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First-order convex optimization methods
complexity of finding e-suboptimal point of f

e subgradient method: f nondifferentiable with Lipschitz constant GG

O ((G/e)?) iterations

e proximal gradient method: f = g+ h, h a ‘simple’ nondifferentiable
function, g differentiable with L-Lipschitz continuous gradient

O (L/e) iterations

e fast proximal gradient methods (lecture 7)
O(+/ L/¢) iterations
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Nondifferentiable optimization by smoothing

for nondifferentiable f that cannot be handled by proximal gradient method

e replace f with differentiable approximation f,, (parametrized by p)

e minimize f, by (fast) gradient method

complexity: #iterations for (fast) gradient method depends on L, /¢,

e L, is Lipschitz constant of V[,

® ¢, is accuracy with which the smooth problem is solved

trade-off in amount of smoothing (choice of )

o large L, (less smoothing) gives more accurate approximation

e small L, (more smoothing) gives faster convergence
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Example: Huber penalty as smoothed absolute value

0
bu(2) = { e ML <
8 2] — /2 |z > p
—u/2 2 /2
14 controls accuracy and smoothness
e accuracy
7
2= £ < dul2) < |2l
e smoothness |
1/
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Huber penalty approximation of 1-norm minimization
f@) = 1Az =bll,  fulz) =) dulalz— b))
=1

e accuracy: from f(x) —mu/2 < f.(z) < f(x),

* x i
f(x)_f Sfu(x)_fu‘l‘T

to achieve f(x) — f* < e we need f.(x) — f; <€, with ¢, =€ —mu/2
e Lipschitz constant of f,, is L, = || A||5/u

complexity: for y =¢/m

Ly 1AlZ  _ 2m|AlP
2

e (e —mpu/2) €

i.e., O(\/L,/€,) = O(1/e€) iteration complexity for fast gradient method
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Minimum of strongly convex function

if x is a minimizer of a strongly convex function f, then it is unique and
14
fy) = f@) +5lly —xl; Vy € dom f

(u is the strong convexity constant of f; see page 1-17)

proof: if some y does not satisfy the inequality, then for small positive 6

(-0 +0y) < (1-0)f() +0) — n2 Dy — a3
= J(@) + 00 w) — F@) — Elly — ) + u e ol

< f(x)

Smoothing 6



Conjugate of strongly convex function

suppose f is closed and strongly convex with constant 1 and conjugate

f*y)= sup (y'z— f(z))

redom f

e f* is defined and differentiable at all y, with gradient

V*(y) = argmax (37 — f(2))

T

e V f* is Lipschitz continuous with constant 1/u

HVﬁﬁ»—Vﬁwmzsgm—vm
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outline of proof

e y'x — f(x) has a unique maximizer x,, for every y (follows from
closedness and strong convexity of f(z) — yx)

e from page 4-18, Vf*(y) = x,
e from strong convexity and page 6 (with 2, = Vf*(u), z, = V[*(v))

flxy) — vle, > f(xy) — vl @, + g||$u - %Hg

flo) —uTzy = fl@a) = uTo,+Sle, - o

adding the left- and right-hand sides of the inequalities gives
N

pllzy — 2ol < (20 — 20)" (u =)

by the Cauchy-Schwarz inequality, p||z, — 2|2 < ||u — v]|2
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Proximity function

d is a proximity function for a closed convex set C' if
e d is continuous and strongly convex

e (' Cdomd

d(x) measures ‘distance’ of = to the center 4 = argmin, . d(x) of C

normalization

e we will assume the strong convexity constant is 1 and inf,.ccd(z) =0

e for a normalized proximity function

1
d(z) > §Hx — de% Ve e C
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common proximity functions

o d(z) = ||z — ul|5/2 withzg=u € C

o d(z) =Y wi(z; —u;)*/2 withw; >1and zg=u e C
i=1

o d(z) =Y x;logx; +logn for C={x=0]|1tz =1}, 24 = (1/n)1
i=1

example (probability simplex): entropy and d(z) = (1/2)||lz — (1/n)1]|3

(0,0,1) (0,0,1)
(0,1,0) (1,0,0)  (0,1,0) (1,0,0)
entropy Euclidean
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Smoothing via conjugate

conjugate (dual) representation: suppose f can be expressed as

flz) = sup ((Az+b)"y— h(y))

yedom h

= h*(Az +b)
where h is closed and convex with bounded domain

smooth approximation: choose proximity function d for C' = cldom h

fulz) = sup ((Az +b)"y — h(y) — pd(y))

