17. Path-following methods

- central path
- short-step barrier method
- predictor-corrector method
Introduction

Primal-dual pair of conic LPs

minimize \(c^T x \) \hspace{1cm} \text{maximize} \hspace{1cm} -b^T z
\begin{align*}
\text{subject to} \quad Ax \leq b & \hspace{1cm} \text{subject to} \quad A^T z + c = 0 \\
& \hspace{1cm} z \succeq _* 0
\end{align*}

- \(A \in \mathbb{R}^{m \times n} \) with \(\text{rank}(A) = n \)
- inequalities are with respect to proper cone \(K \) and its dual cone \(K^* \)
- we will assume primal and dual problem are strictly feasible

This lecture

- feasible methods that follow the central path to find the solution
- complexity analysis based on theory of self-concordant functions

Path-following methods
Outline

- central path
- short-step barrier method
- predictor-corrector method
Barrier for the feasible set

Definition: as a barrier function for the feasible set we will use

\[\psi(x) = \phi(b - Ax) \]

where \(\phi \) is a \(\theta \)-normal barrier for \(K \)

Notation (in this lecture):

\[\|v\|_{x^*} = (v^T \nabla^2 \psi(x)^{-1} v)^{1/2} \]

Properties

- \(\psi \) is self-concordant with domain \(\{ x \mid Ax \prec b \} \)
- Newton decrement of \(\psi \) is bounded by \(\sqrt{\theta} \), i.e.,

\[\|\nabla \psi(x)\|_{x^*}^2 = \nabla \psi(x)^T \nabla^2 \psi(x)^{-1} \nabla \psi(x) \leq \theta \quad \forall x \in \text{dom} \psi \]

(proof on next page)
Proof of bound on Newton decrement:

- gradient and Hessian of ψ are (with $s = b - Ax$)
 \[
 \nabla \psi(x) = -A^T \nabla \phi(s), \quad \nabla^2 \psi(x) = A^T \nabla^2 \phi(s) A
 \]

- from page 16-24, $\nabla \phi(s)^T \nabla^2 \phi(s)^{-1} \nabla \phi(s) = \theta$; therefore
 \[
 \nabla \psi(x)^T \nabla^2 \psi(x)^{-1} \nabla \psi(x) = \sup_v (-v^T \nabla^2 \psi(x)v + 2\nabla \psi(x)^T v)
 \]
 \[
 = \sup_v (-v^T \nabla^2 \phi(s) (Av) - 2\nabla \phi(s)^T Av)
 \]
 \[
 \leq \sup_w (-w^T \nabla^2 \phi(s) w + 2\nabla \phi(s)^T w)
 \]
 \[
 = \nabla \phi(s)^T \nabla^2 \phi(s)^{-1} \nabla \phi(s)
 \]
 \[
 = \theta
 \]
Central path

Definition: the set of minimizers $x^*(t)$, for $t > 0$, of

$$tc^T x + \psi(x) = tc^T x + \phi(b - Ax)$$

Optimality conditions

$$A^T \nabla \phi(s) = tc, \quad s = b - Ax$$

• implies that $z = -(1/t) \nabla \phi(s)$ is strictly dual feasible

• by weak duality,

$$c^T x^*(t) - p^* \leq c^T x + b^T z = z^T s = \frac{\theta}{t}$$

hence, $c^T x^*(t) \to p^*$ as $t \to \infty$
Existence and uniqueness

Centering problem

minimize \(tc^T x + \phi(s) \)
subject to \(Ax + s = b \)

Lagrange dual (with dual cone barrier \(\phi_* \) of page 16-27)

maximize \(-tb^T z - \phi_*(z) + \theta \log t \)
subject to \(A^T z + c = 0 \)

- strictly feasible \(z \) for dual conic LP is feasible for dual centering problem
- if dual conic LP is strictly feasible, \(tc^T x + \phi(b - Ax) \) is bounded below
- from self-concordance theory (page 16-12), \(x^*(t) \) exists and is unique
Dual points in neighborhood of central path

Newton step Δx for

\[
tc^T x + \psi(x) = tc^T x + \phi(b - Ax)
\]

- satisfies Newton equation

\[
A^T \nabla^2 \phi(s) A \Delta x = -tc + A^T \nabla \phi(s), \quad s = b - Ax
\]

