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3. Subgradient method

e subgradient method

e convergence analysis

e optimal step size when f* is known
e alternating projections

e projected subgradient method

e optimality of subgradient method
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Subgradient method

to minimize a nondifferentiable convex function f: choose xg and repeat
Xisl =X — 1€k, k=0,1,...

gr is any subgradient of f at xy

Step size rules
e fixed step: 7, constant

o fixed length: ti||gxll2 = ||xx+1 — xk||> is constant

e diminishing: 1z — 0and X t; = o0
k=0
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Assumptions

e problem has finite optimal value f*, optimal solution x*
e f is convex with dom f = R"

e f is Lipschitz continuous with constant G > 0:

fx)=fWI <Gllx=ylb  forallx,y

this is equivalent to ||g||» < G for all x and g € d f(x) (see next page)
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Proof.

e assume ||g|[» < G for all subgradients; choose g, € df(y), gx € 0f(x):

gr(x—y) > f(x) - () > gh(x—y)

by the Cauchy—Schwarz inequality

Gllx =yll2 2 f(x) = f(y) 2 =Gllx =yl

e assume ||g|l» > G forsome g € 0 f(x);take y = x + g/||g]|>:

) = fx)+g'(y—x)
= f(x)+lglk
> f(x)+G
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Analysis

e the subgradient method is not a descent method

o therefore fiegx = min;j—q_._ f(x;) can be less than f(xy)

.....

e the key quantity in the analysis is the distance to the optimal set

Progress in one iteration

e distance to x*:

) 2

et —x*I3 = | - tige — x|,
2 T 2 2
= |lx; = x"(ll2 —2t;g; (x;i — x*) + 1|l gill>

<l = x*13 =2t (F () = £%) + tHllgills

e best function value: combine inequalities fori =0, ..., k:

k k
2 2 2 2
200 1) (foestk = ) < lxo = x™M15 = llxxer = ™l + D 17 llgill
i=0 i=0
k
2 2 2
< lxo- X*”Q + Z l; ”81'”2
i=0
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Fixed step size and fixed step length

Fixed step size: 1; = r with  constant

3 Ixo — x*13 N Gt
S 2k+ 1Dt 2

fbest,k - f*

e does not guarantee convergence of fyegst k

o forlarge k, fpest.k IS @approximately G2t /2-suboptimal

Fixed step length: ; = 5/||g;||> with s constant

Gllxo - x*|I5  Gs

*
— f*<
beSt,k f — 2(k+ 1)S + 2

e does not guarantee convergence of fyegt k

o forlarge k, foest k is approximately Gs/2-suboptimal
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Diminishing step size

O
tl — O, Z tl =
i=0
e bound on function value;
k
G2 S £?
L llo-xr2 G A
fbest,k - f < A X
220t 2Dt
i=0 i=0

k k
e can show that ( X tl.z)/(.Z t;) — 0; hence, fyest.x CONverges to f*

i=0 =0

e examples of diminishing step size rules:

t——T t ‘
1 — . ] i —
i+1 Vi + 1
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Example: 1-norm minimization
minimize ||Ax — b||;

e subgradient is given by A sign(Ax — b)

o example with A € R0 p ¢ RS0

Fixed steplength 7, = s/||gx||> for s = 0.1, 0.01, 0.001

(f (i) = O/~

(fbest,k) - f*)/f*
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Diminishing step size: 1, = 0.01/Vk+1and#;, =0.01/(k + 1)

Subgradient method

(fbest,k - f*)/f*
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Optimal step size for fixed number of iterations

from page 3.5: if s; = #;||g;|l> and ||xo — x*||> < R, then

k
R> + Z Sl-2
=0
fbest,k - f* < 2 :
2 Z Si/G
i=0
e for given k, the right-hand side is minimized by the fixed step length
R
Si=§=
l Vk +1
e the resulting bound after k steps is
GR
Joesthk =[5 <
= Vk +1

e this guarantees an accuracy fyesr — f* < €ink =0(1/ €?) iterations

Subgradient method



Optimal step size when f™* is known

e the right-hand side in the first inequality of page 3.5 is minimized by

_SOa) - f*
Igill3

i

e the optimized bound is

(f(x) = f*)°
lgil12

2 2
< i = x5 =l =213

e applying this recursively fromi = 0 to i = k (and using ||g;||>» < G) gives

Gllxo — x*||2

Vk +1

*
fbest,k - f <
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Example: find point in intersection of convex sets

find a point in the intersection of m closed convex sets Cy, ..., Cy:

minimize f(x) = max{fi(x),..., fm(x)}

where f;(x) = ing |x — y||2 is Euclidean distance of x to C;
yel;

e f* = 0if the intersection is nonempty
o (frompage 2.14) g € 0 f(X) if g € 0 f;(%) and C; is farthest set from X
e (from page 2.20) subgradient g € 9 f;(X) follows from projection P;(£) on C;:

1
£ = P;(%)l2

note that ||g]l, = 1if X ¢ C;
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Subgradient method for point in intersection of convex sets

e optimal step size (page 3.11) for f* =0and ||g;|, = 1is# = f(x;)

e atiteration k, find farthest set C; (with f(xx) = f;(xx)), and take

Xk+1l = Xk — Jf](();i)) (xk — Pj(xg))
= Pj(xy)

at each step, we project the current point onto the farthest set
e a version of the alternating projections algorithm
e for m = 2, projections alternate onto one set, then the other

e |ater, we will see faster sequential projection methods that are almost as simple
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Projected subgradient method

the subgradient method is easily extended to handle constrained problems

minimize  f(x)
subjectto x € C

where C is a closed convex set

Projected subgradient method: choose xy € C and repeat

Xke1 = Po(xk —tegr), k=0,1,...

e P (y) denotes the Euclidean projection of y on C
e g, is any subgradient of f at x;

e 1 is chosen by same step size rules as for unconstrained problem (page 3.2)
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Examples of simple convex sets
subgradient projection is practical only if projection on C is easy to compute
Halfspace: C = {x | a’x < b} (with a # 0)

b—alx

lall3

Pc(x) =x+ a ifalx > b, Pe(x)=x ifalx<b

Rectangle: C={x e R" |l <x <u}wherel 2 u

ly xp <1
Pe(X)r =9y xk lp < xp < ug
Up X = U

Norm balls: C = {x | ||x|]| £ R} for many common norms (e.g., 236B page 5.26)

we’ll encounter many other examples later in the course

Subgradient method 3.15



Projection on closed convex set

Pc(x) = argmin ||u — x||§
ueC

u = Pc(x)
)
(x—uw)l(z-=u)<0 VzeC
0

Ix =zl > llx —ul3 +llz—ull? VzeC

this follows from general optimality conditions in 236B page 4.9
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Analysis

minimize  f(x)
subjectto x € C

e ( is a closed convex set; other assumptions are the same as on page 3.3

e first inequality on page 3.5 still holds:

) 2
Ixier —x*l5 = ||Pc(xi —tigi) — x*|;

Xi —1igi — x*||§

IA

2 T 2 2
= |lx; = x"(ll2 —2t;g; (x;i — x*) + 1|l gill>

<l = x*13 =2t (F () = £%) + tHllgills

second line follows from page 3.16 (with z = x*, x = x; — t;g;)

e hence, earlier analysis also applies to subgradient projection method
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Optimality of the subgradient method

can the fyestk — f* < GR/Vk + 1 bound on page 3.10 be improved?

Problem class
minimize f(x)

e assumptions on page 3.3 are satisfied
e we are given a starting point x(9 with ||x(©) — x*||, < R
e we are given the Lipschitz constant G of f on {x | |[|x — x*|» < R}

e f is defined by an oracle: given x, the oracle returns f(x) anda g € df(x)

Algorithm class

e algorithm can choose any x'*1) from the set x(9) + span{g(©®, g, ... ¢}

e we stop after a fixed number k of iterations
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Test problem and oracle

L2
— 4 — with k < n), © =g
S (x) max X Sy o n), X
e subdifferential f(x) =convi{e; +x |1 < j<k+1,x; = 1maué 1xl-}
i=1,..., +

e solution and optimal value

1 1 . 1
m,...,m,o,...,()), f = —— 70—

-_—

X = —(

k + 1 times

e distance of starting point to solution is R = [|x(9 — x*||, = 1/Vk + 1

e Lipschitz constant on {x | ||[x — x*|| < R}:

2
G = sup Igll2 < +1
gedf(x), [lx—x*|L<R Vi + 1
e the oracle returns the subgradient e; + x where j = min{j | x; = max x;}

i=1,....k+1
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Ilteration

e afteri < k iterations of any algorithm in the algorithm class,

. . . . 1 .
*= 0000 fED) 2 S D520 fei =0

e suboptimality after k iterations

1 GR
C2(k+1) 22+Vk+1)

fbest,k - f* — _f*

Conclusion

e example shows that O(GR/Vk) bound cannot be improved

e subgradient method is “optimal” (for this problem and algorithm class)
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Summary: subgradient method

e handles general nondifferentiable convex problems

e often leads to very simple algorithms

e convergence can be very slow

e NO good stopping criterion

e theoretical complexity: O(1/ 62) iterations to find e-suboptimal point

e an “optimal” first-order method: O(1/€%) bound cannot be improved

Subgradient method 3.21



References

e S. Boyd, Lecture slides and notes for EE364b, Convex Optimization II.

e Yu. Nesterov, Lectures on Convex Optimization (2018), section 3.2.3. The
example on page 3.19isin §3.2.1.

e B. T. Polyak, Introduction to Optimization (1987), section 5.3.

Subgradient method 3.22


https://web.stanford.edu/class/ee364b/lectures.html
https://doi.org/10.1007/978-3-319-91578-4

