Proximal mapping via network optimization

- minimum cut and maximum flow problems
- parametric minimum cut problem
- application to proximal mapping

Introduction

this lecture: network flow algorithm for evaluating prox-operator of

$$
\begin{aligned}
h(x) & =\sum_{i=1}^{n} \sum_{j=1}^{i-1} A_{i j}\left|x_{i}-x_{j}\right| \\
& =\sum_{i, j=1}^{n} A_{i j} \max \left\{0, x_{i}-x_{j}\right\}
\end{aligned}
$$

- coefficients $A_{i j}=A_{j i}$ are nonnegative
- associated undirected graph has n nodes, edges (i, j) when $A_{i j}>0$
- applications in image processing and machine learning

Outline

- minimum cut and maximum flow problems
- parametric minimum cut problem
- application to proximal mapping

Minimum cut problem

find subset $I \subseteq\{1,2, \ldots, n\}$ that minimizes

$$
C(I)=\sum_{i \in I, j \notin I} A_{i j}+\sum_{i \in I} b_{i}
$$

- $A \in \mathbf{S}^{n}$ with $A_{i j}=A_{j i} \geq 0$; no sign restrictions on $b \in \mathbf{R}^{n}$
- cost can be expressed as

$$
C(I)=x^{T} A(\mathbf{1}-x)+b^{T} x
$$

x is the incidence vector of $I: x_{k}=1$ if $k \in I, x_{k}=0$ if $k \notin I$

graph interpretation

- optimal two-way partition of n nodes of undirected graph
- first term in $C(I)$ is cost of the cut (edges removed by partitioning)

Discrete optimization formulations

binary quadratic maximization

$$
\begin{array}{ll}
\operatorname{minimize} & -x^{T} A x+(A \mathbf{1}+b)^{T} x \\
\text { subject to } & x \in\{0,1\}^{n}
\end{array}
$$

cost function is equal to $C(I)$ if x is incidence vector of I
binary piecewise-linear minimization

$$
\begin{array}{ll}
\text { minimize } & \sum_{i>j} A_{i j}\left|x_{i}-x_{j}\right|+b^{T} x \\
\text { subject to } & x \in\{0,1\}^{n}
\end{array}
$$

cost function is equal to $C(I)$ if x is incidence vector of I

Convex relaxation

relaxation: replace $x \in\{0,1\}^{n}$ with $0 \leq x \leq \mathbf{1}$ (componentwise)

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i>j} A_{i j}\left|x_{i}-x_{j}\right|+b^{T} x \\
\text { subject to } & 0 \leq x \leq \mathbf{1}
\end{array}
$$

we will use LP duality to show that the relaxation is exact

- relaxation has an optimal solution $x \in\{0,1\}^{n}$
- if $x \notin\{0,1\}^{n}$ is optimal for the relaxation, then rounding x as

$$
\hat{x}_{i}=1 \quad \text { if } x_{i}>1 / 2, \quad \hat{x}_{i}=0 \quad \text { if } x_{i} \leq 1 / 2
$$

gives an integer optimal solution $\hat{x} \in\{0,1\}^{n}$

Linear program formulation

relaxed problem as LP: introduce matrix variable $Y \in \mathbf{R}^{n \times n}$

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{tr}(A Y)+b^{T} x \\
\text { subject to } & Y \geq x \mathbf{1}^{T}-\mathbf{1} x^{T} \\
& Y \geq 0 \\
& 0 \leq x \leq \mathbf{1}
\end{array}
$$

- (componentwise) inequalities on Y are equivalent to

$$
Y_{i j} \geq \max \left\{0, x_{i}-x_{j}\right\}, \quad i, j=1, \ldots, n
$$

- at optimum, $Y_{i j}=\max \left\{0, x_{i}-x_{j}\right\}$ because $A_{i j} \geq 0$; therefore

$$
\operatorname{tr}(A Y)+b^{T} x=\sum_{i>j} A_{i j}\left|x_{i}-x_{j}\right|+b^{T} x
$$

