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4. Proximal gradient method

e motivation
e proximal mapping
e proximal gradient method with fixed step size

e proximal gradient method with line search
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Proximal mapping

the proximal mapping (or prox-operator) of a convex function 4 is defined as

1
prox,(x) = argmin (h(u) + EHM ~ x||§)
u

Examples
o h(x)=0: prox,(x) =x
e /(x) is indicator function of closed convex set C: prox, is projection on C

prox, (x) = argmin ||u — x||§ = Pc(x)
ueC

o h(x) = ||x|[;: prox, is the “soft-threshold” (shrinkage) operation
xi—1 x;>1

prox;,(x); =1 0 x| <1
xi+1 x;<-1
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Proximal gradient method

unconstrained optimization with objective split in two components
minimize f(x) = g(x) + h(x)

e g convex, differentiable, dom g = R”

e /1 convex with inexpensive prox-operator

Proximal gradient algorithm

Xk+1 = Prox, , (xx — 1, Vg(xy))

e 1, > 0 is step size, constant or determined by line search

e can start at infeasible xo (however x; € dom f = dom 4 for k > 1)

Proximal gradient method
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Interpretation
x* = prox,, (x — 1Vg(x))
from definition of proximal mapping:

1
xt o= argmin(h(u)+Z||u—x+th(x)||%)

u

= argmin (h(u) +g(x)+ Vg(x)T(u —X) + %Hu - X||§)

x* minimizes h(u) plus a simple quadratic local model of g(u) around x

Proximal gradient method
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Examples

minimize g(x) + h(x)

Gradient method: special case with 4(x) =0

xT=x-1tVg(x)

Gradient projection method: special case with #(x) = d¢(x) (indicator of C)

+ _ C
xT=Pc(x—-1tVg(x)) x+.>sx —tVg(x)

Proximal gradient method
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Examples

Soft-thresholding: special case with h(x) = ||x||;

x" = prox,, (x —tVg(x))

(prox,, (u));
where
u, —t u; >t
(prox,,(u))i =14 O —t <u; <t
u;+t u; < —t —t
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Proximal mapping

if i is convex and closed (has a closed epigraph), then

1
prox,(x) = argmin (h(u) + 5”” - x||§)
u

exists and is unique for all x

e will be studied in more detail in one of the next lectures
e prox-operators have many properties of projections on closed convex sets

e from optimality conditions of minimization in the definition:

U = prox(x) — x—u€oh(u)

—  h@)=>hw)+&x-uwl(z-u) foralz

Proximal gradient method
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Firm nonexpansiveness

proximal mappings are firmly nonexpansive (co-coercive with constant 1):
(prox;,(x) — prox;,(y))" (x = y) = ||prox,(x) — prox, (»)|3
e follows from page 4.7: if u = prox,(x), v = prox,(y), then
x—u€oh(u), y—v € 0h(v)
combining this with monotonicity of subdifferential (page 2.9) gives

x-—u—y+v)(u=v)>0

e a weaker property is nonexpansiveness (Lipschitz continuity with constant 1):

[prox,,(x) — prox, (y)||, < llx = yll
follows from firm nonexpansiveness and Cauchy—Schwarz inequality
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Assumptions

minimize f(x) = g(x) + h(x)

e /1 is closed and convex (so that prox,,, is well defined)

e g is differentiable with dom g = R, and L-smooth for the Euclidean norm, i.e.,

LT

5% X = g(x) is convex

e there exists a constant m > 0 such that

g(x) — —x Tx is convex

when m > 0 this is m-strong convexity for the Euclidean norm

e the optimal value f* is finite and attained at x* (not necessarily unique)

Proximal gradient method
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Implications of assumptions on g

Lower bound

e convexity of the the function g(x) — (m/2)x! x implies (page 1.19):
T m 2
8(y) 2 g(x) +Vg(x)" (y —x) + S lly —xlly ~ forallx,y (1)
e if m =0, this means g is convex; if m > 0, strongly convex (lecture 1)

Upper bound

e convexity of the function (L/2)x!x — g(x) implies (page 1.12):
T L >
g(y) <g(x) +Vg(x)' (y —x) + Zlly —xlly ~ forallx,y (2)

e this is equivalent to Lipschitz continuity and co-coercivity of gradient (lecture 1)
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Gradient map

G:(x) = % (x — prox,;,(x — tVg(x)))

G(x) is the negative “step” in the proximal gradient update

+

= prox, (x - 1Vg(x))
x —tGs(x)

e G,(x) is not a gradient or subgradientof f = g+ h

e from subgradient definition of prox-operator (page 4.7),

Gi(x) e Vg(x)+0h (x —tG;(x))

e G;(x) =0ifand only if x minimizes f(x) = g(x) + h(x)

Proximal gradient method
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Consequences of quadratic bounds on ¢
substitute y = x — tG,(x) in the bounds (1) and (2): for all t,

Lt?
2

mt?

