
L. Vandenberghe EE236C (Spring 2013-14)

Proximal mapping via network optimization

• minimum cut and maximum flow problems

• parametric minimum cut problem

• application to proximal mapping

1

Introduction

this lecture: network flow algorithm for evaluating prox-operator of

h(x) =

n
∑

i=1

i−1
∑

j=1

Aij|xi − xj|

=

n
∑

i,j=1

Aij max{0, xi − xj}

• coefficients Aij = Aji are nonnegative

• associated undirected graph has n nodes, edges (i, j) when Aij > 0

• applications in image processing and machine learning

Proximal mapping via network optimization 2

Outline

• minimum cut and maximum flow problems

• parametric minimum cut problem

• application to proximal mapping

Minimum cut problem

find subset I ⊆ {1, 2, . . . , n} that minimizes

C(I) =
∑

i∈I,j 6∈I

Aij +
∑

i∈I

bi

• A ∈ Sn with Aij = Aji ≥ 0; no sign restrictions on b ∈ Rn

• cost can be expressed as

C(I) = xTA(1− x) + bTx

x is the incidence vector of I: xk = 1 if k ∈ I, xk = 0 if k 6∈ I

graph interpretation

• optimal two-way partition of n nodes of undirected graph

• first term in C(I) is cost of the cut (edges removed by partitioning)

Proximal mapping via network optimization 3

Discrete optimization formulations

binary quadratic maximization

minimize −xTAx+ (A1+ b)Tx
subject to x ∈ {0, 1}n

cost function is equal to C(I) if x is incidence vector of I

binary piecewise-linear minimization

minimize
∑

i>j

Aij|xi − xj|+ bTx

subject to x ∈ {0, 1}n

cost function is equal to C(I) if x is incidence vector of I

Proximal mapping via network optimization 4

Convex relaxation

relaxation: replace x ∈ {0, 1}n with 0 ≤ x ≤ 1 (componentwise)

minimize
∑

i>j

Aij|xi − xj|+ bTx

subject to 0 ≤ x ≤ 1

we will use LP duality to show that the relaxation is exact

• relaxation has an optimal solution x ∈ {0, 1}n

• if x 6∈ {0, 1}n is optimal for the relaxation, then rounding x as

x̂i = 1 if xi > 1/2, x̂i = 0 if xi ≤ 1/2

gives an integer optimal solution x̂ ∈ {0, 1}n

Proximal mapping via network optimization 5

Linear program formulation

relaxed problem as LP: introduce matrix variable Y ∈ Rn×n

minimize tr(AY) + bTx
subject to Y ≥ x1T − 1xT

Y ≥ 0
0 ≤ x ≤ 1

• (componentwise) inequalities on Y are equivalent to

Yij ≥ max{0, xi − xj}, i, j = 1, . . . , n

• at optimum, Yij = max{0, xi − xj} because Aij ≥ 0; therefore

tr(AY) + bTx =
∑

i>j

Aij|xi − xj|+ bTx

Proximal mapping via network optimization 6

Dual problem

dual linear program (variables U ∈ Rn×n, v, w ∈ Rn)

maximize −1
Tw

subject to 0 ≤ U ≤ A
(U − UT)1− v + w + b = 0
v ≥ 0, w ≥ 0

complementary slackness conditions: if x, Y , U , v, w are optimal

(Y − x1T + 1xT) ◦ U = 0

Y ◦ (A− U) = 0

x ◦ v = 0

(1− x) ◦ w = 0

‘◦’ denotes Hadamard (componentwise) matrix product

Proximal mapping via network optimization 7

Exactness of relaxation

let x be optimal for the relaxation; round x to x̂ ∈ {0, 1}n as

x̂i = 1 if xi > 1/2, x̂i = 0 if xi ≤ 1/2

• by complementary slackness, if x̂i = 1 and x̂j = 0, then xi > xj; hence

Uij = Aij, Uji = 0, vi = 0, wj = 0

• implies x̂TA(1− x̂) + bT x̂ is equal to the lower bound from relaxation

x̂TA(1− x̂) + bT x̂

= x̂T (U − UT)(1− x̂)− x̂Tv − (1− x̂)Tw + bT x̂

= x̂T ((U − UT)1− v + w + b)− x̂T (U − UT)x̂− 1
Tw

= −1
Tw

Proximal mapping via network optimization 8

Network flow interpretation of dual LP

change of variables (with b+,k = max{bk, 0}, b−,k = max{−bk, 0})

