## 17. Path-following methods

- central path
- short-step barrier method
- predictor-corrector method


## Introduction

## Primal-dual pair of conic LPs

$$
\begin{array}{llll}
\text { minimize } & c^{T} x & \text { maximize } & -b^{T} z \\
\text { subject to } & A x \preceq b & \text { subject to } & A^{T} z+c=0 \\
& & & z \succeq_{*} 0
\end{array}
$$

- $A \in \mathbf{R}^{m \times n}$ with $\operatorname{rank}(A)=n$
- inequalities are with respect to proper cone $K$ and its dual cone $K^{*}$
- we will assume primal and dual problem are strictly feasible


## This lecture

- feasible methods that follow the central path to find the solution
- complexity analysis based on theory of self-concordant functions


## Outline

- central path
- short-step barrier method
- predictor-corrector method


## Barrier for the feasible set

Definition: as a barrier function for the feasible set we will use

$$
\psi(x)=\phi(b-A x)
$$

where $\phi$ is a $\theta$-normal barrier for $K$
Notation (in this lecture):

$$
\|v\|_{x *}=\left(v^{T} \nabla^{2} \psi(x)^{-1} v\right)^{1 / 2}
$$

## Properties

- $\psi$ is self-concordant with domain $\{x \mid A x \prec b\}$
- Newton decrement of $\psi$ is bounded by $\sqrt{\theta}$, i.e.,

$$
\|\nabla \psi(x)\|_{x *}^{2}=\nabla \psi(x)^{T} \nabla^{2} \psi(x)^{-1} \nabla \psi(x) \leq \theta \quad \forall x \in \operatorname{dom} \psi
$$

(proof on next page)

## Proof of bound on Newton decrement:

- gradient and Hessian of $\psi$ are (with $s=b-A x$ )

$$
\nabla \psi(x)=-A^{T} \nabla \phi(s), \quad \nabla^{2} \psi(x)=A^{T} \nabla^{2} \phi(s) A
$$

- from page $16-24, \nabla \phi(s)^{T} \nabla^{2} \phi(s)^{-1} \nabla \phi(s)=\theta$; therefore

$$
\begin{aligned}
\nabla \psi(x)^{T} \nabla^{2} \psi(x)^{-1} \nabla \psi(x) & =\sup _{v}\left(-v^{T} \nabla^{2} \psi(x) v+2 \nabla \psi(x)^{T} v\right) \\
& =\sup _{v}\left(-(A v)^{T} \nabla^{2} \phi(s)(A v)-2 \nabla \phi(s)^{T} A v\right) \\
& \leq \sup _{w}\left(-w^{T} \nabla^{2} \phi(s) w+2 \nabla \phi(s)^{T} w\right) \\
& =\nabla \phi(s)^{T} \nabla^{2} \phi(s)^{-1} \nabla \phi(s) \\
& =\theta
\end{aligned}
$$

## Central path

Definition: the set of minimizers $x^{\star}(t)$, for $t>0$, of

$$
t c^{T} x+\psi(x)=t c^{T} x+\phi(b-A x)
$$

## Optimality conditions

$$
A^{T} \nabla \phi(s)=t c, \quad s=b-A x
$$

- implies that $z=-(1 / t) \nabla \phi(s)$ is strictly dual feasible
- by weak duality,

$$
c^{T} x^{\star}(t)-p^{\star} \leq c^{T} x+b^{T} z=z^{T} s=\frac{\theta}{t}
$$

hence, $c^{T} x^{\star}(t) \rightarrow p^{\star}$ as $t \rightarrow \infty$

## Existence and uniqueness

## Centering problem

$$
\begin{array}{ll}
\text { minimize } & t c^{T} x+\phi(s) \\
\text { subject to } & A x+s=b
\end{array}
$$

Lagrange dual (with dual cone barrier $\phi_{*}$ of page 16-27)

$$
\begin{array}{ll}
\text { maximize } & -t b^{T} z-\phi_{*}(z)+\theta \log t \\
\text { subject to } & A^{T} z+c=0
\end{array}
$$