- Newton decrement is $\lambda_t(x) = (\Delta x^T \nabla^2 \psi(x) \Delta x)^{1/2}$

Dual feasible point: define

\[
z = -\frac{1}{t} \left(\nabla \phi(s) - \nabla^2 \phi(s) A \Delta x \right)
\]

- satisfies $A^T z + c = 0$ by definition

- satisfies $z \succeq_0$ if $\lambda_t(x) < 1$ (see next page)
Proof. \(z \succeq_* 0 \) follows from Dikin ellipsoid theorem

- Newton decrement is

\[
\lambda_t(x)^2 = \Delta x^T \nabla^2 \psi(x) \Delta x = \Delta x^T A^T \nabla^2 \phi(s) A \Delta x = v^T \nabla^2 \phi(s)^{-1} v
\]

where \(v = \nabla^2 \phi(s) A \Delta x \)

- define \(u = -\nabla \phi(s) \); then \(\nabla^2 \phi_*(u) = \nabla^2 \phi(s)^{-1} \) (see page 16-28) and

\[
\lambda_t(x)^2 = v^T \nabla^2 \phi_*(u) v
\]

- by Dikin ellipsoid theorem \(\lambda_t(x) < 1 \) implies

\[
u + v = -\nabla \phi(s) + \nabla^2 \phi(s) A \Delta x \succeq_* 0\]
Duality gap in neighborhood of central path

\[c^T x - p^* \leq \left(1 + \frac{\lambda_t(x)}{\sqrt{\theta}} \right) \frac{\theta}{t} \quad \text{if } \lambda_t(x) < 1 \]

- from weak duality, using the dual point \(z \) on page 17-7

\[s^T z = \frac{1}{t} \left(\theta - s^T \nabla^2 \phi(s) A \Delta x \right) \leq \frac{1}{t} \left(\theta + \| \nabla^2 \phi(s)^{1/2} s \|_2 \| \nabla^2 \phi(s)^{1/2} A \Delta x \|_2 \right) = \frac{\theta + \sqrt{\theta} \lambda_t(x)}{t} \]

- implies \(c^T x - p^* \leq 2\theta/t \), since \(\theta \geq 1 \) holds for any \(\theta \)-normal barrier \(\phi \)

\((\phi \text{ is unbounded below, so its Newton decrement } \sqrt{\theta} \geq 1 \text{ everywhere})\)
Outline

- central path

- short-step barrier method

- predictor-corrector method
Short-step methods

General idea: keep the iterates in the region of quadratic convergence for

\[tc^T x + \psi(x), \]

by limiting the rate at which \(t \) is increased (hence, ‘short-step’)

Quadratic convergence results (from self-concordance theory)

- if \(\lambda_t(x) \leq 1/4 \), a full Newton step gives \(\lambda_t(x^+) \leq 2 \lambda_t(x)^2 \)
- started at a point with \(\lambda_t(x) \leq 1/4 \), an accuracy \(\epsilon_{\text{cent}} \) is reached in

\[\log_2 \log_2(1/\epsilon_{\text{cent}}) \] \(\) iterations

for practical purposes this is a constant (4–6 for \(\epsilon_{\text{cent}} \approx 10^{-5} \ldots 10^{-20} \))
Short-step method with exact centering

simplifying assumptions:

- $x^*(t)$ is computed exactly
- a central point $x^*(t_0)$ is given

Algorithm: define a tolerance $\epsilon \in (0, 1)$ and parameter

$$\mu = 1 + \frac{1}{4\sqrt{\theta}}$$

starting at $t = t_0$, repeat until $\theta/t \leq \epsilon$:

- compute $x^*(\mu t)$ by Newton’s method started at $x^*(t)$
- set $t := \mu t$
Newton iterations for recentering

Newton decrement at \(x = x^*(t) \) for new value \(t^+ = \mu t \) is

\[
\lambda_{t^+}(x) = \| \mu t c + \nabla \psi(x) \|_{x^*} \\
= \| \mu (tc + \nabla \psi(x)) - (\mu - 1) \nabla \psi(x) \|_{x^*} \\
= (\mu - 1) \| \nabla \psi(x) \|_{x^*} \\
\leq (\mu - 1) \sqrt{\theta} \\
= 1/4
\]

