8. Proximal point method

- proximal point method
- augmented Lagrangian method
- Moreau-Yosida smoothing

Proximal point method

an algorithm for minimizing a closed convex function f :

$$
\begin{aligned}
x_{k+1} & =\operatorname{prox}_{t_{k} f}\left(x_{k}\right) \\
& =\underset{u}{\operatorname{argmin}}\left(f(u)+\frac{1}{2 t_{k}}\left\|u-x_{k}\right\|_{2}^{2}\right)
\end{aligned}
$$

- can be viewed as proximal gradient method (page 4.3) with $g(x)=0$
- of interest if prox evaluations are much easier than minimizing f directly
- in practice, inexact prox evaluations may be sufficient
- step size $t_{k}>0$ affects number of iterations, cost of prox evaluations
- basis of the augmented Lagrangian method

Convergence

Assumptions

- f is closed and convex (hence, $\operatorname{prox}_{t f}(x)$ is uniquely defined for all x)
- optimal value f^{\star} is finite and attained at x^{\star}

Result

$$
f\left(x_{k}\right)-f^{\star} \leq \frac{\left\|x_{0}-x^{\star}\right\|_{2}^{2}}{2 \sum_{i=0}^{k-1} t_{i}} \quad \text { for } k \geq 1
$$

- implies convergence if $\sum_{i} t_{i} \rightarrow \infty$
- rate is $1 / k$ if t_{i} is fixed, or variable but bounded away from zero
- t_{i} is arbitrary; however cost of prox evaluations will depend on t_{i}

Proof: apply analysis of proximal gradient method (lecture 4) with $g(x)=0$

- since g is zero, inequality (3) on page 4.12 holds for any $t>0$
- from page 4.14, $f\left(x_{i}\right)$ is nonincreasing and

$$
t_{i}\left(f\left(x_{i+1}\right)-f^{\star}\right) \leq \frac{1}{2}\left(\left\|x_{i}-x^{\star}\right\|_{2}^{2}-\left\|x_{i+1}-x^{\star}\right\|_{2}^{2}\right)
$$

- combine inequalities for $i=0$ to $i=k-1$ to get

$$
\left(\sum_{i=0}^{k-1} t_{i}\right)\left(f\left(x_{k}\right)-f^{\star}\right) \leq \sum_{i=0}^{k-1} t_{i}\left(f\left(x_{i}\right)-f^{\star}\right) \leq \frac{1}{2}\left\|x_{0}-x^{\star}\right\|_{2}^{2}
$$

Accelerated proximal point algorithms

- we take $g(x)=0$ in FISTA on page 7.8:

$$
\begin{aligned}
x_{1} & =\operatorname{prox}_{t_{0} f}\left(x_{0}\right) \\
x_{k+1} & =\operatorname{prox}_{t_{k} f}\left(x_{k}+\theta_{k}\left(\frac{1}{\theta_{k-1}}-1\right)\left(x_{k}-x_{k-1}\right)\right) \quad \text { for } k \geq 1
\end{aligned}
$$

- choose any $t_{k}>0$, determine θ_{k} from equation

$$
\frac{\theta_{k}^{2}}{t_{k}}=\left(1-\theta_{k}\right) \frac{\theta_{k-1}^{2}}{t_{k-1}}
$$

- converges if $\sum_{i} \sqrt{t_{i}} \rightarrow \infty$ (lecture 7)
- rate is $1 / k^{2}$ if t_{i} is fixed or variable but bounded away from zero

Outline

- proximal point method
- augmented Lagrangian method
- Moreau-Yosida smoothing

Standard problem format

Primal and dual problem (page 5.21)

$$
\begin{array}{ll}
\text { primal: } & \text { minimize } f(x)+g(A x) \\
\text { dual: } & \text { maximize }-g^{*}(z)-f^{*}\left(-A^{T} z\right)
\end{array}
$$

Examples

- set constraints $\left(g(y)=\delta_{C}(y)\right)$:

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x \in C
\end{array}
$$

- regularized norm approximation $(g(y)=\|y-b\|)$:

$$
\operatorname{minimize} \quad f(x)+\|A x-b\|
$$

Augmented Lagrangian method: proximal point method applied to the dual

Proximal mapping of dual function

Definition: proximal mapping of $h(z)=g^{*}(z)+f^{*}\left(-A^{T} z\right)$ is defined as

$$
\operatorname{prox}_{t h}(z)=\underset{u}{\operatorname{argmin}}\left(g^{*}(u)+f^{*}\left(-A^{T} u\right)+\frac{1}{2 t}\|u-z\|_{2}^{2}\right)
$$

Dual expression: $\operatorname{prox}_{t h}(z)=z+t(A \hat{x}-\hat{y})$ where

$$
(\hat{x}, \hat{y})=\underset{x, y}{\operatorname{argmin}}\left(f(x)+g(y)+z^{T}(A x-y)+\frac{t}{2}\|A x-y\|_{2}^{2}\right)
$$

- \hat{x}, \hat{y} minimize the augmented Lagrangian (Lagrangian + quadratic penalty)
- $f(x)+g(y)+z^{T}(A x-y)$ is Lagrangian of primal problem reformulated as

$$
\begin{array}{ll}
\text { minimize } & f(x)+g(y) \\
\text { subject to } & A x-y=0
\end{array}
$$

Proof.