= (h+ pd)*(Az +b)

J. 1s differentiable because I + pd is strongly convex
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Example: absolute value

conjugate representation

lz| = sup axy=h"(z), h(y) = I—11(y)
—1<y<1

proximity function: choosing d(y) = y?/2 gives Huber penalty

o (ot { @) el <
fu(x)__lsg?]j;l( y— Ry /2) _{ x| — /2 x| > p

proximity function: choosing d(y) =1 — /1 — y? gives
fu(x) = sup (wy+u\/1— 2—u) = /22 + p2 —

—1<y<1
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another conjugate representation of |z

[z| = sup z(y1 —y2)
y1+y2=1
y=0

x| = h*(Ax) for h = I,

1.€.,

1
C=w=0lmtm=1),  A=| |
proximity function for C

d(y) = y1 logy1 + y2log yo + log 2

smooth approximation

fu(lx) = sup 1 (zy1 — zy2 + p(y1log yr + y2log ya + log 2))
Yy1+ty2=

(ex/u e e_x/:u>
= plog

2
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comparison: three smooth approximations of absolute value

3.5

2.5
—~~ 207
=15
1.0}

0.5}

3.0/

— huber
- - sqrt

---- log-sum-exp [

0.0
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Gradient of smooth approximation

fulx) = (h+ud)*(Ax +b)
= sup ((Az+0b)"y—h(y) — pd(y))

yedom h

from properties of the conjugate of strongly convex function (page 7)

o f, is differentiable, with gradient

V fu(z) = AT argmax ((Az + )"y — h(y) — pd(y))

yedom h

e V[, is Lipschitz continuous with constant

A3
7

Ly,
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Accuracy of smooth approximation

fx) = puD < fu(x) < f(x), D= sup d(y)
yedom h

note D < 400 because dom A is bounded and dom h” C domd

e lower bound follows from

fulz) = sup ((Az +b)"y — h(y) — pd(y))
> sup ((Az+b)'y — h(y) — uD)
yedom h
= f(z) —pD

e upper bound follows from

fu(@) < sup ((Az+b)"y—h(y)) = f(z)

yeEdom h
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Complexity
to find solution of nondifferentiable problem with accuracy f(x) — f* <e

e solve smoothed problem with accuracy €, = € — D, so that
fl@) =< fulx)+pD - fi<e,+uD=c¢

e Lipschitz constant of f,, is L, = ||A]|3/p

complexity: for y =¢€/(2D)

L, A3 _ 4D|IA|3

€ p(e—puD) i€

e gives O(1/¢) iteration bound for fast gradient method

e efficiency in practice can be improved by decreasing i gradually
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Piecewise-linear approximation

f(xr) = max (CL,LTSE + b;)

1=1,....m

conjugate representation

flx)=sup (Az+0b)"y

y=0,1Ty=1

proximity function

d(y) =) yilogy; + logm
1 =1

smooth approximation

m - |
fue) = nlog 3 el w00/ _ 1o m
1=1
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1-Norm approximation

fz) = [[Az = bl

conjugate representation

flz)= sup (Az—0b)"y

[yllco<1

proximity function

1 9 .
d(y) = 5z:wzyz (with w; > 1)

smooth approximation: Huber approximation
fu<x> — Z Qbuwi(ar{x — b;)
i=1
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Maximum eigenvalue

conjugate representation: for X € S”,

f(X) — )\maX(X) — Sup tI‘(XY)
Y0,tr Y =1

proximity function: negative matrix entropy

ZA )log \;(Y) + log n

smooth approximation

fu(X) = Y>§?pyzl(tr(XY)_”d(Y))

1 log Z e (X1 _ 1 logn
i=1
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Nuclear norm

nuclear norm f(X) = || X ||+ is sum of singular values of X € R™*"

conjugate representation

f(X)= sup tr(X'Y)

1Y ]|l2<1
proximity function
1
AY) = |Y 3
smooth approximation
fu(X)= sup (tr(XTY Zgbu o (X

1Y ]l2<1

the sum of the Huber penalties applied to the singular values of X
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Lagrange dual function

minimize  fo(x)
subject to  fi(z) <0, i=1,...,m
xeC

fi convex, C closed and bounded

smooth approximation of dual function: choose prox. function d for C

gu()‘)—gelg( +ZA fi(z) + pd( ))

this is equivalent to regularizing the primal problem

minimize  fo(z) + pd(z)
subject to  fi(x) <0, i=1,...,m
xeC
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