Dual problem

dual linear program (variables $U \in \mathbf{R}^{n \times n}, v, w \in \mathbf{R}^{n}$)

$$
\begin{array}{cl}
\operatorname{maximize} & -\mathbf{1}^{T} w \\
\text { subject to } & 0 \leq U \leq A \\
& \left(U-U^{T}\right) \mathbf{1}-v+w+b=0 \\
& v \geq 0, \quad w \geq 0
\end{array}
$$

complementary slackness conditions: if x, Y, U, v, w are optimal

$$
\begin{aligned}
\left(Y-x \mathbf{1}^{T}+\mathbf{1} x^{T}\right) \circ U & =0 \\
Y \circ(A-U) & =0 \\
x \circ v & =0 \\
(\mathbf{1}-x) \circ w & =0
\end{aligned}
$$

' \circ ' denotes Hadamard (componentwise) matrix product

Exactness of relaxation

let x be optimal for the relaxation; round x to $\hat{x} \in\{0,1\}^{n}$ as

$$
\hat{x}_{i}=1 \quad \text { if } x_{i}>1 / 2, \quad \hat{x}_{i}=0 \quad \text { if } x_{i} \leq 1 / 2
$$

- by complementary slackness, if $\hat{x}_{i}=1$ and $\hat{x}_{j}=0$, then $x_{i}>x_{j}$; hence

$$
U_{i j}=A_{i j}, \quad U_{j i}=0, \quad v_{i}=0, \quad w_{j}=0
$$

- implies $\hat{x}^{T} A(\mathbf{1}-\hat{x})+b^{T} \hat{x}$ is equal to the lower bound from relaxation

$$
\begin{aligned}
& \hat{x}^{T} A(\mathbf{1}-\hat{x})+b^{T} \hat{x} \\
& \quad=\hat{x}^{T}\left(U-U^{T}\right)(\mathbf{1}-\hat{x})-\hat{x}^{T} v-(\mathbf{1}-\hat{x})^{T} w+b^{T} \hat{x} \\
& \quad=\hat{x}^{T}\left(\left(U-U^{T}\right) \mathbf{1}-v+w+b\right)-\hat{x}^{T}\left(U-U^{T}\right) \hat{x}-\mathbf{1}^{T} w \\
& \quad=-\mathbf{1}^{T} w
\end{aligned}
$$

Network flow interpretation of dual LP

change of variables (with $b_{+, k}=\max \left\{b_{k}, 0\right\}, b_{-, k}=\max \left\{-b_{k}, 0\right\}$)

$$
Z=U-U^{T}, \quad z_{\mathrm{s}}=b_{-}-w, \quad z_{\mathrm{t}}=b_{+}-v
$$

reformulated dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{1}^{T} z_{\mathrm{s}}-\mathbf{1}^{T} b_{-} \\
\text {subject to } & Z 1-z_{\mathrm{s}}+z_{\mathrm{t}}=0 \\
& -A \leq Z \leq A, \quad z_{\mathrm{s}} \leq b_{-}, \quad z_{\mathrm{t}} \leq b_{+}
\end{array}
$$

- $Z_{i j}=-Z_{j i}$ is flow from node i to node j
- z_{s} is vector of flows from an added 'source' node to nodes $1, \ldots, n$
- z_{t} is vector of flows from nodes $1, \ldots, n$ to an added 'sink' node
- maximize flow $\mathbf{1}^{T} z_{\mathrm{s}}$ from source to sink, subject to capacity constraints
exactness of relaxation is known as the max-flow min-cut theorem

Outline

- minimum cut and maximum flow problems
- parametric minimum cut problem
- application to proximal mapping

Parametric min-cut problem

min-cut problem: take $b=\alpha \mathbf{1}-c$ with α a scalar parameter

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i, j=1}^{n} A_{i j} \max \left\{0, y_{i}-y_{j}\right\}+(\alpha \mathbf{1}-c)^{T} y \\
\text { subject to } & y \in\{0,1\}^{n}
\end{array}
$$

equivalent LP and its dual

$$
\begin{array}{llll}
\text { min. } & \operatorname{tr}(A Y)+(\alpha \mathbf{1}-c)^{T} y & \max & -\mathbf{1}^{T} w \\
\text { s.t. } & Y \geq y \mathbf{1}^{T}-\mathbf{1} y^{T} & \text { s.t. } & 0 \leq U \leq A \\
& Y \geq 0 & & \left(U-U^{T}\right) \mathbf{1}-v+w+\alpha \mathbf{1}=c \\
& 0 \leq y \leq \mathbf{1} & & v \geq 0, \quad w \geq 0
\end{array}
$$

primal variables $y \in \mathbf{R}^{n}, Y \in \mathbf{R}^{n \times n}$; dual variables $U \in \mathbf{R}^{n \times n}$, $v, w \in \mathbf{R}^{n}$