- write augmented Lagrangian minimization as

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } x, y, w) & f(x)+g(y)+\frac{t}{2}\|w\|_{2}^{2} \\
\text { subject to } & A x-y+z / t=w
\end{array}
$$

- optimality conditions (u is the multiplier for the equality constraint):

$$
A x-y+\frac{1}{t} z=w, \quad-A^{T} u \in \partial f(x), \quad u \in \partial g(y), \quad t w=u
$$

- eliminating w gives

$$
u=z+t(A x-y), \quad-A^{T} u \in \partial f(x), \quad u \in \partial g(y)
$$

- eliminating x, y gives

$$
0 \in \partial g^{*}(u)-A \partial f^{*}\left(-A^{T} u\right)+\frac{1}{t}(u-z)
$$

this is the optimality condition for the problem in the definition of $u=\operatorname{prox}_{t h}(z)$

Augmented Lagrangian method

choose initial z_{0} and repeat:

1. minimize augmented Lagrangian

$$
(\hat{x}, \hat{y})=\underset{x, y}{\operatorname{argmin}}\left(f(x)+g(y)+\frac{t_{k}}{2}\left\|A x-y+z_{k} / t_{k}\right\|_{2}^{2}\right)
$$

2. dual update

$$
z_{k+1}=z_{k}+t_{k}(A \hat{x}-\hat{y})
$$

- also known as method of multipliers
- this is the proximal point method applied to the dual problem
- as variants, can apply the accelerated proximal point methods to the dual
- usually implemented with inexact minimization in step 1

Examples

$$
\operatorname{minimize} \quad f(x)+g(A x)
$$

Equality constraints: g is indicator of $\{b\}$

$$
\begin{aligned}
\hat{x} & =\underset{x}{\operatorname{argmin}}\left(f(x)+\frac{t}{2}\|A x-b+z / t\|_{2}^{2}\right) \\
z & :=z+t(A \hat{x}-b)
\end{aligned}
$$

Set constraint: g indicator of convex set C

$$
\begin{aligned}
\hat{x} & =\underset{x}{\operatorname{argmin}}\left(f(x)+\frac{t}{2} d(A x+z / t)^{2}\right) \\
z & :=z+t\left(A \hat{x}-P_{C}(A \hat{x}+z / t)\right)
\end{aligned}
$$

- in step 1 on previous page, $\hat{y}=P_{C}(A \hat{x}+z / t)$ where P_{C} is projection on C
- $d(u)=\left\|u-P_{C}(u)\right\|_{2}$ is Euclidean distance of u to C

Outline

- proximal point method
- augmented Lagrangian method
- Moreau-Yosida smoothing

Moreau-Yosida smoothing

Definition: the Moreau-Yosida regularization of a closed convex function f is

$$
\begin{aligned}
f_{(t)}(x) & \left.=\inf _{u}\left(f(u)+\frac{1}{2 t}\|u-x\|_{2}^{2}\right) \quad \text { (with } t>0\right) \\
& =f\left(\operatorname{prox}_{t f}(x)\right)+\frac{1}{2 t}\left\|\operatorname{prox}_{t f}(x)-x\right\|_{2}^{2}
\end{aligned}
$$

this is also known as the Moreau envelope of f

Immediate properties

- $f_{(t)}$ is convex (infimum over u of a convex function of x, u)
- domain of $f_{(t)}$ is \mathbf{R}^{n} (recall that $\operatorname{prox}_{t f}(x)$ is defined for all x)

Examples

Indicator function: smoothed f is squared Euclidean distance

$$
f(x)=\delta_{C}(x), \quad f_{(t)}(x)=\frac{1}{2 t} d(x)^{2}
$$

1-norm: smoothed function is Huber penalty

$$
f(x)=\|x\|_{1}, \quad f_{(t)}(x)=\sum_{k=1}^{n} \phi_{t}\left(x_{k}\right)
$$

$$
\phi_{t}(z)= \begin{cases}z^{2} /(2 t) & |z| \leq t \\ |z|-t / 2 & |z| \geq t\end{cases}
$$

