L. Vandenberghe ECE236C (Spring 2022)

15. Quasi-Newton methods

e variable metric methods
e quasi-Newton methods
e BFGS update

e limited-memory quasi-Newton methods
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Newton method for unconstrained minimization

minimize  f(x)

f convex, twice continously differentiable

Newton method
Xpa1 = Xk — 1 V2 (x) TV F ()

e advantages: fast convergence, robustness, affine invariance

e disadvantages: requires second derivatives and solution of linear equation

can be too expensive for large scale applications
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Variable metric methods

Xl = X — tkH;ZIVf(Xk)

the positive definite matrix Hy, is an approximatian of the Hessian at xj, chosen to:

e avoid calculation of second derivatives

e simplify computation of search direction

“Variable metric” interpretation (236B, lecture 10, page 11)
Ax = —H'Vf(x)

is the steepest descent direction at x for the quadratic norm

1/2
Izl = (<" Hz)
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Quasi-Newton methods

given: starting point xo € dom f, Hy > 0

fork=0,1,...

1. compute quasi-Newton direction Ax; = —H,;Wf(xk)

2. determine step size 1, (e.g., by backtracking line search)
3. compute x4 = X+t Axg

4. compute Hyy

e different update rules exist for Hy .1 in step 4

e can also propagate H;l or a factorization of H}, to simplify calculation of Axy
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Broyden—Fletcher-Goldfarb—Shanno (BFGS) update

BFGS update

T T
vy Hyss” Hy
Hk_|_1 =Hk+ —

ylI's  sTHys

where

S =Xpsl — Xk, Y= V[f(xre1) = Vf(xi)

Inverse update
T T

T
_ Sy 1 ys sS
HL (=2 gt 25 55
ktl ( yTS) "( yTS) yT's

e note that y!s > O for strictly convex f; see page 1.8

e cost of update or inverse update is O(nz) operations
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Positive definiteness

o if yI's > 0, BFGS update preserves positive definitess of Hy

e this ensures that Ax = —H;Wf(xk) is a descent direction

Proof: from inverse update formula,

T T T T.N\2
T r7—1 5TV 1 st (s'v)
Tagho= (o= ) gt (o=

o if H; > 0, both terms are nonnegative for all v

e second term is zero only if s’ v = 0; then first term is zero only if v = 0
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Secant condition

the BFGS update satisfies the secant condition
Hii1s =Yy
where s = xp1 —xg and y =V f(xg1) = Vfi(xk)

Interpretation: we define a quadratic approximation of f around xj41

F(x) = f(xpe1) + V(o) (x = xp01) + %(x — xp41) Hpp1 (x = xg41)

e by construction V f(x41) = V£ (Xks1)

e secant condition implies that also V £ (x) = V£ (xz):

VI (xr) = Vf(xre1) + Hir1 (Xg — Xge1)
= Vf(xi)
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Secant method

for f : R — R, BFGS with unit step size gives the secant method

Quasi-Newton methods

_ J' (xx) S xk) = (x-1)
Xt =Xk = Hy =
k Xk — Xk—1
X1 Xk xky//
J'(x)
J'(x)
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Convergence

Global result

if f is strongly convex, BFGS with backtracking line search (EE236B, lecture 10-6)
converges from any xq, Hy > 0

Local convergence

if fis strongly convex and V2 f(x) is Lipschitz continuous, local convergence is
superlinear: for sufficiently large k,

Xk — ¥ < crllxe — x*l2

where ¢ — 0

(cf., quadratic local convergence of Newton method)
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Example

m
minimize ¢’x - > log(b; — a; x)
i=1

n =100, m =500

Newton BFGS
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e cost per Newton iteration: O (n°) plus computing V2 f (x)

e cost per BFGS iteration: O (n?)
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Square root BFGS update

to improve numerical stability, propagate Hj, in factored form Hj, = LkLg

o if Hp = LiL; then Hyyq = Ly Ly, with

< o <T
ay —35)S
Lk+1=Lk(1+( Y 5 )
S S
where 12
~T ~
S S
~:L_l, E:LTS, a=|—
P ‘ (yTS)

e if Ly is triangular, cost of reducing L. to triangular form is O(nz)
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Optimality of BFGS update

X = Hy,1 solves the convex optimization problem

minimize tr (H];IX) — log det (H;lX) —n
subjectto Xs=y

e cost function is nonnegative, equal to zero only if X = Hj,
e also known as relative entropy between densities N(0, X), N(0, Hy)

e BFGS update is a least-change secant update

optimality result follows from KKT conditions: X = Hj . satisfies

1
x 1= H,;l — E(SVT + vsT), Xs =y, X >0
with _—
1 y'H_ 'y
V:T(Zlely_ (1+ Tk )S)
sty yis
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Davidon-Fletcher—Powell (DFP) update

switch H; and X in objective on previous page

minimize  tr (H X~ ') —logdet (Hy X~ ') —n
subjectto Xs=1y

e minimize relative entropy between N (0, Hj) and N (0, X)
e problem is convex in x-1 (with constraint written as s = X‘ly)

e solution is ‘dual’ of BFGS formula

yst syl yy!

Hooi= 12 H, (1= 2]+ 2
o ( STy) k( STy) sty

(known as DFP update)

predates BFGS update, but is less often used
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Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method is need to store Hy, H!

k ,OI’Lk

Limited-memory BFGS (L-BFGS): do not store H,;l explicitly

e instead we store up to m (e.g., m = 30) values of

Sj=Xj+1—Xj,  ¥;=V[f(xj+1) = Vf(x))

e we evaluate Ax; = H 'V f(x;) recursively, using

L iy T
H7l = (I—SJyj)HT1 (I—yjsj)+sjsj
T

+1 7 J T T
/ VS Yisi) s
forj=k—-1,...,k—m, assuming, for example, Hy_,, = 1

e an alternative is to restart after m iterations

e cost per iteration is O (nm), storage is O (nm)
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Interpretation of CG as restarted BFGS method
first two iterations of BFGS (page 15.5) if Hy = I:

x1=x0—toVf(x0),  x2=x; —t1H{'Vf(x))

where H| is computed from s = x; —xgand y = Vf(x1) — V f(xp) via

T yST + SyT

Iy

T
yy. ss
)

H'=T1+(1+
! sTy yT's y

e if #y is determined by exact line search, then V£ (x;)!s =0

e quasi-Newton step in second iteration simplifies to

T
CHIWf () = =V () + 2D

this is the Hestenes—Stiefel conjugate gradient update

nonlinear CG can be interpreted as L-BFGS with m = 1
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