3. Subgradient method

- subgradient method
- convergence analysis
- optimal step size when f^{\star} is known
- alternating projections
- projected subgradient method
- optimality of subgradient method

Subgradient method

to minimize a nondifferentiable convex function f : choose x_{0} and repeat

$$
x_{k+1}=x_{k}-t_{k} g_{k}, \quad k=0,1, \ldots
$$

g_{k} is any subgradient of f at x_{k}

Step size rules

- fixed step: t_{k} constant
- fixed length: $t_{k}\left\|g_{k}\right\|_{2}=\left\|x_{k+1}-x_{k}\right\|_{2}$ is constant
- diminishing: $t_{k} \rightarrow 0$ and $\sum_{k=0}^{\infty} t_{k}=\infty$

Assumptions

- problem has finite optimal value f^{\star}, optimal solution x^{\star}
- f is convex with $\operatorname{dom} f=\mathbf{R}^{n}$
- f is Lipschitz continuous with constant $G>0$:

$$
|f(x)-f(y)| \leq G\|x-y\|_{2} \quad \text { for all } x, y
$$

this is equivalent to $\|g\|_{2} \leq G$ for all x and $g \in \partial f(x)$ (see next page)

Proof.

- assume $\|g\|_{2} \leq G$ for all subgradients; choose $g_{y} \in \partial f(y), g_{x} \in \partial f(x)$:

$$
g_{x}^{T}(x-y) \geq f(x)-f(y) \geq g_{y}^{T}(x-y)
$$

by the Cauchy-Schwarz inequality

$$
G\|x-y\|_{2} \geq f(x)-f(y) \geq-G\|x-y\|_{2}
$$

- assume $\|g\|_{2}>G$ for some $g \in \partial f(x)$; take $y=x+g /\|g\|_{2}$:

$$
\begin{aligned}
f(y) & \geq f(x)+g^{T}(y-x) \\
& =f(x)+\|g\|_{2} \\
& >f(x)+G
\end{aligned}
$$

Analysis

- the subgradient method is not a descent method
- therefore $f_{\text {best, } k}=\min _{i=0, \ldots, k} f\left(x_{i}\right)$ can be less than $f\left(x_{k}\right)$
- the key quantity in the analysis is the distance to the optimal set

Progress in one iteration

- distance to x^{\star} :

$$
\begin{aligned}
\left\|x_{i+1}-x^{\star}\right\|_{2}^{2} & =\left\|x_{i}-t_{i} g_{i}-x^{\star}\right\|_{2}^{2} \\
& =\left\|x_{i}-x^{\star}\right\|_{2}^{2}-2 t_{i} g_{i}^{T}\left(x_{i}-x^{\star}\right)+t_{i}^{2}\left\|g_{i}\right\|_{2}^{2} \\
& \leq\left\|x_{i}-x^{\star}\right\|_{2}^{2}-2 t_{i}\left(f\left(x_{i}\right)-f^{\star}\right)+t_{i}^{2}\left\|g_{i}\right\|_{2}^{2}
\end{aligned}
$$

- best function value: combine inequalities for $i=0, \ldots, k$:

$$
\begin{aligned}
2\left(\sum_{i=0}^{k} t_{i}\right)\left(f_{\text {best }, k}-f^{\star}\right) & \leq\left\|x_{0}-x^{\star}\right\|_{2}^{2}-\left\|x_{k+1}-x^{\star}\right\|_{2}^{2}+\sum_{i=0}^{k} t_{i}^{2}\left\|g_{i}\right\|_{2}^{2} \\
& \leq\left\|x_{0}-x^{\star}\right\|_{2}^{2}+\sum_{i=0}^{k} t_{i}^{2}\left\|g_{i}\right\|_{2}^{2}
\end{aligned}
$$

Fixed step size and fixed step length

Fixed step size: $t_{i}=t$ with t constant

$$
f_{\text {best }, k}-f^{\star} \leq \frac{\left\|x_{0}-x^{\star}\right\|_{2}^{2}}{2(k+1) t}+\frac{G^{2} t}{2}
$$

- does not guarantee convergence of $f_{\text {best }, k}$
- for large $k, f_{\text {best }, k}$ is approximately $G^{2} t / 2$-suboptimal

