2. Subgradients

- definition
- subgradient calculus
- duality and optimality conditions
- directional derivative

Basic inequality

recall the basic inequality for differentiable convex functions:

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \text { for all } y \in \operatorname{dom} f
$$

- the first-order approximation of f at x is a global lower bound
- $\nabla f(x)$ defines non-vertical supporting hyperplane to epigraph of f at $(x, f(x))$:

$$
\left[\begin{array}{c}
\nabla f(x) \\
-1
\end{array}\right]^{T}\left(\left[\begin{array}{l}
y \\
t
\end{array}\right]-\left[\begin{array}{c}
x \\
f(x)
\end{array}\right]\right) \leq 0 \quad \text { for all }(y, t) \in \operatorname{epi} f
$$

Subgradient

g is a subgradient of a convex function f at $x \in \operatorname{dom} f$ if

g_{1}, g_{2} are subgradients at $x_{1} ; g_{3}$ is a subgradient at x_{2}

Subdifferential

the subdifferential $\partial f(x)$ of f at x is the set of all subgradients:

$$
\partial f(x)=\left\{g \mid g^{T}(y-x) \leq f(y)-f(x), \forall y \in \operatorname{dom} f\right\}
$$

Properties

- $\partial f(x)$ is a closed convex set (possibly empty)
this follows from the definition: $\partial f(x)$ is an intersection of halfspaces
- if $x \in \operatorname{int} \operatorname{dom} f$ then $\partial f(x)$ is nonempty and bounded proof on next two pages

Proof: we show that $\partial f(x)$ is nonempty when $x \in \operatorname{int} \operatorname{dom} f$

- $(x, f(x))$ is in the boundary of the convex set epi f
- therefore there exists a supporting hyperplane to epi f at $(x, f(x))$:

$$
\exists(a, b) \neq 0, \quad\left[\begin{array}{l}
a \\
b
\end{array}\right]^{T}\left(\left[\begin{array}{l}
y \\
t
\end{array}\right]-\left[\begin{array}{c}
x \\
f(x)
\end{array}\right]\right) \leq 0 \quad \forall(y, t) \in \operatorname{epi} f
$$

- $b>0$ gives a contradiction as $t \rightarrow \infty$
- $b=0$ gives a contradiction for $y=x+\epsilon a$ with small $\epsilon>0$
- therefore $b<0$ and $g=\frac{1}{|b|} a$ is a subgradient of f at x

Proof: $\partial f(x)$ is bounded when $x \in \operatorname{int} \operatorname{dom} f$

- for small $r>0$, define a set of $2 n$ points

$$
B=\left\{x \pm r e_{k} \mid k=1, \ldots, n\right\} \subset \operatorname{dom} f
$$

and define $M=\max _{y \in B} f(y)<\infty$

- for every $g \in \partial f(x)$, there is a point $y \in B$ with

$$
r\|g\|_{\infty}=g^{T}(y-x)
$$

(choose an index k with $\left|g_{k}\right|=\|g\|_{\infty}$, and take $y=x+r \operatorname{sign}\left(g_{k}\right) e_{k}$)

- since g is a subgradient, this implies that

$$
f(x)+r\|g\|_{\infty}=f(x)+g^{T}(y-x) \leq f(y) \leq M
$$

- we conclude that $\partial f(x)$ is bounded:

$$
\|g\|_{\infty} \leq \frac{M-f(x)}{r} \quad \text { for all } g \in \partial f(x)
$$

Example

$$
f(x)=\max \left\{f_{1}(x), f_{2}(x)\right\} \quad \text { with } f_{1}, f_{2} \text { convex and differentiable }
$$

- if $f_{1}(\hat{x})=f_{2}(\hat{x})$, subdifferential at \hat{x} is line segment $\left[\nabla f_{1}(\hat{x}), \nabla f_{2}(\hat{x})\right]$
- if $f_{1}(\hat{x})>f_{2}(\hat{x})$, subdifferential at \hat{x} is $\left\{\nabla f_{1}(\hat{x})\right\}$
- if $f_{1}(\hat{x})<f_{2}(\hat{x})$, subdifferential at \hat{x} is $\left\{\nabla f_{2}(\hat{x})\right\}$

