17. Quasi-Newton methods

- variable metric methods
- quasi-Newton methods
- BFGS update
- limited-memory quasi-Newton methods
Newton method for unconstrained minimization

\[
\text{minimize} \quad f(x)
\]

\(f \) convex, twice continuously differentiable

Newton method

\[
x_{k+1} = x_k - t_k \nabla^2 f(x_k)^{-1} \nabla f(x_k)
\]

- advantages: fast convergence, robustness, affine invariance
- disadvantages: requires second derivatives and solution of linear equation

can be too expensive for large scale applications
Variable metric methods

\[x_{k+1} = x_k - t_k H_k^{-1} \nabla f(x_k) \]

the positive definite matrix \(H_k \) is an approximation of the Hessian at \(x_k \), chosen to:

• avoid calculation of second derivatives
• simplify computation of search direction

‘Variable metric’ interpretation (EE236B, lecture 10, page 11)

\[\Delta x = -H^{-1} \nabla f(x) \]

is the steepest descent direction at \(x \) for the quadratic norm

\[\|z\|_H = \left(z^T H z \right)^{1/2} \]
Quasi-Newton methods

given: starting point \(x_0 \in \text{dom} \ f, \ H_0 \succ 0 \)

for \(k = 0, 1, \ldots \)

1. compute quasi-Newton direction \(\Delta x_k = -H_k^{-1}\nabla f(x_k) \)
2. determine step size \(t_k \) (e.g., by backtracking line search)
3. compute \(x_{k+1} = x_k + t_k\Delta x_k \)
4. compute \(H_{k+1} \)

- different update rules exist for \(H_{k+1} \) in step 4
- can also propagate \(H_k^{-1} \) or a factorization of \(H_k \) to simplify calculation of \(\Delta x_k \)
Broyden–Fletcher–Goldfarb–Shanno (BFGS) update

BFGS update

\[H_{k+1} = H_k + \frac{yy^T}{y^Ts} - \frac{H_k s s^T H_k}{s^T H_k s} \]

where

\[s = x_{k+1} - x_k, \quad y = \nabla f(x_{k+1}) - \nabla f(x_k) \]

Inverse update

\[H_{k+1}^{-1} = \left(I - \frac{sy^T}{y^Ts} \right) H_k^{-1} \left(I - \frac{ys^T}{y^Ts} \right) + \frac{ss^T}{y^Ts} \]

- note that \(y^Ts > 0 \) for strictly convex \(f \); see page 1.8
- cost of update or inverse update is \(O(n^2) \) operations
Positive definiteness

- if \(y^T s > 0 \), BFGS update preserves positive definiteness of \(H_k \)
- this ensures that \(\Delta x = -H_k^{-1} \nabla f(x_k) \) is a descent direction

Proof: from inverse update formula,

\[
v^T H_{k+1}^{-1} v = \left(v - \frac{s^T v}{s^T y} y \right)^T H_k^{-1} \left(v - \frac{s^T v}{s^T y} y \right) + \frac{(s^T v)^2}{y^T s}
\]

- if \(H_k > 0 \), both terms are nonnegative for all \(v \)
- second term is zero only if \(s^T v = 0 \); then first term is zero only if \(v = 0 \)
Secant condition

the BFGS update satisfies the secant condition

\[H_{k+1}s = y \]

where \(s = x_{k+1} - x_k \) and \(y = \nabla f(x_{k+1}) - \nabla f(x_k) \)

Interpretation: we define a quadratic approximation of \(f \) around \(x_{k+1} \)

\[\tilde{f}(x) = f(x_{k+1}) + \nabla f(x_{k+1})^T (x - x_{k+1}) + \frac{1}{2} (x - x_{k+1})^T H_{k+1} (x - x_{k+1}) \]

- by construction \(\nabla \tilde{f}(x_{k+1}) = \nabla f(x_{k+1}) \)
- secant condition implies that also \(\nabla \tilde{f}(x_k) = \nabla f(x_k) \):

\[
\nabla \tilde{f}(x_k) = \nabla f(x_{k+1}) + H_{k+1} (x_k - x_{k+1}) \\
= \nabla f(x_k)
\]
for $f : \mathbb{R} \rightarrow \mathbb{R}$, BFGS with unit step size gives the secant method

$$x_{k+1} = x_k - \frac{f'(x_k)}{H_k}, \quad H_k = \frac{f'(x_k) - f'(x_{k-1})}{x_k - x_{k-1}}$$
Convergence

Global result

if \(f \) is strongly convex, BFGS with backtracking line search (EE236B, lecture 10-6) converges from any \(x_0, H_0 > 0 \)

Local convergence

if \(f \) is strongly convex and \(\nabla^2 f(x) \) is Lipschitz continuous, local convergence is superlinear: for sufficiently large \(k \),

\[
\| x_{k+1} - x^* \|_2 \leq c_k \| x_k - x^* \|_2
\]

where \(c_k \to 0 \)