- strictly feasible $z$ for dual conic LP is feasible for dual centering problem
- if dual conic LP is strictly feasible, $t c^{T} x+\phi(b-A x)$ is bounded below
- from self-concordance theory (page 16-12), $x^{\star}(t)$ exists and is unique


## Dual points in neighborhood of central path

Newton step $\Delta x$ for

$$
t c^{T} x+\psi(x)=t c^{T} x+\phi(b-A x)
$$

- satisfies Newton equation

$$
A^{T} \nabla^{2} \phi(s) A \Delta x=-t c+A^{T} \nabla \phi(s), \quad s=b-A x
$$

- Newton decrement is $\lambda_{t}(x)=\left(\Delta x^{T} \nabla^{2} \psi(x) \Delta x\right)^{1 / 2}$

Dual feasible point: define

$$
z=-\frac{1}{t}\left(\nabla \phi(s)-\nabla^{2} \phi(s) A \Delta x\right)
$$

- satisfies $A^{T} z+c=0$ by definition
- satisfies $z \succ_{*} 0$ if $\lambda_{t}(x)<1$ (see next page)

Proof. $z \succ_{*} 0$ follows from Dikin ellipsoid theorem

- Newton decrement is

$$
\begin{aligned}
\lambda_{t}(x)^{2} & =\Delta x^{T} \nabla^{2} \psi(x) \Delta x \\
& =\Delta x^{T} A^{T} \nabla^{2} \phi(s) A \Delta x \\
& =v^{T} \nabla^{2} \phi(s)^{-1} v
\end{aligned}
$$

where $v=\nabla^{2} \phi(s) A \Delta x$

- define $u=-\nabla \phi(s)$; then $\nabla^{2} \phi_{*}(u)=\nabla^{2} \phi(s)^{-1}$ (see page 16-28) and

$$
\lambda_{t}(x)^{2}=v^{T} \nabla^{2} \phi_{*}(u) v
$$

- by Dikin ellipsoid theorem $\lambda_{t}(x)<1$ implies

$$
u+v=-\nabla \phi(s)+\nabla^{2} \phi(s) A \Delta x \succ_{*} 0
$$

## Duality gap in neighborhood of central path

$$
c^{T} x-p^{\star} \leq\left(1+\frac{\lambda_{t}(x)}{\sqrt{\theta}}\right) \frac{\theta}{t} \quad \text { if } \lambda_{t}(x)<1
$$

- from weak duality, using the dual point $z$ on page 17-7

$$
\begin{aligned}
s^{T} z & =\frac{1}{t}\left(\theta-s^{T} \nabla^{2} \phi(s) A \Delta x\right) \\
& \leq \frac{1}{t}\left(\theta+\left\|\nabla^{2} \phi(s)^{1 / 2} s\right\|_{2}\left\|\nabla^{2} \phi(s)^{1 / 2} A \Delta x\right\|_{2}\right) \\
& =\frac{\theta+\sqrt{\theta} \lambda_{t}(x)}{t}
\end{aligned}
$$

- implies $c^{T} x-p^{\star} \leq 2 \theta / t$, since $\theta \geq 1$ holds for any $\theta$-normal barrier $\phi$ ( $\phi$ is unbounded below, so its Newton decrement $\sqrt{\theta} \geq 1$ everywhere)


## Outline

- central path
- short-step barrier method
- predictor-corrector method


## Short-step methods

General idea: keep the iterates in the region of quadratic convergence for

$$
t c^{T} x+\psi(x),
$$

by limiting the rate at which $t$ is increased (hence, 'short-step')

Quadratic convergence results (from self-concordance theory)

- if $\lambda_{t}(x) \leq 1 / 4$, a full Newton step gives $\lambda_{t}\left(x^{+}\right) \leq 2 \lambda_{t}(x)^{2}$
- started at a point with $\lambda_{t}(x) \leq 1 / 4$, an accuracy $\epsilon_{\text {cent }}$ is reached in

$$
\log _{2} \log _{2}\left(1 / \epsilon_{\text {cent }}\right) \text { iterations }
$$

for practical purposes this is a constant (4-6 for $\epsilon_{\mathrm{cent}} \approx 10^{-5} \ldots 10^{-20}$ )

## Short-step method with exact centering

simplifying assumptions:

- $x^{\star}(t)$ is computed exactly
- a central point $x^{\star}\left(t_{0}\right)$ is given

Algorithm: define a tolerance $\epsilon \in(0,1)$ and parameter

$$
\mu=1+\frac{1}{4 \sqrt{\theta}}
$$

starting at $t=t_{0}$, repeat until $\theta / t \leq \epsilon$ :

- compute $x^{\star}(\mu t)$ by Newton's method started at $x^{\star}(t)$
- set $t:=\mu t$


## Newton iterations for recentering

Newton decrement at $x=x^{\star}(t)$ for new value $t^{+}=\mu t$ is

$$
\begin{aligned}
\lambda_{t^{+}}(x) & =\|\mu t c+\nabla \psi(x)\|_{x *} \\
& =\|\mu(t c+\nabla \psi(x))-(\mu-1) \nabla \psi(x)\|_{x *} \\
& =(\mu-1)\|\nabla \psi(x)\|_{x *} \\
& \leq(\mu-1) \sqrt{\theta} \\
& =1 / 4
\end{aligned}
$$

- line 3 follows because $t c+\nabla \psi(x)=0$ for $x=x^{\star}(t)$
- line 4 follows from $\|\nabla \psi(x)\|_{x *} \leq \sqrt{\theta}$ (see page 17-3)


## Conclusion

number of iterations to compute $x^{\star}\left(t^{+}\right)$from $x^{\star}(t)$ is bounded by a small constant

## Iteration complexity

Number of outer iterations: $t^{(k)}=\mu^{k} t_{0} \geq \theta / \epsilon$ when

$$
k \geq \frac{\log \left(\theta /\left(\epsilon t_{0}\right)\right)}{\log \mu}
$$

Cumulative number of Newton iterations

$$
O\left(\sqrt{\theta} \log \left(\frac{\theta}{\epsilon t_{0}}\right)\right)
$$

(we used $\log \mu \geq(\log 2) /(4 \sqrt{\theta})$ by concavity of $\log (1+u)$ )

- multiply by flops per iteration to get polynomial worst-case complexity
- $\sqrt{\theta}$ dependence is lowest known complexity for interior-point methods


## Short-step method with inexact centering

Improvements of short-step method with exact centering

- keep iterates in region of quadratic region, but avoid complete centering
- at each iteration: make small increase in $t$, followed by one Newton step

Algorithm: define a tolerance $\epsilon \in(0,1)$ and parameters

$$
\beta=\frac{1}{8}, \quad \mu=1+\frac{1}{1+8 \sqrt{\theta}}
$$

- select $x$ and $t$ with $\lambda_{t}(x) \leq \beta$
- repeat until $2 \theta / t \leq \epsilon$ :

$$
t:=\mu t, \quad x:=x-\nabla^{2} \psi(x)^{-1}(t c+\nabla \psi(x))
$$

## Newton decrement after update

we first show that $\lambda_{t}(x) \leq \beta$ at the end of each iteration

- if $\lambda_{t}(x) \leq \beta$ and $t^{+}=\mu t$, then

$$
\begin{aligned}
\lambda_{t^{+}}(x) & \left.=\| t^{+} c+\nabla \psi(x)\right) \|_{x *} \\
& =\|\mu(t c+\nabla \psi(x))-(\mu-1) \nabla \psi(x)\|_{x *} \\
& \leq \mu\|t c+\nabla \psi(x)\|_{x *}+(\mu-1)\|\nabla \psi(x)\|_{x *} \\
& \leq \mu \beta+(\mu-1) \sqrt{\theta} \\
& =\frac{1}{4}
\end{aligned}
$$

- from theory of Newton's method for self-concordant functions (page 16-16)

$$
\lambda_{t^{+}}\left(x^{+}\right) \leq 2 \lambda_{t^{+}}(x)^{2} \leq \frac{1}{8}=\beta
$$

## Iteration complexity

- from page 17-9, stopping criterion implies $c^{T} x-p^{\star} \leq \epsilon$
- stopping criterion is satisified when

$$
\frac{t^{(k)}}{t_{0}}=\mu^{k} \geq \frac{2 \theta}{\epsilon t_{0}}, \quad k \geq \frac{\log \left(2 \theta /\left(\epsilon t_{0}\right)\right)}{\log \mu}
$$