Examples

Absolute value $f(x)=|x|$

Euclidean norm $f(x)=\|x\|_{2}$

$$
\partial f(x)=\left\{\frac{1}{\|x\|_{2}} x\right\} \quad \text { if } x \neq 0, \quad \partial f(x)=\left\{g \mid\|g\|_{2} \leq 1\right\} \quad \text { if } x=0
$$

Monotonicity

the subdifferential of a convex function is a monotone operator:

$$
(u-v)^{T}(x-y) \geq 0 \quad \text { for all } x, y, u \in \partial f(x), v \in \partial f(y)
$$

Proof: by definition

$$
f(y) \geq f(x)+u^{T}(y-x), \quad f(x) \geq f(y)+v^{T}(x-y)
$$

combining the two inequalities shows monotonicity

Examples of non-subdifferentiable functions

the following functions are not subdifferentiable at $x=0$

- $f: \mathbf{R} \rightarrow \mathbf{R}, \operatorname{dom} f=\mathbf{R}_{+}$

$$
f(x)=1 \quad \text { if } x=0, \quad f(x)=0 \quad \text { if } x>0
$$

- $f: \mathbf{R} \rightarrow \mathbf{R}, \operatorname{dom} f=\mathbf{R}_{+}$

$$
f(x)=-\sqrt{x}
$$

the only supporting hyperplane to epi f at $(0, f(0))$ is vertical

Subgradients and sublevel sets

if g is a subgradient of f at x, then

$$
f(y) \leq f(x) \quad \Longrightarrow \quad g^{T}(y-x) \leq 0
$$

the nonzero subgradients at x define supporting hyperplanes to the sublevel set

$$
\{y \mid f(y) \leq f(x)\}
$$

Outline

- definition
- subgradient calculus
- duality and optimality conditions
- directional derivative

Subgradient calculus

Weak subgradient calculus: rules for finding one subgradient

- sufficient for most nondifferentiable convex optimization algorithms
- if you can evaluate $f(x)$, you can usually compute a subgradient

Strong subgradient calculus: rules for finding $\partial f(x)$ (all subgradients)

- some algorithms, optimality conditions, etc., need entire subdifferential
- can be quite complicated
we will assume that $x \in \operatorname{int} \operatorname{dom} f$

Basic rules

Differentiable functions: $\partial f(x)=\{\nabla f(x)\}$ if f is differentiable at x

Nonnegative linear combination
if $f(x)=\alpha_{1} f_{1}(x)+\alpha_{2} f_{2}(x)$ with $\alpha_{1}, \alpha_{2} \geq 0$, then

$$
\partial f(x)=\alpha_{1} \partial f_{1}(x)+\alpha_{2} \partial f_{2}(x)
$$

(right-hand side is addition of sets)

Affine transformation of variables: if $f(x)=h(A x+b)$, then

$$
\partial f(x)=A^{T} \partial h(A x+b)
$$

Pointwise maximum

$$
f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}
$$

define $I(x)=\left\{i \mid f_{i}(x)=f(x)\right\}$, the 'active' functions at x

Weak result

to compute a subgradient at x, choose any $k \in I(x)$, any subgradient of f_{k} at x

Strong result

$$
\partial f(x)=\operatorname{conv} \bigcup_{i \in I(x)} \partial f_{i}(x)
$$

- the convex hull of the union of subdifferentials of 'active' functions at x
- if f_{i} 's are differentiable, $\partial f(x)=\operatorname{conv}\left\{\nabla f_{i}(x) \mid i \in I(x)\right\}$