(cf., quadratic local convergence of Newton method)
Example

minimize \(c^T x - \sum_{i=1}^{m} \log(b_i - a_i^T x) \)

\(n = 100, m = 500 \)

- cost per Newton iteration: \(O(n^3) \) plus computing \(\nabla^2 f(x) \)
- cost per BFGS iteration: \(O(n^2) \)
Square root BFGS update

to improve numerical stability, propagate H_k in factored form $H_k = L_k L_k^T$

- if $H_k = L_k L_k^T$ then $H_{k+1} = L_{k+1} L_{k+1}^T$ with

 $$L_{k+1} = L_k \left(I + \frac{\alpha \tilde{y} - \tilde{s}}{\tilde{s}^T \tilde{s}} \right)$$

 where

 $$\tilde{y} = L_k^{-1} y, \quad \tilde{s} = L_k^T s, \quad \alpha = \left(\frac{\tilde{s}^T \tilde{s}}{y^T s} \right)^{1/2}$$

- if L_k is triangular, cost of reducing L_{k+1} to triangular form is $O(n^2)$

Quasi-Newton methods
Optimality of BFGS update

\(X = H_{k+1} \) solves the convex optimization problem

\[
\begin{align*}
\text{minimize} & \quad \operatorname{tr} (H^{-1}_k X) - \log \det (H^{-1}_k X) - n \\
\text{subject to} & \quad XS = y
\end{align*}
\]

- cost function is nonnegative, equal to zero only if \(X = H_k \)
- also known as relative entropy between densities \(N(0, X), N(0, H_k) \)
- BFGS update is a *least-change secant update*

Optimality result follows from KKT conditions: \(X = H_{k+1} \) satisfies

\[
X^{-1} = H_{k}^{-1} - \frac{1}{2}(sv^T + v s^T), \quad XS = y, \quad X > 0
\]

with

\[
v = \frac{1}{s^T y} \left(2H_k^{-1} y - \left(1 + \frac{y^T H_k^{-1} y}{y^T s} \right) s \right)
\]

Quasi-Newton methods
Davidon–Fletcher–Powell (DFP) update

switch H_k and X in objective on previous page

minimize \[\text{tr} \left(H_k X^{-1} \right) - \log \det \left(H_k X^{-1} \right) - n \]
subject to \[Xs = y \]

- minimize relative entropy between $N(0, H_k)$ and $N(0, X)$
- problem is convex in X^{-1} (with constraint written as $s = X^{-1}y$)
- solution is ‘dual’ of BFGS formula

\[
H_{k+1} = \left(I - \frac{ys^T}{s^Ty} \right) H_k \left(I - \frac{sy^T}{s^Ty} \right) + \frac{yy^T}{s^Ty}
\]

(known as DFP update)

predates BFGS update, but is less often used
Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method is need to store H_k, H_k^{-1}, or L_k

Limited-memory BFGS (L-BFGS): do not store H_k^{-1} explicitly

- instead we store up to m (e.g., $m = 30$) values of
 \[
 s_j = x_{j+1} - x_j, \quad y_j = \nabla f(x_{j+1}) - \nabla f(x_j)
 \]

- we evaluate $\Delta x_k = H_k^{-1} \nabla f(x_k)$ recursively, using
 \[
 H_{j+1}^{-1} = \left(I - \frac{s_j y_j^T}{y_j^T s_j} \right) H_j^{-1} \left(I - \frac{y_j s_j^T}{y_j^T s_j} \right) + \frac{s_j s_j^T}{y_j^T s_j}
 \]
 for $j = k - 1, \ldots, k - m$, assuming, for example, $H_{k-m} = I$

- an alternative is to restart after m iterations

- cost per iteration is $O(nm)$, storage is $O(nm)$
Interpretation of CG as restarted BFGS method

first two iterations of BFGS (page 17.5) if $H_0 = I$:

$$x_1 = x_0 - t_0 \nabla f(x_0), \quad x_2 = x_1 - t_1 H_1^{-1} \nabla f(x_1)$$

where H_1 is computed from $s = x_1 - x_0$ and $y = \nabla f(x_1) - \nabla f(x_0)$ via

$$H_1^{-1} = I + \left(1 + \frac{y^T y}{s^T y}\right) \frac{ss^T}{y^T s} - \frac{ys^T + sy^T}{y^T s}$$

- if t_0 is determined by exact line search, then $\nabla f(x_1)^T s = 0$
- quasi-Newton step in second iteration simplifies to

$$-H_1^{-1} \nabla f(x_1) = -\nabla f(x_1) + \frac{y^T \nabla f(x_1)}{y^T s} s$$

this is the Hestenes–Stiefel conjugate gradient update

nonlinear CG can be interpreted as L-BFGS with $m = 1$
References