- taking the logarithm on both sides gives an upper bound of

$$
O\left(\sqrt{\theta} \log \left(\frac{\theta}{\epsilon t_{0}}\right)\right) \text { iterations }
$$

(using $\log \mu \geq \log 2 /(1+8 \sqrt{\theta})$ )

## Outline

- central path
- short-step barrier method
- predictor-corrector method


## Predictor-corrector methods

## Short-step methods

- stay in narrow neighborhood of central path (defined by limit on $\lambda_{t}$ )
- make small, fixed increases $t^{+}=\mu t$
as a result, quite slow in practice


## Predictor-corrector method

- select new $t$ using a linear approximation to central path ('predictor')
- recenter with new $t$ ('corrector')
allows faster and 'adaptive' increases in $t$


## Global convergence bound for centering problem

$$
\operatorname{minimize} \quad f_{t}(x)=t c^{T} x+\phi(b-A x)
$$

Convergence result (damped Newton algorithm of page $16-11$ started at $x$ )

$$
\# \text { iterations } \leq \frac{f_{t}(x)-\inf _{u} f_{t}(u)}{\omega(\eta)}+\log _{2} \log _{2}\left(1 / \epsilon_{\text {cent }}\right)
$$

- $\epsilon_{\text {cent }}$ is accuracy in centering
- $\omega(\eta)=\eta-\log (1+\eta)$ and $\eta \in(0,1 / 4]$
- for practical purposes, second term is a small constant
- first term depends on unknown optimal value $\inf _{u} f_{t}(u)$


## Bound from duality

Dual centering problem (see page 17-6)

$$
\begin{array}{ll}
\text { maximize } & -t b^{T} z-\phi_{*}(z)+\theta \log t \\
\text { subject to } & A^{T} z+c=0
\end{array}
$$

strictly feasible $z$ provides lower bound on $\inf _{u} f_{t}(u)$ :

$$
\inf _{u} f_{t}(u) \geq-t b^{T} z-\phi_{*}(z)+\theta \log t
$$

Bound on centering cost: $f_{t}(x)-\inf _{u} f_{t}(u) \leq V_{t}(x, s, z)$ where

$$
\begin{aligned}
V_{t}(x, s, z) & =t\left(c^{T} x+b^{T} z\right)+\phi(s)+\phi_{*}(z)-\theta \log t \\
& =t s^{T} z+\phi(s)+\phi_{*}(z)-\theta \log t
\end{aligned}
$$

## Potential function

Definition (for strictly feasible $x, s, z$ )

$$
\begin{aligned}
\Psi(x, s, z) & =\inf _{t} V_{t}(x, s, z) \\
& =\theta \log \frac{s^{T} z}{\theta}+\phi(s)+\phi_{*}(z)+\theta
\end{aligned}
$$

(optimal $t$ is $t=\operatorname{argmin}_{t} V_{t}(x, s, z)=\theta / s^{T} z$ )

## Properties

- homogeneous of degree zero: $\Psi(\alpha x, \alpha s, \alpha z)=\Psi(x, s, z)$ for $\alpha>0$
- nonnegative for all strictly feasible $x, s, z$
- zero only if $x, s, z$ are centered
can be used as a global measure of proximity to the central path


## Tangent to central path

## Central path equation

$$
\begin{gathered}
{\left[\begin{array}{c}
0 \\
s^{\star}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
x^{\star}(t) \\
z^{\star}(t)
\end{array}\right]+\left[\begin{array}{l}
c \\
b
\end{array}\right]} \\
z^{\star}(t)=-\frac{1}{t} \nabla \phi\left(s^{\star}(t)\right)
\end{gathered}
$$

Derivatives $\dot{x}=d x^{\star}(t) / d t, \dot{s}=d s^{\star} / d t, \dot{z}=d z^{\star}(t) / d t$ satisfy

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
\dot{s}
\end{array}\right]=\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
\dot{x} \\
\dot{z}
\end{array}\right]} \\
& \dot{z}=-\frac{1}{t} z^{\star}(t)-\frac{1}{t} \nabla^{2} \phi\left(s^{\star}(t)\right) \dot{s}
\end{aligned}
$$