- line 3 follows because \(tc + \nabla \psi(x) = 0 \) for \(x = x^*(t) \)
- line 4 follows from \(\| \nabla \psi(x) \|_{x^*} \leq \sqrt{\theta} \) (see page 17-3)

Conclusion

number of iterations to compute \(x^*(t^+) \) from \(x^*(t) \) is bounded by a small constant
Iteration complexity

Number of outer iterations: $t^{(k)} = \mu^k t_0 \geq \theta / \epsilon$ when

$$k \geq \frac{\log(\theta / (\epsilon t_0))}{\log \mu}$$

Cumulative number of Newton iterations

$$O \left(\sqrt{\theta} \log \left(\frac{\theta}{\epsilon t_0} \right) \right)$$

(we used $\log \mu \geq (\log 2)/(4 \sqrt{\theta})$ by concavity of $\log(1 + u)$)

- multiply by flops per iteration to get polynomial worst-case complexity
- $\sqrt{\theta}$ dependence is lowest known complexity for interior-point methods
Short-step method with inexact centering

Improvements of short-step method with exact centering

- keep iterates in region of quadratic region, but avoid complete centering
- at each iteration: make small increase in t, followed by *one* Newton step

Algorithm: define a tolerance $\epsilon \in (0, 1)$ and parameters

\[
\beta = \frac{1}{8}, \quad \mu = 1 + \frac{1}{1 + 8\sqrt{\theta}}
\]

- select x and t with $\lambda_t(x) \leq \beta$
- repeat until $2\theta/t \leq \epsilon$:

\[
t := \mu t, \quad x := x - \nabla^2\psi(x)^{-1}(tc + \nabla\psi(x))
\]
Newton decrement after update

we first show that $\lambda_t(x) \leq \beta$ at the end of each iteration

• if $\lambda_t(x) \leq \beta$ and $t^+ = \mu t$, then

$$\lambda_{t^+}(x) = \| t^+ c + \nabla \psi(x) \|_{x^*}$$

$$= \| \mu(tc + \nabla \psi(x)) - (\mu - 1)\nabla \psi(x) \|_{x^*}$$

$$\leq \mu \|tc + \nabla \psi(x)\|_{x^*} + (\mu - 1)\|\nabla \psi(x)\|_{x^*}$$

$$\leq \mu \beta + (\mu - 1)\sqrt{\theta}$$

$$= \frac{1}{4}$$

• from theory of Newton’s method for self-concordant functions (page 16-16)

$$\lambda_{t^+}(x^+) \leq 2\lambda_{t^+}(x)^2 \leq \frac{1}{8} = \beta$$
Iteration complexity

- from page 17-9, stopping criterion implies $c^T x - p^* \leq \epsilon$

- stopping criterion is satisfied when

\[
\frac{t^{(k)}}{t_0} = \mu^k \geq \frac{2\theta}{\epsilon t_0}, \quad k \geq \frac{\log(2\theta/(\epsilon t_0))}{\log \mu}
\]

- taking the logarithm on both sides gives an upper bound of

\[
O \left(\sqrt{\theta} \log \left(\frac{\theta}{\epsilon t_0} \right) \right) \text{ iterations}
\]

(using $\log \mu \geq \log 2/(1 + 8\sqrt{\theta})$)
Outline

• central path

• short-step barrier method

• predictor-corrector method
Predictor-corrector methods

Short-step methods

- stay in narrow neighborhood of central path (defined by limit on λ_t)
- make small, fixed increases $t^+ = \mu t$

as a result, quite slow in practice

Predictor-corrector method

- select new t using a linear approximation to central path (‘predictor’)
- recenter with new t (‘corrector’)

allows faster and ‘adaptive’ increases in t
Global convergence bound for centering problem

\[
\text{minimize } f_t(x) = tc^T x + \phi(b - Ax)
\]

Convergence result (damped Newton algorithm of page 16-11 started at \(x \))

\[
\# \text{iterations} \leq \frac{f_t(x) - \inf_u f_t(u)}{\omega(\eta)} + \log_2 \log_2(1/\epsilon_{\text{cent}})
\]

- \(\epsilon_{\text{cent}} \) is accuracy in centering
- \(\omega(\eta) = \eta - \log(1 + \eta) \) and \(\eta \in (0, 1/4] \)
- for practical purposes, second term is a small constant
- first term depends on unknown optimal value \(\inf_u f_t(u) \)
Bound from duality

