitting method

• other types of acceleration exist for problems with strongly convex 5 or 6∗

Primal–dual proximal methods 12.12

Outline

• primal–dual optimality conditions

• primal–dual hybrid gradient algorithm

• monotone operators

• proximal point algorithm

Multivalued (set-valued) operator

Definition: operator � maps vectors G ∈ R= to sets � (G) ⊆ R=

• the domain and graph of � are defined as

dom � = {G ∈ R= | � (G) ≠ ∅}
gr(�) = {(G, H) ∈ R= × R= | G ∈ dom �, H ∈ � (G)}

• if � (G) is a singleton, we write � (G) = H instead of � (G) = {H}

Example: sign operator

� (G) =

−1 G < 0
[−1, 1] G = 0
1 G > 0

1

−1

gr(�)

G

� (G)

Primal–dual proximal methods 12.13

Transformations as operations on graph

Inverse: �−1(G) = {H | G ∈ � (H)}

gr(�−1) =
[

0 �
� 0

]
gr(�)

Composition with scaling: (_�) (G) = _� (G) and (�_) (G) = � (_G)

gr(_�) =
[
� 0
0 _�

]
gr(�), gr(�_) =

[(1/_)� 0
0 �

]
gr(�)

Addition to identity: (� + _�) (G) = {G + _H | H ∈ � (G)}

gr(� + _�) =
[
� 0
� _�

]
gr(�)

note that these are all linear operations on the graph
Primal–dual proximal methods 12.14

Example

1

−1

G

� (G)

1
−1

G

�−1(G)

_

−_
G

(� + _�) (G)

_

−_
G

(� + _�)−1(G)

Primal–dual proximal methods 12.15

Monotone operator

Definition: � is a monotone operator if

(H − Ĥ)) (G − Ĝ) ≥ 0 for all G, Ĝ ∈ dom �, H ∈ � (G), Ĥ ∈ � (Ĝ)

in terms of the graph,[
G − Ĝ
H − Ĥ

]) [
0 �
� 0

] [
G − Ĝ
H − Ĥ

]
≥ 0 for all (G, H), (Ĝ, Ĥ) ∈ gr(�)

Monotone inclusion problem: find G ∈ �−1(0), i.e., solve

0 ∈ � (G)

this covers many equilibrium/optimality conditions as special cases

Primal–dual proximal methods 12.16

Examples

we will encounter the following three types of monotone operators

• subdifferentials m 5 (G) of convex functions 5

• affine monotone operators: � (G) = �G + 3 is monotone if

� + �) � 0

• sums of the above; in particular,

� (G, I) =
[

0 �)

−� 0

] [
G
I

]
+

[
m 5 (G)
m6∗(I)

]

Primal–dual proximal methods 12.17

Maximal monotone operator

graph is not properly contained in the graph of another monotone operator

maximal monotone

G

� (G)

monotone, but not maximal monotone

G

� (G)

Primal–dual proximal methods 12.18

Conditions for maximal monotonicity

• the subdifferential of a closed convex function is maximal monotone

• affine monotone operators are maximal monotone

• (Minty’s theorem) a monotone operator � is maximal monotone if and only if

im(� + �) :=
⋃

G∈dom �

(G + � (G)) = R=

i.e., for every H ∈ R=, there exists an G such that H ∈ G + � (G)

• sums � + � of maximal monotone operators are not necessarily maximal

(sufficient condition: int dom � ∩ dom� ≠ ∅)

Primal–dual proximal methods 12.19

Coercivity (strong monotonicity)

� is coercive with parameter ` > 0 if

(H − Ĥ)) (G − Ĝ) ≥ `‖G − Ĝ‖22 for all G, Ĝ ∈ dom �, H ∈ � (G), Ĥ ∈ � (Ĝ)

• � − `� is a monotone operator

• equivalently,[
G − Ĝ
H − Ĥ

]) [−2`� �
� 0

] [
G − Ĝ
H − Ĥ

]
≥ 0 for all (G, H), (Ĝ, Ĥ) ∈ gr(�)

Examples

• subdifferential of strongly convex function

• affine operator � (G) = �G + 1 if � + �) � 0 (with ` = _min(� + �))/2)

Primal–dual proximal methods 12.20

Co-coercivity

� is co-coercive with parameter W > 0 if �−1 is coercive

• � (G) is single-valued for G ∈ dom � and

(� (G) − � (Ĝ))) (G − Ĝ) ≥ W‖� (G) − � (Ĝ)‖22 for all G, Ĝ ∈ dom �

• equivalently,[
G − Ĝ
H − Ĥ

]) [
0 �
� −2W�

] [
G − Ĝ
H − Ĥ

]
≥ 0 for all (G, H), (Ĝ, Ĥ) ∈ gr(�)