Tangent direction: derivatives scaled by $t$ (to simplify notation)

$$
\Delta x_{\mathrm{t}}=t \dot{x}, \quad \Delta s_{\mathrm{t}}=t \dot{s}, \quad \Delta z_{\mathrm{t}}=t \dot{z}
$$

## Predictor equations

with $x=x^{\star}(t), s=s^{\star}(t), z=z^{\star}(t)$

$$
\left[\begin{array}{ccc}
(1 / t) \nabla^{2} \phi(s) & 0 & I  \tag{1}\\
0 & 0 & A^{T} \\
-I & -A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta s_{\mathrm{t}} \\
\Delta x_{\mathrm{t}} \\
\Delta z_{\mathrm{t}}
\end{array}\right]=\left[\begin{array}{c}
-z \\
0 \\
0
\end{array}\right]
$$

Equivalent equations

$$
\left[\begin{array}{ccc}
I & 0 & (1 / t) \nabla^{2} \phi_{*}(z)  \tag{2}\\
0 & 0 & A^{T} \\
-I & -A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta s_{\mathrm{t}} \\
\Delta x_{\mathrm{t}} \\
\Delta z_{\mathrm{t}}
\end{array}\right]=\left[\begin{array}{c}
-s \\
0 \\
0
\end{array}\right]
$$

equivalence follows from primal-dual relations on central path

$$
z=-\frac{1}{t} \nabla \phi(s), \quad s=-\frac{1}{t} \nabla \phi_{*}(z), \quad \frac{1}{t} \nabla^{2} \phi(s)=t \nabla^{2} \phi_{*}(z)^{-1}
$$

## Properties of tangent direction

- from 2nd and 3rd block in (1): $\Delta s_{\mathrm{t}}^{T} \Delta z_{\mathrm{t}}=0$
- from first block in (1) and $\nabla^{2} \phi(s) s=-\nabla \phi(s)$ :

$$
s^{T} \Delta z_{\mathrm{t}}+z^{T} \Delta s_{\mathrm{t}}=-s^{T} z
$$

- hence, gap in tangent direction is

$$
\left(s+\alpha \Delta s_{\mathrm{t}}\right)^{T}\left(z+\alpha \Delta z_{\mathrm{t}}\right)=(1-\alpha) s^{T} z
$$

- from first block in (1)

$$
\left\|\Delta s_{\mathrm{t}}\right\|_{s}^{2}=\Delta s_{\mathrm{t}}^{T} \nabla^{2} \phi(s) \Delta s_{\mathrm{t}}=-t z^{T} \Delta s_{\mathrm{t}}
$$

- similarly, from first block in (2)

$$
\left\|\Delta z_{\mathrm{t}}\right\|_{z}^{2}=\Delta z_{\mathrm{t}}^{T} \nabla^{2} \phi_{*}(z) \Delta z_{\mathrm{t}}=-t s^{T} \Delta z_{\mathrm{t}}
$$

## Predictor-corrector method with exact centering

Simplifying assumptions: exact centering, a central point $x^{\star}\left(t_{0}\right)$ is given

Algorithm: define tolerance $\epsilon \in(0,1)$, parameter $\beta>0$, and set

$$
t:=t_{0}, \quad(x, s, z):=\left(x^{\star}\left(t_{0}\right), s^{\star}\left(t_{0}\right), z^{\star}\left(t_{0}\right)\right)
$$

repeat until $\theta / t \leq \epsilon$ :

- compute tangent direction $\left(\Delta x_{\mathrm{t}}, \Delta s_{\mathrm{t}}, \Delta z_{\mathrm{t}}\right)$ at $(x, s, z)$
- set $(x, s, z):=(x, s, z)+\alpha\left(\Delta x_{\mathrm{t}}, \Delta s_{\mathrm{t}}, \Delta z_{\mathrm{t}}\right)$ with $\alpha$ determined from

$$
\Psi\left(x+\alpha \Delta x_{\mathrm{t}}, s+\alpha \Delta s_{\mathrm{t}}, z+\alpha \Delta z_{\mathrm{t}}\right)=\beta
$$