Conjugate of Moreau envelope

$$
f_{(t)}(x)=\inf _{u}\left(f(u)+\frac{1}{2 t}\|u-x\|_{2}^{2}\right)
$$

- $f_{(t)}$ is infimal convolution of $f(u)$ and $\|v\|_{2}^{2} /(2 t)$ (see page 5.11):

$$
f_{(t)}(x)=\inf _{u+v=x}\left(f(u)+\frac{1}{2 t}\|v\|_{2}^{2}\right)
$$

- from page 5.11, conjugate is sum of conjugates of $f(u)$ and $\|v\|_{2}^{2} /(2 t)$:

$$
\left(f_{(t)}\right)^{*}(y)=f^{*}(y)+\frac{t}{2}\|y\|_{2}^{2}
$$

- hence, conjugate is strongly convex with parameter t

Gradient of Moreau envelope

$$
f_{(t)}(x)=\sup _{y}\left(x^{T} y-f^{*}(y)-\frac{t}{2}\|y\|_{2}^{2}\right)
$$

- maximizer y in definition is unique and satisfies

$$
\begin{aligned}
x-t y \in \partial f^{*}(y) & \Longleftrightarrow y \in \partial f(x-t y) \\
& \Longleftrightarrow y=\frac{1}{t}\left(x-\operatorname{prox}_{t f}(x)\right)
\end{aligned}
$$

second line follows from page 4.7

- maximizer y is the gradient of $f_{(t)}$:

$$
\nabla f_{(t)}(x)=\frac{1}{t}\left(x-\operatorname{prox}_{t f}(x)\right)=\operatorname{prox}_{t^{-1} f^{*}}(x / t)
$$

we applied the Moreau decomposition (page 6.7)

- gradient $\nabla f_{(t)}$ is Lipschitz continuous with constant $1 / t$ (see page 5.19 or 4.8)

Interpretation of proximal point algorithm

apply gradient method to minimize Moreau envelope

$$
\operatorname{minimize} \quad f_{(t)}(x)=\inf _{u}\left(f(u)+\frac{1}{2 t}\|u-x\|_{2}^{2}\right)
$$

this is an exact smooth reformulation of problem of minimizing $f(x)$:

- solution x is minimizer of f
- $f_{(t)}$ is differentiable with Lipschitz continuous gradient $(L=1 / t)$

Gradient update: with fixed $t_{k}=1 / L=t$

$$
x_{k+1}=x_{k}-t \nabla f_{(t)}\left(x_{k}\right)=\operatorname{prox}_{t f}\left(x_{k}\right)
$$

\ldots the proximal point update with constant step size $t_{k}=t$

Interpretation of augmented Lagrangian algorithm

$$
\operatorname{minimize} \quad f(x)+g(A x)
$$

- augmented Lagrangian iteration is

$$
\begin{aligned}
(\hat{x}, \hat{y}) & =\underset{x, y}{\operatorname{argmin}}\left(f(x)+g(y)+\frac{t}{2}\|A x-y+(1 / t) z\|_{2}^{2}\right) \\
z & :=z+t(A \hat{x}-\hat{y})
\end{aligned}
$$

- with fixed t, dual update is gradient step applied to a smoothed dual
- after eliminating y, primal step can be written as

$$
\hat{x}=\underset{x}{\operatorname{argmin}}\left(f(x)+g_{(1 / t)}(A x+(1 / t) z)\right)
$$

- second term $g_{(1 / t)}(A x+(1 / t) z)$ is a smooth approximation of $g(A x)$
- adding the offset z / t allows us to use a fixed t

Example

$$
\text { minimize } f(x)+\|A x-b\|_{1}
$$

- augmented Lagrangian iteration is

$$
\begin{aligned}
(\hat{x}, \hat{y}) & =\underset{x, y}{\operatorname{argmin}}\left(f(x)+\|y-b\|_{1}+\frac{t}{2}\|A x-y+(1 / t) z\|_{2}^{2}\right) \\
z & :=z+t(A \hat{x}-\hat{y})
\end{aligned}
$$

- primal step after eliminating $y: \hat{x}$ is the solution of

$$
\text { minimize } f(x)+\phi_{1 / t}(A x-b+(1 / t) z)
$$

with $\phi_{1 / t}$ the Huber penalty applied componentwise (page 8.12)

References

Accelerated proximal point algorithm

- O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control and Optimization (1991).
- O. Güler, New proximal point algorithms for convex minimization, SIOPT (1992).
- O. Güler, Augmented Lagrangian algorithm for linear programming, JOTA (1992).

Augmented Lagrangian algorithm

- D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (1982).