• � is firmly nonexpansive if it is co-coercive with W = 1

Example: affine operator � (G) = �G + 1 with

� + �) � 2W�)� ⇐⇒ ‖2W� − � ‖2 ≤ 1

for symmetric positive definite �, this means _max(�) ≤ 1/W
Primal–dual proximal methods 12.21

Lipschitz continuity

• � is Lipschitz continuous with parameter ! if it is single-valued on dom � and

‖� (G) − � (Ĝ)‖2 ≤ !‖G − Ĝ‖2 for all G, Ĝ ∈ dom �

• � is nonexpansive if it is Lipschitz continuous with ! = 1

Example: any affine � (G) = �G + 1 (parameter ! = ‖�‖2)

Relation to co-coercivity

• co-coercivity implies Lipschitz continuity (with ! = 1/W)
• Lipschitz continuity does not imply co-coercivity

• properties are equivalent for gradient of closed convex functions (page 1.15)

Primal–dual proximal methods 12.22

Resolvent

the resolvent of an operator � is the operator

(� + _�)−1 (with _ > 0)

• inverse denotes the operator inverse:

H ∈ (� + _�)−1(G) ⇐⇒ G − H ∈ _� (H)

• graph of resolvent is a linear transformation of graph of �:

gr((� + _�)−1) =
[
� _�
� 0

]
gr(�)

Primal–dual proximal methods 12.23

Examples

Subdifferential: resolvent is proximal mapping

(� + _m 5)−1 (G) = prox_ 5 (G)

follows from subgradient characteriation of prox_ 5 (page 4.7)

H = prox_ 5 (G) ⇐⇒ G − H ∈ _m 5 (H)

Monotone affine mapping: resolvent of � (G) = �G + 1 is

(� + _�)−1(G) = (� + _�)−1(G − _1)

• inverse on right-hand side is standard matrix inverse

• � + _� is nonsingular for all _ ≥ 0 because � + �) � 0

Primal–dual proximal methods 12.24

Monotonicity properties

• an operator is monotone if and only if its resolvent is firmly nonexpansive:

this follows from the matrix identity

_

[
0 �
� 0

]
=

[
� �
_� 0

] [
0 �
� −2�

] [
� _�
� 0

]
and the expression of the graph of the resolvent on page 12.23

• a monotone operator � is maximal monotone if and only

dom((� + _�)−1) = R=

follows from Minty’s theorem on page 12.19

Primal–dual proximal methods 12.25

Outline

• primal–dual optimality conditions

• primal–dual hybrid gradient algorithm

• monotone operators

• proximal point algorithm

Proximal point algorithm

Monotone inclusion problem: given maximal monotone �, find G such that

0 ∈ � (G)

this is equivalent to finding a fixed point of the resolvent 'C = (� + C�)−1 of �:

G = 'C (G) ⇐⇒ G ∈ (� + C�) (G) ⇐⇒ 0 ∈ � (G)

Proximal point algorithm: fixed point iteration

G:+1 = 'C: (G:)

Proximal point algorithm with relaxation (relaxation parameter d: ∈ (0, 2)):

G:+1 = G: + d: ('C: (G:) − G:)

Primal–dual proximal methods 12.26

Convergence

if �−1(0) ≠ ∅, proximal point algorithm converges

• with constant C: = C > 0 and d: = d ∈ (0, 2)
• with C: , d: varying and bounded away from their limits, i.e.,

C: ≥ Cmin > 0, 0 < dmin ≤ d: ≤ dmax < 2 for all :

proof relies on firm nonexpansiveness of resolvent

Primal–dual proximal methods 12.27

Linear change of variables

make a change of variables G = �H, with � nonsingular:

� (H) = �)� (�H)

• graph of � is

gr (�) =
[
�−1 0
0 �)

]
gr (�)

• (maximal) monotonicity of � follows from (maximal) monotonicity of � and[
�−1 0
0 �)

]) [
0 �
� 0

] [
�−1 0
0 �)

]
=

[
0 �
� 0

]

Primal–dual proximal methods 12.28

“Preconditioned” proximal point algorithm

H:+1 = (� + C:�)−1(H:)

• H:+1 is the solution H of the inclusion problem

1
C:
(H: − H) ∈ �)� (�H)

• in the original coordinates G = �H, this can be written as

1
C:
� (G: − G) ∈ � (G)

where � = �−)�−1 and G: = �H:
• we obtain a generalized proximal point update, with � � 0 substituted for �:

G:+1 = (� + C:�)−1(�G:)

the purpose is often to make the resolvents cheaper, not preconditioning
Primal–dual proximal methods 12.29

Proximal method of multipliers

the proximal point algorithm applied to

� (G, I) =
[

0 �)

−� 0

] [
G
I

]
+

[
m 5 (G)
m6∗(I)

]
is known as the proximal method of multipliers

• basic iteration (without relaxation) is

(G:+1, I:+1) = (� + C�)−1(G: , I:)

• (G:+1, I:+1) is the solution of the monotone inclusion with variables G, I

0 ∈
[

0 �)

