L. Vandenberghe EE236C (Spring 2013-14)

Proximal mapping via network optimization

e minimum cut and maximum flow problems
e parametric minimum cut problem

e application to proximal mapping



Introduction

this lecture: network flow algorithm for evaluating prox-operator of

n 1—1
h(z) = D > Ayl — ;]
1=1 j7=1
— Z Aij maX{O, r; — ZL‘j}
1,7=1

o coefficients A;; = A,; are nonnegative
e associated undirected graph has n nodes, edges (¢,j) when A4;; > 0

e applications in image processing and machine learning
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Outline

e minimum cut and maximum flow problems
e parametric minimum cut problem

e application to proximal mapping



Minimum cut problem

find subset I C {1,2,...,n} that minimizes

C(I) = Z Aij‘i‘Zbi

el &1 el

o AcS" with A;; = Aj; > 0; no sign restrictions on b € R"

e cost can be expressed as
C(I)=z"A1 —z) +b'x
x is the incidence vector of I: xp, =1 itkel, xp. =01tk &1

graph interpretation

e optimal two-way partition of n nodes of undirected graph

e first term in C([) is cost of the cut (edges removed by partitioning)
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Discrete optimization formulations

binary quadratic maximization

minimize —xlAx + (A1 +b)1x
subject to x € {0,1}"

cost function is equal to C'(I) if z is incidence vector of [

binary piecewise-linear minimization

minimize > A;j|lv; — x| + bl
1>
subject to x € {0,1}"

cost function is equal to C'(I) if z is incidence vector of [
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Convex relaxation

relaxation: replace x € {0,1}" with 0 <z <1 (componentwise)

minimize > A;j|lv; — x| + bl
1>
subjectto 0<x <1

we will use LP duality to show that the relaxation is exact

e relaxation has an optimal solution x € {0,1}"

o if x ¢ {0,1}" is optimal for the relaxation, then rounding z as

gives an integer optimal solution z € {0,1}"
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Linear program formulation

relaxed problem as LP: introduce matrix variable Y € R**"

minimize  tr(AY) +blz

subject to Y > 217 — 127
Y >0
0<zx<1

e (componentwise) inequalities on Y are equivalent to

Yi; > max{0,z; —x;}, 4,5=1,...,n

e at optimum, Y;; = max{0,x; — x,} because A;; > 0; therefore

tr(AY) + bl x = Az, — x| + b e
J J

P>
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Dual problem

dual linear program (variables U € R"*", v,w € R")

maximize —1Tw

subjectto 0<U <A
U—-UM—v+w+b=0
v>0, w=>0

complementary slackness conditions: if x, Y, U, v, w are optimal

Y —21 +12)oU = 0
Yo(A-U) = 0

rxov = 0

(1—z)ow = 0

‘o’ denotes Hadamard (componentwise) matrix product
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Exactness of relaxation

let x be optimal for the relaxation; round = to € {0,1}" as

e by complementary slackness, if Z; =1 and 2; = 0, then z; > x;; hence

U@‘j ZAZ'J', Uj@':O, ’UZ':O, w4 =0

e implies 21 A(1 — ) + b’ % is equal to the lower bound from relaxation

2TAL—2)+ b2
= u-vtha-z2-z'v-1Q -2 w+b'2
= 2 (U-UM —v+w+b)—2"(U-UN: - 11w

= 1Ty
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Network flow interpretation of dual LP
change of variables (with b, ;, = max{by,0}, b_ ; = max{—by,0})

7Z=U-U" z=b_—w, z=>by—uv

reformulated dual problem
maximize 17z, —17b_
subjectto Z1 — 2z + 2, =0
_ASZSAa Zséb—7 Zt§b+
o Z;; = —Zj; is flow from node i to node j
e 2. is vector of flows from an added ‘source’ node to nodes 1,...,n

e 2 is vector of flows from nodes 1,...,n to an added ‘sink’ node

e maximize flow 1724 from source to sink, subject to capacity constraints

exactness of relaxation is known as the max-flow min-cut theorem
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Outline

e minimum cut and maximum flow problems
e parametric minimum cut problem

e application to proximal mapping



Parametric min-cut problem

min-cut problem: take b = al — ¢ with « a scalar parameter

minimize S Ajymax{0,y; — y;} + (a1 — c)'y
ij=1
subject to y € {0,1}"

equivalent LP and its dual

min. tr(AY) + (a1l —c)ly max. —1Tw

st. Y >qyll — 1yt st. 0<U<A
Y >0 (U—-UN1l—v+w+al=c
0<y<1 v>0, w=>40

primal variables y € R", Y € R"*": dual variables U € R"*", v,w € R"
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Optimal value function

