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8. Proximal point method

e proximal point method
e augmented Lagrangian method

e Moreau—Yosida smoothing
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Proximal point method

an algorithm for minimizing a closed convex function f:

Xie1 = prox; (xp)
aremin | (1) + ——lu — x¢ 2
— u u—Xx
gu 211 kil

e can be viewed as proximal gradient method (page 4.3) with g(x) =0

e of interest if prox evaluations are much easier than minimizing f directly
e in practice, inexact prox evaluations may be sufficient

e step size t; > 0 affects number of iterations, cost of prox evaluations

e basis of the augmented Lagrangian method
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Convergence

Assumptions

e fis closed and convex (hence, prox, ((x) is uniquely defined for all x)

e optimal value f* is finite and attained at x*

Result

2
”xO —x*||2

k-1

2 2t
i=0

fork > 1

flxg) = f* <

e implies convergence if > ;f; — oo
e rateis 1/k if t; is fixed, or variable but bounded away from zero

e 1; is arbitrary; however cost of prox evaluations will depend on ¢;
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Proof: apply analysis of proximal gradient method (lecture 4) with g(x) = 0

e since g is zero, inequality (3) on page 4.12 holds for any r > 0

e from page 4.14, f(x;) is nonincreasing and
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(Iles = 212 = Ihesr = 2*13)
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ti (f(xig1) = f7) <

e combine inequalities fori = 0toi = k — 1 to get

k—1 k 1 1 o
O 1) (f(xx) = f7) ti (f(x) — ) §||xo — x5
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Accelerated proximal point algorithms

e we take g(x) = 0in FISTA on page 7.8:

X1 = prox,,(xo)
1

Xky1l = pI'Othf Xk +9k(m — 1)(xk —xk_l) fork > 1

e choose any t; > 0, determine 8; from equation

02 62

k k—1
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e converges if 33; \/t; — oo (lecture 7)

e rateis 1/k? if ; is fixed or variable but bounded away from zero
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Outline
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Standard problem format

Primal and dual problem (page 5.21)

primal: minimize f(x) + g(Ax)

dual: maximize -g*(z) — f*(—Al7)
Examples

e set constraints (g(y) = dc(y)):

minimize  f(x)
subjectto Ax € C

e regularized norm approximation (g(y) = ||y — b||):

minimize f(x) + ||Ax — b||

Augmented Lagrangian method: proximal point method applied to the dual
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Proximal mapping of dual function

Definition: proximal mapping of 4(z) = g*(z) + f*(—A'z) is defined as

1
prox,;(z) = argmin (g*(u) + [ (=ATu) + 27”” - Z”%)
u

Dual expression: prox,,(z) = z + t(AX — ) where

(2, 9) = argmin ( £(x) + g(7) + 27 (Ax = ) + | Ax - y[3)
X,y

e X, y minimize the augmented Lagrangian (Lagrangian + quadratic penalty)

e f(x)+g(y)+z'(Ax —y) is Lagrangian of primal problem reformulated as

minimize £ (x) + g(y)
subjectto Ax—y =0
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Proof.

e write augmented Lagrangian minimization as

t
minimize (over x, y, w) f(x)+g(y)+ 5||w||§
subject to Ax —y+z/t=w

e optimality conditions (u is the multiplier for the equality constraint):

1
Ax—y+;z:w, —Alu e df(x), u e dg(y), tw=u

e eliminating w gives

u=z+t(Ax—y), -Aluedf(x), uedg(y)
e eliminating x, y gives
1
0€dg*(u)— Adf*(-ATu) + ?(u - 2)

this is the optimality condition for the problem in the definition of u = prox,;(z)
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Augmented Lagrangian method

choose initial zg and repeat:

1. minimize augmented Lagrangian

A : Ik
(2, 5) = argmin ( £(x) + () + 2 1Ax = y + 2 /1e]3)
X,y

2. dual update
Zk+l = 2k 1 (AX = 9)

e also known as method of multipliers
e this is the proximal point method applied to the dual problem
e as variants, can apply the accelerated proximal point methods to the dual

e usually implemented with inexact minimization in step 1
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Examples
minimize f(x) + g(Ax)