Example: piecewise-linear function

$$
f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)
$$

the subdifferential at x is a polyhedron

$$
\partial f(x)=\operatorname{conv}\left\{a_{i} \mid i \in I(x)\right\}
$$

with $I(x)=\left\{i \mid a_{i}^{T} x+b_{i}=f(x)\right\}$

Example: ℓ_{1}-norm

$$
f(x)=\|x\|_{1}=\max _{s \in\{-1,1\}^{n}} s^{T} x
$$

the subdifferential is a product of intervals

$$
\partial f(x)=J_{1} \times \cdots \times J_{n}, \quad J_{k}= \begin{cases}{[-1,1]} & x_{k}=0 \\ \{1\} & x_{k}>0 \\ \{-1\} & x_{k}<0\end{cases}
$$

$$
\partial f(0,0)=[-1,1] \times[-1,1]
$$

$$
\partial f(1,0)=\{1\} \times[-1,1]
$$

$\partial f(1,1)=\{(1,1)\}$

Pointwise supremum

$$
f(x)=\sup _{\alpha \in \mathcal{F}} f_{\alpha}(x), \quad f_{\alpha}(x) \text { convex in } x \text { for every } \alpha
$$

Weak result: to find a subgradient at \hat{x},

- find any β for which $f(\hat{x})=f_{\beta}(\hat{x})$ (assuming maximum is attained)
- choose any $g \in \partial f_{\beta}(\hat{x})$
(Partial) strong result: define $I(x)=\left\{\alpha \in \mathcal{A} \mid f_{\alpha}(x)=f(x)\right\}$

$$
\operatorname{conv} \bigcup_{\alpha \in I(x)} \partial f_{\alpha}(x) \subseteq \partial f(x)
$$

equality requires extra conditions (for example, \mathcal{A} compact, f_{α} continuous in α)

Exercise: maximum eigenvalue

Problem: explain how to find a subgradient of

$$
f(x)=\lambda_{\max }(A(x))=\sup _{\|y\|_{2}=1} y^{T} A(x) y
$$

where $A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}$ with symmetric coefficients A_{i}

Solution: to find a subgradient at \hat{x},

- choose any unit eigenvector y with eigenvalue $\lambda_{\text {max }}(A(\hat{x}))$
- the gradient of $y^{T} A(x) y$ at \hat{x} is a subgradient of f :

$$
\left(y^{T} A_{1} y, \ldots, y^{T} A_{n} y\right) \in \partial f(\hat{x})
$$

Minimization

$$
f(x)=\inf _{y} h(x, y), \quad h \text { jointly convex in }(x, y)
$$

Weak result: to find a subgradient at \hat{x},

- find \hat{y} that minimizes $h(\hat{x}, y)$ (assuming minimum is attained)
- find subgradient $(g, 0) \in \partial h(\hat{x}, \hat{y})$

Proof: for all x, y,

$$
\begin{aligned}
h(x, y) & \geq h(\hat{x}, \hat{y})+g^{T}(x-\hat{x})+0^{T}(y-\hat{y}) \\
& =f(\hat{x})+g^{T}(x-\hat{x})
\end{aligned}
$$

therefore

$$
f(x)=\inf _{y} h(x, y) \geq f(\hat{x})+g^{T}(x-\hat{x})
$$

Exercise: Euclidean distance to convex set

Problem: explain how to find a subgradient of

$$
f(x)=\inf _{y \in C}\|x-y\|_{2}
$$

where C is a closed convex set

Solution: to find a subgradient at \hat{x},

- if $f(\hat{x})=0$ (that is, $\hat{x} \in C$), take $g=0$
- if $f(\hat{x})>0$, find projection $\hat{y}=P(\hat{x})$ on C and take

$$
g=\frac{1}{\|\hat{y}-\hat{x}\|_{2}}(\hat{x}-\hat{y})=\frac{1}{\|\hat{x}-P(\hat{x})\|_{2}}(\hat{x}-P(\hat{x}))
$$

Composition

$$
f(x)=h\left(f_{1}(x), \ldots, f_{k}(x)\right), \quad h \text { convex and nondecreasing, } f_{i} \text { convex }
$$