"() = inf Ajj 0,y;: —y;} + (a1 —e)*
p*() o, ;1 jmax{0,y; —y;} + (el — )"y

immediate properties

e p*(«) is piecewise-linear and concave
e p*(a) = na — 1%¢ for al < ¢, with optimal solution y = 1

e p*(a) =0 for al > ¢, with optimal solution y = 0

less obvious: p*(«) hat at most n + 1 linear segments
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Monotonicity

parametric min-cut problem

minimize  fo(y) =y A1 —y) + (ol — )1y
subject to y € {0,1}"

monotonicity of solutions

if yg is optimal for « = 8 and y, is optimal for &« = v > 3 then
Yy S Yg

e 1. is zero in all positions where y3 is zero

e implies that optimal value function p*(a) has at most n + 1 segments
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proof of monotonicity property

e denote component-wise maximum and minimum of yg and y, as
Ymin = MIin{ys, Yy}, Ymax = max{yg, y,}
e (submodularity) it is readily verified that
Y ax AL = Ymax) + YEin AL = ymin) < yEAQ — yg) +yT AL - y,)

e from submodularity and optimality of yg, y-:

f8(ys) + f(yy) — (v — B)1 1y,

fs(yp) + f5(yy)

< f8(Ymax) + f(Ymin) — (7 — 6)1Ty7
— fﬁ(ymax) + fﬁ(ymin) - (’7 - B)]—T(yW’ o ymin)
< falys) + fa(yy) = (v = BT (Y5 — Ymin)

therefore v > 3 implies y, = Ymin
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Example

o O O O O

O 0 0 0 3

1 0 2 O
O 0 2 O

0

1

CcC —
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Outline

e minimum cut and maximum flow problems
e parametric minimum cut problem

e proximal mapping via parametric flow maximization



Proximal mapping

piecewise-linear convex function

h(ZC) = ZAZJ|£CZ — xj| = Z Az’j max {O,ZCZ — xj}

> i.j=1

proximal mapping: x = prox,(c) is the solution of

1
minimize h(x) + 5 |z — CH%

e equivalent to a quadratic program

o efficiently computed from solution of parametric minimum cut problem
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Quadratic program formulation

minimize  tr(AY) + 3|z — c||3
subject to Y > x1% — 127
Y >0

at optimum, = = prox,(c) and Y;; = max{0,y; — y;}

Rn><n

optimality conditions: there exists a U € that satisfies

0<U<A, v+ (U-UN1L=c
and the complementary slackness conditions
Y —21t +125)oU =0, Yo(A-U)=0

in particular, if z; > x;, then U;; = A;; and U;; =0
J J J J
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Relation with parametric min-cut problem

parametric min-cut problem

minimize  fo(y) = > A;jmax{0,y; —y;} + (a1l — )’y
ij=1

subject to y € {0,1}"

parametric min-cut solution from proximal mapping

if x = prox,(c) then a solution of the parametric min-cut problem is

yi =1 ifz; > a, v, =0 ifz; < o

proximal mapping from parametric min-cut solution

x; = sup{« | parametric min-cut problem has a solution with y; = 1}

(follows from monotonicity of min-cut solution)
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proof:

e let x = prox,(c) and U the optimal multiplier (page 16); define
w = (CC — Oé].)—lﬂ UV = (Oé]. — CE)_|_
U, v, w are dual feasible for parametric LP on page 10; therefore

fa(9) > —1"(z —al)y Vg e {0,1}"

e equality holds for y defined on p. 17:

foly) = y'(U-U"A-y)+(al—0)'y
= y'(U-UN14z—c)—y " (U-U")y—(z—al)y
= 1%z —al),

first line follows from U;; = A;;, U;j; =0 if y; =1, y; = 0 (see p. 16)

last line follows from definition of U (p. 16) and construction of y
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Example

o O O O O

prox,(c) = (1,0,1,3,2)

prox;(c)x is value of « at breakpoint where y; switches from 1 to 0
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Summary

proximal mapping of

h(z) = Aijle; — ;]

1>

can be computed by solving a parametric min-cut/max-flow problem

e very efficiently solved by algorithms from network optimization
o complexity O(mnlog(n?/m)) for general graphs (m is # edges)

e faster algorithms for graphs with special structure
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