Fixed step length: $t_{i}=s /\left\|g_{i}\right\|_{2}$ with s constant

$$
f_{\text {best }, k}-f^{\star} \leq \frac{G\left\|x_{0}-x^{\star}\right\|_{2}^{2}}{2(k+1) s}+\frac{G s}{2}
$$

- does not guarantee convergence of $f_{\text {best }, k}$
- for large $k, f_{\text {best }, k}$ is approximately $G s / 2$-suboptimal

Diminishing step size

$$
t_{i} \rightarrow 0, \quad \sum_{i=0}^{\infty} t_{i}=\infty
$$

- bound on function value:

$$
f_{\text {best }, k}-f^{\star} \leq \frac{\left\|x_{0}-x^{\star}\right\|_{2}^{2}}{2 \sum_{i=0}^{k} t_{i}}+\frac{G^{2} \sum_{i=0}^{k} t_{i}^{2}}{2 \sum_{i=0}^{k} t_{i}}
$$

- can show that $\left(\sum_{i=0}^{k} t_{i}^{2}\right) /\left(\sum_{i=0}^{k} t_{i}\right) \rightarrow 0$; hence, $f_{\text {best }, k}$ converges to f^{\star}
- examples of diminishing step size rules:

$$
t_{i}=\frac{\tau}{i+1}, \quad t_{i}=\frac{\tau}{\sqrt{i+1}}
$$

Example: 1-norm minimization

$$
\operatorname{minimize}\|A x-b\|_{1}
$$

- subgradient is given by $A^{T} \operatorname{sign}(A x-b)$
- example with $A \in \mathbf{R}^{500 \times 100}, b \in \mathbf{R}^{500}$

Fixed steplength $t_{k}=s /\left\|g_{k}\right\|_{2}$ for $s=0.1,0.01,0.001$

Diminishing step size: $t_{k}=0.01 / \sqrt{k+1}$ and $t_{k}=0.01 /(k+1)$

Optimal step size for fixed number of iterations

from page 3.5: if $s_{i}=t_{i}\left\|g_{i}\right\|_{2}$ and $\left\|x_{0}-x^{\star}\right\|_{2} \leq R$, then

$$
f_{\text {best }, k}-f^{\star} \leq \frac{R^{2}+\sum_{i=0}^{k} s_{i}^{2}}{2 \sum_{i=0}^{k} s_{i} / G}
$$

- for given k, the right-hand side is minimized by the fixed step length

$$
s_{i}=s=\frac{R}{\sqrt{k+1}}
$$

- the resulting bound after k steps is

$$
f_{\text {best }, k}-f^{\star} \leq \frac{G R}{\sqrt{k+1}}
$$

- this guarantees an accuracy $f_{\text {best }, k}-f^{\star} \leq \epsilon$ in $k=O\left(1 / \epsilon^{2}\right)$ iterations

Optimal step size when f^{\star} is known

- the right-hand side in the first inequality of page 3.5 is minimized by

$$
t_{i}=\frac{f\left(x_{i}\right)-f^{\star}}{\left\|g_{i}\right\|_{2}^{2}}
$$

- the optimized bound is

$$
\frac{\left(f\left(x_{i}\right)-f^{\star}\right)^{2}}{\left\|g_{i}\right\|_{2}^{2}} \leq\left\|x_{i}-x^{\star}\right\|_{2}^{2}-\left\|x_{i+1}-x^{\star}\right\|_{2}^{2}
$$

- applying this recursively from $i=0$ to $i=k$ (and using $\left\|g_{i}\right\|_{2} \leq G$) gives

$$
f_{\text {best }, k}-f^{\star} \leq \frac{G\left\|x_{0}-x^{\star}\right\|_{2}}{\sqrt{k+1}}
$$

Example: find point in intersection of convex sets

find a point in the intersection of m closed convex sets C_{1}, \ldots, C_{m} :

$$
\operatorname{minimize} \quad f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}
$$

where $f_{j}(x)=\inf _{y \in C_{j}}\|x-y\|_{2}$ is Euclidean distance of x to C_{j}