Z = U − UT , zs = b− − w, zt = b+ − v

reformulated dual problem

maximize 1
Tzs − 1

T b−
subject to Z1− zs + zt = 0

−A ≤ Z ≤ A, zs ≤ b−, zt ≤ b+

• Zij = −Zji is flow from node i to node j

• zs is vector of flows from an added ‘source’ node to nodes 1, . . . , n

• zt is vector of flows from nodes 1, . . . , n to an added ‘sink’ node

• maximize flow 1
Tzs from source to sink, subject to capacity constraints

exactness of relaxation is known as the max-flow min-cut theorem

Proximal mapping via network optimization 9

Outline

• minimum cut and maximum flow problems

• parametric minimum cut problem

• application to proximal mapping

Parametric min-cut problem

min-cut problem: take b = α1− c with α a scalar parameter

minimize
n
∑

i,j=1

Aij max{0, yi − yj}+ (α1− c)Ty

subject to y ∈ {0, 1}n

equivalent LP and its dual

min. tr(AY) + (α1− c)Ty
s.t. Y ≥ y1T − 1yT

Y ≥ 0
0 ≤ y ≤ 1

max. −1
Tw

s.t. 0 ≤ U ≤ A
(U − UT)1− v + w + α1 = c
v ≥ 0, w ≥ 0

primal variables y ∈ Rn, Y ∈ Rn×n; dual variables U ∈ Rn×n, v, w ∈ Rn

Proximal mapping via network optimization 10

Optimal value function

p⋆(α) = inf
y∈{0,1}n





n
∑

i,j=1

Aij max{0, yi − yj}+ (α1− c)Ty





immediate properties

• p⋆(α) is piecewise-linear and concave

• p⋆(α) = nα− 1
T c for α1 ≤ c, with optimal solution y = 1

• p⋆(α) = 0 for α1 ≥ c, with optimal solution y = 0

less obvious: p⋆(α) hat at most n+ 1 linear segments

Proximal mapping via network optimization 11

Monotonicity

parametric min-cut problem

minimize fα(y) = yTA(1− y) + (α1− c)Ty

subject to y ∈ {0, 1}n

monotonicity of solutions

if yβ is optimal for α = β and yγ is optimal for α = γ > β then

yγ ≤ yβ

• yγ is zero in all positions where yβ is zero

• implies that optimal value function p⋆(α) has at most n+ 1 segments

Proximal mapping via network optimization 12

proof of monotonicity property

• denote component-wise maximum and minimum of yβ and yγ as

ymin = min{yβ, yγ}, ymax = max{yβ, yγ}

• (submodularity) it is readily verified that

yTmaxA(1− ymax) + yTminA(1− ymin) ≤ yTβA(1− yβ) + yTγ A(1− yγ)

• from submodularity and optimality of yβ, yγ:

fβ(yβ) + fβ(yγ) = fβ(yβ) + fγ(yγ)− (γ − β)1Tyγ

≤ fβ(ymax) + fγ(ymin)− (γ − β)1Tyγ

= fβ(ymax) + fβ(ymin)− (γ − β)1T (yγ − ymin)

≤ fβ(yβ) + fβ(yγ)− (γ − β)1T (yγ − ymin)

therefore γ > β implies yγ = ymin

Proximal mapping via network optimization 13

Example

A =















0 0 0 0 3

0 0 1 0 0

0 1 0 2 0

0 0 2 0 1

3 0 0 1 0















c =















−2

−1

0

6

4















−1 0 1 2 3 4 5

−14

−12

−10

−8

−6

−4

−2

0

2

α

p
⋆
(α

)