Dual centering problem (see page 17-6)

maximize \(-tb^Tz - \phi_*(z) + \theta \log t\)
subject to \(A^Tz + c = 0\)

strictly feasible \(z\) provides lower bound on \(\inf_u f_t(u)\):

\[
\inf_u f_t(u) \geq -tb^Tz - \phi_*(z) + \theta \log t
\]

Bound on centering cost: \(f_t(x) - \inf_u f_t(u) \leq V_t(x, s, z)\) where

\[
V_t(x, s, z) = t(c^T x + b^T z) + \phi(s) + \phi_*(z) - \theta \log t
\]

\[
= ts^T z + \phi(s) + \phi_*(z) - \theta \log t
\]
Potential function

Definition (for strictly feasible x, s, z)

$$
\Psi(x, s, z) = \inf_t V_t(x, s, z)
= \theta \log \frac{s^T z}{\theta} + \phi(s) + \phi^*(z) + \theta
$$

(optimal t is $t = \arg\min_t V_t(x, s, z) = \theta / s^T z$)

Properties

- homogeneous of degree zero: $\Psi(\alpha x, \alpha s, \alpha z) = \Psi(x, s, z)$ for $\alpha > 0$
- nonnegative for all strictly feasible x, s, z
- zero only if x, s, z are centered

can be used as a global measure of proximity to the central path
Tangent to central path

Central path equation

\[
\begin{bmatrix}
0 \\
s^*(t)
\end{bmatrix} = \begin{bmatrix}
0 & A^T \\
-A & 0
\end{bmatrix} \begin{bmatrix}
x^*(t) \\
z^*(t)
\end{bmatrix} + \begin{bmatrix}
c \\
b
\end{bmatrix}
\]

\[z^*(t) = -\frac{1}{t} \nabla \phi(s^*(t))\]

Derivatives \(\dot{x} = dx^*(t)/dt, \dot{s} = ds^*/dt, \dot{z} = dz^*(t)/dt\) satisfy

\[
\begin{bmatrix}
0 \\
\dot{s}
\end{bmatrix} = \begin{bmatrix}
0 & A^T \\
-A & 0
\end{bmatrix} \begin{bmatrix}
\dot{x} \\
\dot{z}
\end{bmatrix}
\]

\[\dot{z} = -\frac{1}{t} z^*(t) - \frac{1}{t} \nabla^2 \phi(s^*(t)) \dot{s}\]

Tangent direction: derivatives scaled by \(t\) (to simplify notation)

\[\Delta x_t = t\dot{x}, \quad \Delta s_t = t\dot{s}, \quad \Delta z_t = t\dot{z}\]
Predictor equations

with $x = x^*(t)$, $s = s^*(t)$, $z = z^*(t)$

\[
\begin{bmatrix}
(1/t)\nabla^2 \phi(s) & 0 & I \\
0 & 0 & A^T \\
-I & -A & 0
\end{bmatrix}
\begin{bmatrix}
\Delta s_t \\
\Delta x_t \\
\Delta z_t
\end{bmatrix}
=
\begin{bmatrix}
-z \\
0 \\
0
\end{bmatrix}
\] (1)

Equivalent equations

\[
\begin{bmatrix}
I & 0 & (1/t)\nabla^2 \phi_*(z) \\
0 & 0 & A^T \\
-I & -A & 0
\end{bmatrix}
\begin{bmatrix}
\Delta s_t \\
\Delta x_t \\
\Delta z_t
\end{bmatrix}
=
\begin{bmatrix}
-s \\
0 \\
0
\end{bmatrix}
\] (2)

equivalence follows from primal-dual relations on central path

\[z = -\frac{1}{t} \nabla \phi(s), \quad s = -\frac{1}{t} \nabla \phi_*(z), \quad \frac{1}{t} \nabla^2 \phi(s) = t \nabla^2 \phi_*(z)^{-1}\]
Properties of tangent direction

• from 2nd and 3rd block in (1): $\Delta s^T_t \Delta z_t = 0$

• from first block in (1) and $\nabla^2 \phi(s)s = -\nabla \phi(s)$:

\[
s^T \Delta z_t + z^T \Delta s_t = -s^T z
\]