Optimal value function

$$
p^{\star}(\alpha)=\inf _{y \in\{0,1\}^{n}}\left(\sum_{i, j=1}^{n} A_{i j} \max \left\{0, y_{i}-y_{j}\right\}+(\alpha \mathbf{1}-c)^{T} y\right)
$$

immediate properties

- $p^{\star}(\alpha)$ is piecewise-linear and concave
- $p^{\star}(\alpha)=n \alpha-\mathbf{1}^{T} c$ for $\alpha \mathbf{1} \leq c$, with optimal solution $y=\mathbf{1}$
- $p^{\star}(\alpha)=0$ for $\alpha \mathbf{1} \geq c$, with optimal solution $y=0$
less obvious: $p^{\star}(\alpha)$ hat at most $n+1$ linear segments

Monotonicity

parametric min-cut problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{\alpha}(y)=y^{T} A(\mathbf{1}-y)+(\alpha \mathbf{1}-c)^{T} y \\
\text { subject to } & y \in\{0,1\}^{n}
\end{array}
$$

monotonicity of solutions

if y_{β} is optimal for $\alpha=\beta$ and y_{γ} is optimal for $\alpha=\gamma>\beta$ then

$$
y_{\gamma} \leq y_{\beta}
$$

- y_{γ} is zero in all positions where y_{β} is zero
- implies that optimal value function $p^{\star}(\alpha)$ has at most $n+1$ segments
proof of monotonicity property
- denote component-wise maximum and minimum of y_{β} and y_{γ} as

$$
y_{\min }=\min \left\{y_{\beta}, y_{\gamma}\right\}, \quad y_{\max }=\max \left\{y_{\beta}, y_{\gamma}\right\}
$$

- (submodularity) it is readily verified that

$$
y_{\max }^{T} A\left(\mathbf{1}-y_{\max }\right)+y_{\min }^{T} A\left(\mathbf{1}-y_{\min }\right) \leq y_{\beta}^{T} A\left(\mathbf{1}-y_{\beta}\right)+y_{\gamma}^{T} A\left(\mathbf{1}-y_{\gamma}\right)
$$

- from submodularity and optimality of y_{β}, y_{γ} :

$$
\begin{aligned}
f_{\beta}\left(y_{\beta}\right)+f_{\beta}\left(y_{\gamma}\right) & =f_{\beta}\left(y_{\beta}\right)+f_{\gamma}\left(y_{\gamma}\right)-(\gamma-\beta) \mathbf{1}^{T} y_{\gamma} \\
& \leq f_{\beta}\left(y_{\max }\right)+f_{\gamma}\left(y_{\min }\right)-(\gamma-\beta) \mathbf{1}^{T} y_{\gamma} \\
& =f_{\beta}\left(y_{\max }\right)+f_{\beta}\left(y_{\min }\right)-(\gamma-\beta) \mathbf{1}^{T}\left(y_{\gamma}-y_{\min }\right) \\
& \leq f_{\beta}\left(y_{\beta}\right)+f_{\beta}\left(y_{\gamma}\right)-(\gamma-\beta) \mathbf{1}^{T}\left(y_{\gamma}-y_{\min }\right)
\end{aligned}
$$

therefore $\gamma>\beta$ implies $y_{\gamma}=y_{\text {min }}$

Example

$$
\begin{aligned}
& A=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 0 & 2 & 0 & 1 \\
3 & 0 & 0 & 1 & 0
\end{array}\right] \\
& c=\left[\begin{array}{r}
-2 \\
-1 \\
0 \\
6 \\
4
\end{array}\right]
\end{aligned}
$$

Outline

- minimum cut and maximum flow problems
- parametric minimum cut problem
- proximal mapping via parametric flow maximization

Proximal mapping

piecewise-linear convex function

$$
h(x)=\sum_{i>j} A_{i j}\left|x_{i}-x_{j}\right|=\sum_{i, j=1}^{n} A_{i j} \max \left\{0, x_{i}-x_{j}\right\}
$$

proximal mapping: $x=\operatorname{prox}_{h}(c)$ is the solution of

$$
\operatorname{minimize} \quad h(x)+\frac{1}{2}\|x-c\|_{2}^{2}
$$

- equivalent to a quadratic program
- efficiently computed from solution of parametric minimum cut problem