- $f^{\star}=0$ if the intersection is nonempty
- (from page 2.14) $g \in \partial f(\hat{x})$ if $g \in \partial f_{j}(\hat{x})$ and C_{j} is farthest set from \hat{x}
- (from page 2.20) subgradient $g \in \partial f_{j}(\hat{x})$ follows from projection $P_{j}(\hat{x})$ on C_{j} :

$$
g=0 \quad \text { if } \hat{x} \in C_{j}, \quad g=\frac{1}{\left\|\hat{x}-P_{j}(\hat{x})\right\|_{2}}\left(\hat{x}-P_{j}(\hat{x})\right) \quad \text { if } \hat{x} \notin C_{j}
$$

note that $\|g\|_{2}=1$ if $\hat{x} \notin C_{j}$

Subgradient method for point in intersection of convex sets

- optimal step size (page 3.11) for $f^{\star}=0$ and $\left\|g_{i}\right\|_{2}=1$ is $t_{i}=f\left(x_{i}\right)$
- at iteration k, find farthest set C_{j} (with $f\left(x_{k}\right)=f_{j}\left(x_{k}\right)$), and take

$$
\begin{aligned}
x_{k+1} & =x_{k}-\frac{f\left(x_{k}\right)}{f_{j}\left(x_{k}\right)}\left(x_{k}-P_{j}\left(x_{k}\right)\right) \\
& =P_{j}\left(x_{k}\right)
\end{aligned}
$$

at each step, we project the current point onto the farthest set

- a version of the alternating projections algorithm
- for $m=2$, projections alternate onto one set, then the other
- later, we will see faster sequential projection methods that are almost as simple

Projected subgradient method

the subgradient method is easily extended to handle constrained problems

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & x \in C
\end{array}
$$

where C is a closed convex set

Projected subgradient method: choose $x_{0} \in C$ and repeat

$$
x_{k+1}=P_{C}\left(x_{k}-t_{k} g_{k}\right), \quad k=0,1, \ldots
$$

- $P_{C}(y)$ denotes the Euclidean projection of y on C
- g_{k} is any subgradient of f at x_{k}
- t_{k} is chosen by same step size rules as for unconstrained problem (page 3.2)

Examples of simple convex sets

subgradient projection is practical only if projection on C is easy to compute Halfspace: $C=\left\{x \mid a^{T} x \leq b\right\}$ (with $a \neq 0$)

$$
P_{C}(x)=x+\frac{b-a^{T} x}{\|a\|_{2}^{2}} a \quad \text { if } a^{T} x>b, \quad P_{C}(x)=x \quad \text { if } a^{T} x \leq b
$$

Rectangle: $C=\left\{x \in \mathbf{R}^{n} \mid l \leq x \leq u\right\}$ where $l \leq u$

$$
P_{C}(x)_{k}= \begin{cases}l_{k} & x_{k} \leq l_{k} \\ x_{k} & l_{k} \leq x_{k} \leq u_{k} \\ u_{k} & x_{k} \geq u_{k}\end{cases}
$$

Norm balls: $C=\{x \mid\|x\| \leq R\}$ for many common norms (e.g., 236B page 5.26)
we'll encounter many other examples later in the course

Projection on closed convex set

$$
P_{C}(x)=\underset{u \in C}{\operatorname{argmin}}\|u-x\|_{2}^{2}
$$

$$
u=P_{C}(x)
$$

$$
\mathbb{\imath}
$$

$$
(x-u)^{T}(z-u) \leq 0 \quad \forall z \in C
$$

$$
\Uparrow
$$

$$
\|x-z\|_{2}^{2} \geq\|x-u\|_{2}^{2}+\|z-u\|_{2}^{2} \quad \forall z \in C
$$

this follows from general optimality conditions in 236B page 4.9

Analysis

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & x \in C
\end{array}
$$

- C is a closed convex set; other assumptions are the same as on page 3.3
- first inequality on page 3.5 still holds:

$$
\begin{aligned}
\left\|x_{i+1}-x^{\star}\right\|_{2}^{2} & =\left\|P_{C}\left(x_{i}-t_{i} g_{i}\right)-x^{\star}\right\|_{2}^{2} \\
& \leq\left\|x_{i}-t_{i} g_{i}-x^{\star}\right\|_{2}^{2} \\
& =\left\|x_{i}-x^{\star}\right\|_{2}^{2}-2 t_{i} g_{i}^{T}\left(x_{i}-x^{\star}\right)+t_{i}^{2}\left\|g_{i}\right\|_{2}^{2} \\
& \leq\left\|x_{i}-x^{\star}\right\|_{2}^{2}-2 t_{i}\left(f\left(x_{i}\right)-f^{\star}\right)+t_{i}^{2}\left\|g_{i}\right\|_{2}^{2}
\end{aligned}
$$

second line follows from page 3.16 (with $z=x^{\star}, x=x_{i}-t_{i} g_{i}$)