Equality constraints: g is indicator of {b}

4
£ = argmin(f(x)+§||Ax—b+Z/f||§)
X

7z = z+1t(AX - Db)

Set constraint: g indicator of convex set C
5
X = argmin (f(x) + > d(Ax + z/t)z)
X
7z = z+t(AX — Pc(AX +z/t))

e in step 1 on previous page, ¥ = Pc(AX + z/t) where P is projection on C

e d(u) = |lu—- Pc(u)|> is Euclidean distance of u to C
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Moreau-Yosida smoothing

Definition: the Moreau—Yosida regularization of a closed convex function f is

1
fon(x) = iIL}f (f(u) + 2—t||u — xllg) (with 7 > 0)
1 2
= f (proxtf(x)) + % “proxtf(x) —xH2

this is also known as the Moreau envelope of f
Immediate properties

® f(r) is convex (infimum over u of a convex function of x, u)

e domain of f(;) is R" (recall that prox, ¢(x) is defined for all x)
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Examples

Indicator function: smoothed f is squared Euclidean distance
1 2
f(x) =6c(x), fin(x) = 7-d(x)

1-norm: smoothed function is Huber penalty

f) = lixlh, fin () = D e ()
k=1

¢:(z)

2@z <t
#1(2) = { z| —t/2 |z| >t

Proximal point method 8.12



Conjugate of Moreau envelope
2t

fio(x) = inf (f(u) b ol —x||§)

e f(y is infimal convolution of f(u) and |lvl5/(2¢) (see page 5.11):

fin(x) = inf (f(u) + %IIUII%)

e from page 5.11, conjugate is sum of conjugates of f(u) and ||v||§/(2t):

(fo) () = £ ) + 5113

e hence, conjugate is strongly convex with parameter ¢
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Gradient of Moreau envelope
) t
fioy@) = sup (x"y = £ () = 5 I13)
Y

e maximizer y in definition is unique and satisfies

x—ty€edf(y) < yedf(x-ty)
1
= y=—(x~prox,(x))
second line follows from page 4.7

e maximizer y is the gradient of f(;:

1
Vi) = ;(x — Prox, ¢(x)) = prox,-i r.(x/1)
we applied the Moreau decomposition (page 6.7)

e gradient V f(;) is Lipschitz continuous with constant 1/7 (see page 5.19 or 4.8)
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Interpretation of proximal point algorithm

apply gradient method to minimize Moreau envelope

1

2
—||{U — X
e = x1

minimize f(,)(x):irb}f f(u)+

this is an exact smooth reformulation of problem of minimizing f(x):

e solution x is minimizer of f

e f( is differentiable with Lipschitz continuous gradient (L = 1/7)

Gradient update: with fixedt;, = 1/L =t

Xk+1 = Xk — 1V f(1)(xg) = prox, ¢(xx)

... the proximal point update with constant step size ¢, = ¢
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Interpretation of augmented Lagrangian algorithm

minimize f(x) + g(Ax)

augmented Lagrangian iteration is

(3.5) = argmin (£(x)+g(y)+ 3 llAx =y + (1/0z]3)
X,y
z = z+1(AX-))

with fixed ¢, dual update is gradient step applied to a smoothed dual

after eliminating y, primal step can be written as
X = argmin (f(x) +g(1/1) (Ax + (l/t)z))
X

second term g1/, (Ax + (1/)z) is a smooth approximation of g(Ax)

adding the offset z/t allows us to use a fixed ¢
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Example

minimize f(x) + ||Ax — b||;

e augmented Lagrangian iteration is

. . t
(£,9) = argmin (f(X)+ IIy—b||1+§||Ax—y+(1/t)Z||§)
X,y
z = z+t(AX-9)

e primal step after eliminating y: X is the solution of
minimize  f(x) + ¢1/; (Ax = b+ (1/t)z)

with ¢/, the Huber penalty applied componentwise (page 8.12)
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