- set $t:=\theta /\left(s^{T} z\right)$ and compute $(x, s, z):=\left(x^{\star}(t), s^{\star}(t), z^{\star}(t)\right)$


## Iteration complexity

Potential function in tangent direction (proof on next page)

$$
\begin{aligned}
\Psi\left(x+\alpha \Delta x_{\mathrm{t}}, s+\alpha \Delta s_{\mathrm{t}}, z+\alpha \Delta s_{\mathrm{t}}\right) & \leq \omega^{*}(\alpha \sqrt{\theta}) \\
& =-\alpha \sqrt{\theta}-\log (1-\alpha \sqrt{\theta})
\end{aligned}
$$

Lower bound on predictor step length: since $\omega^{*}$ is an increasing function

$$
\alpha \geq \gamma / \sqrt{\theta} \text { where } \omega^{*}(\gamma)=\beta
$$

Reduction in duality gap after one predictor/corrector cycle

$$
t / t^{+}=1-\alpha \leq 1-\gamma / \sqrt{\theta} \leq \exp (-\gamma / \sqrt{\theta})
$$

Cumulative Newton iterations: $t^{(k)} \geq \theta / \epsilon$ after

$$
O\left(\sqrt{\theta} \log \left(\frac{\theta}{t_{0} \epsilon}\right)\right) \quad \text { Newton iterations }
$$

Proof of upper bound on $\Psi$ (with $s^{+}=s+\alpha \Delta s_{\mathrm{t}}, z^{+}=z+\alpha \Delta z_{\mathrm{t}}$ )

- bounds on $\phi\left(s^{+}\right)$and $\phi_{*}\left(z^{+}\right)$: from the inequality on page 16-8,

$$
\begin{aligned}
\phi\left(s^{+}\right)-\phi(s) & \leq \alpha \nabla \phi(s)^{T} \Delta s_{\mathrm{t}}+\omega^{*}\left(\alpha\left\|\Delta s_{\mathrm{t}}\right\|_{s}\right) \\
& =-\alpha t z^{T} \Delta s_{\mathrm{t}}+\omega^{*}\left(\alpha\left\|\Delta s_{\mathrm{t}}\right\|_{s}\right) \\
\phi_{*}\left(z^{+}\right)-\phi_{*}(z) & \leq \alpha \nabla \phi(z)^{T} \Delta z_{\mathrm{t}}+\omega^{*}\left(\alpha\left\|\Delta z_{\mathrm{t}}\right\|_{z}\right) \\
& =-\alpha t s^{T} \Delta z_{\mathrm{t}}+\omega^{*}\left(\alpha\left\|\Delta z_{\mathrm{t}}\right\|_{z}\right)
\end{aligned}
$$

- add the inequalities and use properties on page 17-23

$$
\begin{aligned}
\phi\left(s^{+}\right)-\phi(s)+\phi_{*}\left(z^{+}\right)-\phi_{*}(z) & \leq \alpha \theta+\omega^{*}\left(\alpha\left\|\Delta s_{\mathrm{t}}\right\|_{s}\right)+\omega^{*}\left(\alpha\left\|\Delta z_{\mathrm{t}}\right\|_{z}\right) \\
& \leq \alpha \theta+\omega^{*}\left(\alpha\left(\left\|\Delta s_{\mathrm{t}}\right\|_{s}^{2}+\left\|\Delta z_{\mathrm{t}}\right\|_{z}^{2}\right)^{1 / 2}\right) \\
& =\alpha \theta+\omega^{*}(\alpha \sqrt{\theta})
\end{aligned}
$$

- since $\left(s^{+}\right)^{T} z^{+}=(1-\alpha) s^{T} z$,

$$
\Psi\left(x^{+}, s^{+}, z^{+}\right) \leq \theta \log (1-\alpha)+\alpha \theta+\omega^{*}(\alpha \sqrt{\theta}) \leq \omega^{*}(\alpha \sqrt{\theta})
$$

## References

- Yu. Nesterov, Introductory Lectures on Convex Optimization. A Basic Course (2004), chapter 4.
- Yu. Nesterov, Towards nonsymmetric conic optimization, Optimization Methods and Software (2012).