- hence, earlier analysis also applies to subgradient projection method

Optimality of the subgradient method

can the $f_{\text {best }, k}-f^{\star} \leq G R / \sqrt{k+1}$ bound on page 3.10 be improved?

Problem class

$$
\text { minimize } f(x)
$$

- assumptions on page 3.3 are satisfied
- we are given a starting point $x^{(0)}$ with $\left\|x^{(0)}-x^{\star}\right\|_{2} \leq R$
- we are given the Lipschitz constant G of f on $\left\{x \mid\left\|x-x^{\star}\right\|_{2} \leq R\right\}$
- f is defined by an oracle: given x, the oracle returns $f(x)$ and a $g \in \partial f(x)$

Algorithm class

- algorithm can choose any $x^{(i+1)}$ from the set $x^{(0)}+\operatorname{span}\left\{g^{(0)}, g^{(1)}, \ldots, g^{(i)}\right\}$
- we stop after a fixed number k of iterations

Test problem and oracle

$$
f(x)=\max _{i=1, \ldots, k+1} x_{i}+\frac{1}{2}\|x\|_{2}^{2} \quad(\text { with } k<n), \quad x^{(0)}=0
$$

- subdifferential $\partial f(x)=\operatorname{conv}\left\{e_{j}+x \mid 1 \leq j \leq k+1, x_{j}=\max _{i=1, \ldots, k+1} x_{i}\right\}$
- solution and optimal value

$$
x^{\star}=-(\underbrace{\frac{1}{k+1}, \ldots, \frac{1}{k+1}}_{k+1 \text { times }}, 0, \ldots, 0), \quad f^{\star}=-\frac{1}{2(k+1)}
$$

- distance of starting point to solution is $R=\left\|x^{(0)}-x^{\star}\right\|_{2}=1 / \sqrt{k+1}$
- Lipschitz constant on $\left\{x \mid\left\|x-x^{\star}\right\|_{2} \leq R\right\}$:

$$
G=\sup _{g \in \partial f(x),\left\|x-x^{\star}\right\|_{2} \leq R}\|g\|_{2} \leq \frac{2}{\sqrt{k+1}}+1
$$

- the oracle returns the subgradient $e_{\hat{\jmath}}+x$ where $\hat{\jmath}=\min \left\{j \mid x_{j}=\max _{i=1, \ldots, k+1} x_{i}\right\}$

Iteration

- after $i \leq k$ iterations of any algorithm in the algorithm class,

$$
x^{(i)}=\left(x_{1}^{(i)}, \ldots, x_{i}^{(i)}, 0, \ldots, 0\right), \quad f\left(x^{(i)}\right) \geq \frac{1}{2}\left\|x^{(i)}\right\|_{2}^{2} \geq 0, \quad f_{\text {best }, i}=0
$$

- suboptimality after k iterations

$$
f_{\text {best }, k}-f^{\star}=-f^{\star}=\frac{1}{2(k+1)}=\frac{G R}{2(2+\sqrt{k+1})}
$$

Conclusion

- example shows that $O(G R / \sqrt{k})$ bound cannot be improved
- subgradient method is "optimal" (for this problem and algorithm class)

Summary: subgradient method

- handles general nondifferentiable convex problems
- often leads to very simple algorithms
- convergence can be very slow
- no good stopping criterion
- theoretical complexity: $O\left(1 / \epsilon^{2}\right)$ iterations to find ϵ-suboptimal point
- an "optimal" first-order method: $O\left(1 / \epsilon^{2}\right)$ bound cannot be improved

References

- S. Boyd, Lecture slides and notes for EE364b, Convex Optimization II.
- Yu. Nesterov, Lectures on Convex Optimization (2018), section 3.2.3. The example on page 3.19 is in §3.2.1.
- B. T. Polyak, Introduction to Optimization (1987), section 5.3.