5 IG@)3 < 8 (x = 1Gi(x) - g(x) +1Vg(x) Gi(x) < —-[1Gi ()3

e if0 <t < 1/L,then the upper bound implies

8x = 1G;(x) < g(x) = 19g(x) Gy(x) + 511G () I} ©

e if the inequality (3) is satisfied and rtG;(x) # 0, then mr < 1

e if the inequality (3) is satisfied, then for all z,

f(x =16y (x)) < £(2) + G0 (x=2) = SIG I - Tle -2l (@

(proof on next page)
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Proof of (4):

£ = 1Gi(x)
< g(x) =1V Gi(x) + TGl + h(x = 1Gy(x)

< 8(2) = Vg (2= ) = Zllz = 2113 = 19 () Gy (x) + 511G ()

2
+ h(x — 1G,(x))
8(2) = Ve (z = x) = Tz = xI2 = (g ()7 Gi(x) + S1G, ()]

IA

+h(2) = (Gi(x) = Vg(x)) (2 = x +1Gi (x)
= 8 +h(@) + G0 (= 2) =SNG - Flbr - 2113

e in the first step we add h(x — tG,(x)) to both sides of the inequality (3)
e in the next step we use the lower bound on g(z) from (1)

e instep 3, we use G,;(x) — Vg(x) € 0h(x —tG,(x)) (see page 4.11)
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Progress in one iteration

for a step size t that satisfies the inequality (3), define
xT=x - 1tGs(x)
e inequality (4) with z = x shows that the algorithm is a descent method:

FG) < £ = 51GH) 1

e inequality (4) with z = x* shows that

FE) = 1% 5 Gl (= x%) = 2IG I - 2l - 213
= o (=B = e - = 1G-S~ 1
— % ((1 —mt)||x —x*||§ —||x* —x*ll%) (5)
< o (I3~ et = 13) 6)
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Analysis for fixed step size

add inequalities (6) with x = x;, x" = x;41, 1 =t; = 1/Lfromi=0toi =k — 1

k 1k—1 5 5
=1 < 5 (I =1 = i — 1)
i=1 =0
1
= 5= (o= x*13 = e = x*13)
1
< sollwo - 213

since f(x;) is nonincreasing,

fO) = 1 <—Z<f<x,> ) < 5l - x*13

Proximal gradient method
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Distance to optimal set

e from (5) and f(x¥) > f*, the distance to the optimal set does not increase:

IA

2 2
Ix* = x* 13 (1 =mt)|lx = x*|i3

2
<l = a7l

e for fixed step size 1, = 1/L
2 _ k 2
e = x*ll; < cllxo— x5, c=1-—

L

i.e., linear convergence if g is strongly convex (m > 0)

Proximal gradient method
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Example: quadratic program with box constraints

minimize  (1/2)xT Ax + b'x
subjectto 0<x <1

(f () = )/~

0 5 10 15 20 25 30 35 40 45 50

k

n = 3000; fixed step size t = 1/Amax(A)
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Example: 1-norm regularized least-squares

1
minimize §||Ax — bll% + [|x|[q

10°
107"}
1072

107 |

(f () =~

107% |

107
0 10 20 30 40 50 60 70 80 90 100
k

randomly generated A € R2000X1000- gtey 1 = 1 /L with L = Apax(ATA)

Proximal gradient method
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Line search

e the analysis for fixed step size (page 4.12) starts with the inequality

g0 = 1G,() < g(x) — V8 () Gy (x) + 511G ()13 3

this inequality is known to hold forO < ¢ < 1/L

e if L is not known, we can satisfy (3) by a backtracking line search:

start at some ¢ := 7 > 0 and backtrack (¢ := Bt) until (3) holds
e step size r selected by the line search satisfies r > i, = min{z, B/L}

e requires one evaluation of g and prox,;, per line search iteration
several other types of line search work
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Example

line search for gradient projection method

xT=Pc(x-1tVg(x)) =x —tGs(x)

o

IPc(X - Bivg(x))

V() ¥ " Pc(x-Vg(x))

backtrack until P-(x — tVg(x)) satisfies the “sufficient decrease” inequality (3)
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Analysis with line search
from page 4.14, if (3) holds in iteration 7, then f(x;+1) < f(x;) and

1
O Git) = ) < 5 (I = 21 = Il = x713)

e adding inequalities fori = 0toi = k — 1 gives
k-1 k-1 1 ,
(O 1) (f(x) = ) < D ti(f (xipr) = ) < > llxo = X113
i=0 i=0

first inequality holds because f(x;) is nonincreasing

e since t; > tmin, We Obtain a similar 1/k bound as for fixed step size

1
flx) = f* < >kl _||XO—X*||§ <

i=0 i

1
2kl‘min

2
Ixo = x*113
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Distance to optimal set

from page 4.14, if (3) holds in iteration 7, then

2 2
lxie1 =2l < (1 —mt)||x; —x*|3
< (1 = mitmin) |Ix; = x*I2
= c|lx; - x*|3
2 k 2
e —x*12 < F o - x*13

with V.
m ~
¢ =1 — mtyin = max{l — 7 1 — mt}

hence linear convergence if m > 0
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Summary: proximal gradient method

e Mminimizes sums of differentiable and non-differentiable convex functions

f(x) = g(x) + h(x)

e useful when nondifferentiable term £ is simple (has inexpensive prox-operator)
e convergence properties are similar to standard gradient method (4(x) = 0)

e |ess general but faster than subgradient method
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