• hence, gap in tangent direction is

\[
(s + \alpha \Delta s_t)^T (z + \alpha \Delta z_t) = (1 - \alpha) s^T z
\]

• from first block in (1)

\[
\|\Delta s_t\|_s^2 = \Delta s^T_t \nabla^2 \phi(s) \Delta s_t = -t z^T \Delta s_t
\]

• similarly, from first block in (2)

\[
\|\Delta z_t\|_z^2 = \Delta z^T_t \nabla^2 \phi_*(z) \Delta z_t = -t s^T \Delta z_t
\]
Predictor-corrector method with exact centering

Simplifying assumptions: exact centering, a central point $x^*(t_0)$ is given

Algorithm: define tolerance $\epsilon \in (0, 1)$, parameter $\beta > 0$, and set

$$t := t_0, \quad (x, s, z) := (x^*(t_0), s^*(t_0), z^*(t_0))$$

repeat until $\theta/t \leq \epsilon$:

- compute tangent direction $(\Delta x_t, \Delta s_t, \Delta z_t)$ at (x, s, z)
- set $(x, s, z) := (x, s, z) + \alpha(\Delta x_t, \Delta s_t, \Delta z_t)$ with α determined from

$$\Psi(x + \alpha \Delta x_t, s + \alpha \Delta s_t, z + \alpha \Delta z_t) = \beta$$

- set $t := \theta/(s^T z)$ and compute $(x, s, z) := (x^*(t), s^*(t), z^*(t))$
Iteration complexity

Potential function in tangent direction (proof on next page)

\[\Psi(x + \alpha \Delta x_t, s + \alpha \Delta s_t, z + \alpha \Delta s_t) \leq \omega^*(\alpha \sqrt{\theta}) \]

\[= -\alpha \sqrt{\theta} - \log(1 - \alpha \sqrt{\theta}) \]

Lower bound on predictor step length: since \(\omega^* \) is an increasing function

\[\alpha \geq \gamma / \sqrt{\theta} \quad \text{where} \quad \omega^*(\gamma) = \beta \]

Reduction in duality gap after one predictor/corrector cycle

\[t/t^+ = 1 - \alpha \leq 1 - \gamma / \sqrt{\theta} \leq \exp(-\gamma / \sqrt{\theta}) \]

Cumulative Newton iterations: \(t^{(k)} \geq \theta / \epsilon \) after

\[O \left(\sqrt{\theta} \log \left(\frac{\theta}{t_0 \epsilon} \right) \right) \quad \text{Newton iterations} \]
Proof of upper bound on Ψ (with $s^+ = s + \alpha \Delta s_t$, $z^+ = z + \alpha \Delta z_t$)

- bounds on $\phi(s^+)$ and $\phi_*(z^+)$: from the inequality on page 16-8,

\[
\phi(s^+) - \phi(s) \leq \alpha \nabla \phi(s)^T \Delta s_t + \omega^*(\alpha \|\Delta s_t\|_s)
= -\alpha tz^T \Delta s_t + \omega^*(\alpha \|\Delta s_t\|_s)
\]

\[
\phi_*(z^+) - \phi_*(z) \leq \alpha \nabla \phi(z)^T \Delta z_t + \omega^*(\alpha \|\Delta z_t\|_z)
= -\alpha ts^T \Delta z_t + \omega^*(\alpha \|\Delta z_t\|_z)
\]

- add the inequalities and use properties on page 17-23

\[
\phi(s^+) - \phi(s) + \phi_*(z^+) - \phi_*(z) \leq \alpha \theta + \omega^*(\alpha \|\Delta s_t\|_s) + \omega^*(\alpha \|\Delta z_t\|_z)
\leq \alpha \theta + \omega^*(\alpha (\|\Delta s_t\|_s^2 + \|\Delta z_t\|_z^2)^{1/2})
\leq \alpha \theta + \omega^*(\alpha \sqrt{\theta})
\]

- since $(s^+)^T z^+ = (1 - \alpha)s^T z$,

\[
\Psi(x^+, s^+, z^+) \leq \theta \log(1 - \alpha) + \alpha \theta + \omega^*(\alpha \sqrt{\theta}) \leq \omega^*(\alpha \sqrt{\theta})
\]
References