−� 0

] [
G
I

]
+

[
m 5 (G)
m6∗(I)

]
+ 1
C

[
G − G:
I − I:

]

Primal–dual proximal methods 12.30

Evaluation of the resolvent

• equivalent inclusion problem

0 ∈


0 0 �)

0 0 −�
−� � 0



G
H
I

 +

m 5 (G)
m6(H)

0

 +
1
C


G − G:

0
I − I:


• this is the optimality condition of the optimization problem (variables G, H)

minimize 5 (G) + 6(H) + C
2
‖�G − H + (1/C)I: ‖22 +

1
2C
‖G − G: ‖22

(the augmented Lagrangian with an extra quadratic penalty term on G)

• from the minimizer (Ĝ, Ĥ), we make the update

G:+1 = Ĝ, I:+1 = I: + C (�Ĝ − Ĥ)

Primal–dual proximal methods 12.31

PDHG and proximal point algorithm

apply “preconditioned” proximal point algorithm of page 12.29 with C: = g and

� =

[
� −g�)
−g� (g/f)�

]
• � is positive definite for fg‖�‖22 < 1

• G:+1 and I:+1 are the solution G, I of

1
g

[
� −g�)
−g� (g/f)�

] [
G: − G
I: − I

]
∈

[
0 �)

−� 0

] [
G
I

]
+

[
m 5 (G)
m6∗(I)

]
• this simplifies to

0 ∈ m 5 (G) + 1
g
(G − G: + g�) I:)

0 ∈ m6∗(I) + 1
f
(I − I: − f�(2G − G:))

can solve 1st inclusion for G; substitute solution in 2nd inclusion and solve for I

Primal–dual proximal methods 12.32

PDHG and proximal point algorithm

0 ∈ m 5 (G) + 1
g
(G − G: + g�) I:)

0 ∈ m6∗(I) + 1
f
(I − I: − f�(2G − G:))

• solution of the two inclusions is

G:+1 = (� + gm 5)−1(G: − g�) I:)
I:+1 = (� + fm6∗)−1(I: + f�(2G:+1 − G:))

• writing the solution in terms of prox operators gives the PDHG algorithm

G:+1 = proxg 5 (G: − g�) I:)
I:+1 = proxf6∗(I: + f�(2G:+1 − G:))

Primal–dual proximal methods 12.33

References

Primal–dual hybrid gradient algorithm

• E. Esser, X. Zhang, T. Chan, A general framework for a class of first order primal–dual
algorithms for convex optimization in imaging sciences, SIAM J. Imaging Sciences (2010).

• T. Pock, D.Cremers, H. Bischof, A. Chambolle, An algorithm for minimizing the Mumford-Shah
functional, ICCV (2009).

• A. Chambolle and T. Pock, A first-order primal–dual algorithm for convex problems with
applications to imaging, Journal of Mathematical Imaging and Vision (2011).

• A. Chambolle and T. Pock, An introduction to continuous optimization for imaging, Acta
Numerica (2016).

• B. He and X. Yuan, Convergence analysis of primal–dual algorithms for a saddle-point problem:
from contraction perspective, SIAM J. Imaging Sciences (2012).

The proximal-point algorithm interpretation on pp. 12.32–12.33.
• D. O’Connor and L. Vandenberghe, On the equivalence of the primal–dual hybrid gradient

method and Douglas–Rachford splitting, Math. Prog. (2020).
The Douglas–Rachford interpretation on pp.12.7–12.11.

Primal–dual proximal methods 12.34

References

Extensions of PDHG

• L. Condat, A primal–dual splitting method for convex optimization involving Lipschitzian,
proximable, and linear composite terms, JOTA (2013).

• B. C. Vũ, A splitting algorithm for dual monotone inclusions involving cocoercive operators,
Advances in Computational Mathematics (2013).

• D. Davis and W. Yin, A three-operator splitting scheme and its optimization applications,
Set-Valued and Variational Analysis (2017).

• M. Yan, A new primal-dual algorithm for minimizing the sum of three functions with a linear
operator, Journal of Scientific Computing (2018).

Monotone operators and the proximal point algorithm

• H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert
Spaces (2017).

• E. K. Ryu and W. Yin, Large-Scale Convex Optimization via Monotone Operators (2022).
• E. K. Ryu and S. Boyd, A primer on monotone operator methods, Appl. Comput. Math. (2016).
• R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control and

Opt. (1976).
• J. Eckstein and D. Bertsekas, On the Douglas-Rachford splitting method and the proximal point

algorithm for maximal monotone operators, Mathematical Programming (1992).
The convergence result on page 12.27 is Theorem 3 of this paper.

Primal–dual proximal methods 12.35

https://doi.org/10.1007/978-3-319-48311-5
https://doi.org/10.1007/978-3-319-48311-5
https://large-scale-book.mathopt.com