Quadratic program formulation

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{tr}(A Y)+\frac{1}{2}\|x-c\|_{2}^{2} \\
\text { subject to } & Y \geq x \mathbf{1}^{T}-\mathbf{1} x^{T} \\
& Y \geq 0
\end{array}
$$

at optimum, $x=\operatorname{prox}_{h}(c)$ and $Y_{i j}=\max \left\{0, y_{i}-y_{j}\right\}$
optimality conditions: there exists a $U \in \mathbf{R}^{n \times n}$ that satisfies

$$
0 \leq U \leq A, \quad x+\left(U-U^{T}\right) \mathbf{1}=c
$$

and the complementary slackness conditions

$$
\left(Y-x \mathbf{1}^{T}+\mathbf{1} x^{T}\right) \circ U=0, \quad Y \circ(A-U)=0
$$

in particular, if $x_{i}>x_{j}$, then $U_{i j}=A_{i j}$ and $U_{j i}=0$

Relation with parametric min-cut problem

parametric min-cut problem

$$
\begin{array}{ll}
\text { minimize } & f_{\alpha}(y)=\sum_{i, j=1}^{n} A_{i j} \max \left\{0, y_{i}-y_{j}\right\}+(\alpha \mathbf{1}-c)^{T} y \\
\text { subject to } & y \in\{0,1\}^{n}
\end{array}
$$

parametric min-cut solution from proximal mapping
if $x=\operatorname{prox}_{h}(c)$ then a solution of the parametric min-cut problem is

$$
y_{i}=1 \quad \text { if } x_{i} \geq \alpha, \quad y_{i}=0 \quad \text { if } x_{i}<\alpha
$$

proximal mapping from parametric min-cut solution

$$
x_{i}=\sup \left\{\alpha \mid \text { parametric min-cut problem has a solution with } y_{i}=1\right\}
$$

(follows from monotonicity of min-cut solution)
proof:

- let $x=\operatorname{prox}_{h}(c)$ and U the optimal multiplier (page 16); define

$$
w=(x-\alpha \mathbf{1})_{+}, \quad v=(\alpha \mathbf{1}-x)_{+}
$$

U, v, w are dual feasible for parametric LP on page 10; therefore

$$
f_{\alpha}(\hat{y}) \geq-\mathbf{1}^{T}(x-\alpha \mathbf{1})_{+} \quad \forall \hat{y} \in\{0,1\}^{n}
$$

- equality holds for y defined on p. 17:

$$
\begin{aligned}
f_{\alpha}(y) & =y^{T}\left(U-U^{T}\right)(\mathbf{1}-y)+(\alpha \mathbf{1}-c)^{T} y \\
& =y^{T}\left(\left(U-U^{T}\right) \mathbf{1}+x-c\right)-y^{T}\left(U-U^{T}\right) y-(x-\alpha \mathbf{1})^{T} y \\
& =-\mathbf{1}^{T}(x-\alpha \mathbf{1})_{+}
\end{aligned}
$$

first line follows from $U_{i j}=A_{i j}, U_{j i}=0$ if $y_{i}=1, y_{j}=0$ (see p. 16) last line follows from definition of U (p. 16) and construction of y

Example

$\operatorname{prox}_{h}(c)_{k}$ is value of α at breakpoint where y_{k} switches from 1 to 0

Summary

proximal mapping of

$$
h(x)=\sum_{i>j} A_{i j}\left|x_{i}-x_{j}\right|
$$

can be computed by solving a parametric min-cut/max-flow problem

- very efficiently solved by algorithms from network optimization
- complexity $O\left(m n \log \left(n^{2} / m\right)\right)$ for general graphs (m is $\#$ edges)
- faster algorithms for graphs with special structure

References

- D. Goldfarb and W. Yin, Parametric maximum flow algorithms for fast total variation minimization, SIAM Journal on Scientic Computing (2009)
- A. Chambolle and J. Darbon, On total variation minimization and surface evolution using parametric maximum flows, International Journal of Computer Vision (2009)
- J. Mairal, R. Jenatton, G. Obozinski, F. Bach, Network flow algorithms for structured sparsity, arxiv.org/abs/1008.5209 (2010)