1
1
1
1
1

























1
0
1
1
1

























0
0
0
1
1

























0
0
0
1
0

























0
0
0
0
0













Proximal mapping via network optimization 14

Outline

• minimum cut and maximum flow problems

• parametric minimum cut problem

• proximal mapping via parametric flow maximization

Proximal mapping

piecewise-linear convex function

h(x) =
∑

i>j

Aij|xi − xj| =

n
∑

i,j=1

Aij max {0, xi − xj}

proximal mapping: x = proxh(c) is the solution of

minimize h(x) +
1

2
‖x− c‖

2
2

• equivalent to a quadratic program

• efficiently computed from solution of parametric minimum cut problem

Proximal mapping via network optimization 15

Quadratic program formulation

minimize tr(AY) + 1
2‖x− c‖22

subject to Y ≥ x1T − 1xT

Y ≥ 0

at optimum, x = proxh(c) and Yij = max{0, yi − yj}

optimality conditions: there exists a U ∈ Rn×n that satisfies

0 ≤ U ≤ A, x+ (U − UT)1 = c

and the complementary slackness conditions

(Y − x1T + 1xT) ◦ U = 0, Y ◦ (A− U) = 0

in particular, if xi > xj, then Uij = Aij and Uji = 0

Proximal mapping via network optimization 16

Relation with parametric min-cut problem

parametric min-cut problem

minimize fα(y) =
n
∑

i,j=1

Aij max{0, yi − yj}+ (α1− c)Ty

subject to y ∈ {0, 1}n

parametric min-cut solution from proximal mapping

if x = proxh(c) then a solution of the parametric min-cut problem is

yi = 1 if xi ≥ α, yi = 0 if xi < α

proximal mapping from parametric min-cut solution

xi = sup{α | parametric min-cut problem has a solution with yi = 1}

(follows from monotonicity of min-cut solution)

Proximal mapping via network optimization 17

proof:

• let x = proxh(c) and U the optimal multiplier (page 16); define

w = (x− α1)+, v = (α1− x)+

U , v, w are dual feasible for parametric LP on page 10; therefore

fα(ŷ) ≥ −1
T (x− α1)+ ∀ŷ ∈ {0, 1}n

• equality holds for y defined on p. 17:

fα(y) = yT (U − UT)(1− y) + (α1− c)Ty

= yT ((U − UT)1+ x− c)− yT (U − UT)y − (x− α1)Ty

= −1
T (x− α1)+

first line follows from Uij = Aij, Uji = 0 if yi = 1, yj = 0 (see p. 16)

last line follows from definition of U (p. 16) and construction of y

Proximal mapping via network optimization 18

Example

−1 0 1 2 3 4 5

−14

−12

−10

−8

−6

−4

−2

0

2

α

p
⋆
(α

)













1
1
1
1
1

























1
0
1
1
1

























0
0
0
1
1

























0
0
0
1
0

























0
0
0
0
0













proxh(c) = (1, 0, 1, 3, 2)

proxh(c)k is value of α at breakpoint where yk switches from 1 to 0

Proximal mapping via network optimization 19

Summary

proximal mapping of

h(x) =
∑

i>j

Aij|xi − xj|

can be computed by solving a parametric min-cut/max-flow problem

• very efficiently solved by algorithms from network optimization

• complexity O(mn log(n2/m)) for general graphs (m is # edges)

• faster algorithms for graphs with special structure

Proximal mapping via network optimization 20

References

• D. Goldfarb and W. Yin, Parametric maximum flow algorithms for fast

total variation minimization, SIAM Journal on Scientic Computing
(2009)

• A. Chambolle and J. Darbon, On total variation minimization and

surface evolution using parametric maximum flows, International
Journal of Computer Vision (2009)

• J. Mairal, R. Jenatton, G. Obozinski, F. Bach, Network flow algorithms

for structured sparsity, arxiv.org/abs/1008.5209 (2010)

Proximal mapping via network optimization 21