Weak result: to find a subgradient at \hat{x},

- find $z \in \partial h\left(f_{1}(\hat{x}), \ldots, f_{k}(\hat{x})\right)$ and $g_{i} \in \partial f_{i}(\hat{x})$
- then $g=z_{1} g_{1}+\cdots+z_{k} g_{k} \in \partial f(\hat{x})$
reduces to standard formula for differentiable h, f_{i}
Proof:

$$
\begin{aligned}
f(x) & \geq h\left(f_{1}(\hat{x})+g_{1}^{T}(x-\hat{x}), \ldots, f_{k}(\hat{x})+g_{k}^{T}(x-\hat{x})\right) \\
& \geq h\left(f_{1}(\hat{x}), \ldots, f_{k}(\hat{x})\right)+z^{T}\left(g_{1}^{T}(x-\hat{x}), \ldots, g_{k}^{T}(x-\hat{x})\right) \\
& =h\left(f_{1}(\hat{x}), \ldots, f_{k}(\hat{x})\right)+\left(z_{1} g_{1}+\cdots+z_{k} g_{k}\right)^{T}(x-\hat{x}) \\
& =f(\hat{x})+g^{T}(x-\hat{x})
\end{aligned}
$$

Optimal value function

define $f(u, v)$ as the optimal value of convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq u_{i}, \quad i=1, \ldots, m \\
& A x=b+v
\end{array}
$$

(functions f_{i} are convex; optimization variable is x)

Weak result: suppose $f(\hat{u}, \hat{v})$ is finite and strong duality holds with the dual

$$
\begin{array}{ll}
\text { maximize } & \inf _{x}\left(f_{0}(x)+\sum_{i} \lambda_{i}\left(f_{i}(x)-\hat{u}_{i}\right)+v^{T}(A x-b-\hat{v})\right) \\
\text { subject to } & \lambda \geq 0
\end{array}
$$

if $\hat{\lambda}, \hat{v}$ are dual optimal (for right-hand sides \hat{u}, \hat{v}) then $(-\hat{\lambda},-\hat{v}) \in \partial f(\hat{u}, \hat{v})$

Proof: by weak duality for problem with right-hand sides u, v

$$
\begin{aligned}
f(u, v) \geq & \inf _{x}\left(f_{0}(x)+\sum_{i} \hat{\lambda}_{i}\left(f_{i}(x)-u_{i}\right)+\hat{v}^{T}(A x-b-v)\right) \\
= & \inf _{x}\left(f_{0}(x)+\sum_{i} \hat{\lambda}_{i}\left(f_{i}(x)-\hat{u}_{i}\right)+\hat{v}^{T}(A x-b-\hat{v})\right) \\
& -\hat{\lambda}^{T}(u-\hat{u})-\hat{v}^{T}(v-\hat{v}) \\
= & f(\hat{u}, \hat{v})-\hat{\lambda}^{T}(u-\hat{u})-\hat{v}^{T}(v-\hat{v})
\end{aligned}
$$

Expectation

$$
f(x)=\mathbf{E} h(x, u) \quad u \text { random, } h \text { convex in } x \text { for every } u
$$

Weak result: to find a subgradient at \hat{x},

- choose a function $u \mapsto g(u)$ with $g(u) \in \partial_{x} h(\hat{x}, u)$
- then, $g=\mathbf{E}_{u} g(u) \in \partial f(\hat{x})$

Proof: by convexity of h and definition of $g(u)$,

$$
\begin{aligned}
f(x) & =\mathbf{E} h(x, u) \\
& \geq \mathbf{E}\left(h(\hat{x}, u)+g(u)^{T}(x-\hat{x})\right) \\
& =f(\hat{x})+g^{T}(x-\hat{x})
\end{aligned}
$$

Outline

- definition
- subgradient calculus
- duality and optimality conditions
- directional derivative

Optimality conditions - unconstrained

x^{\star} minimizes $f(x)$ if and only

$$
0 \in \partial f\left(x^{\star}\right)
$$

this follows directly from the definition of subgradient:

$$
f(y) \geq f\left(x^{\star}\right)+0^{T}\left(y-x^{\star}\right) \quad \text { for all } y \quad \Longleftrightarrow \quad 0 \in \partial f\left(x^{\star}\right)
$$

Example: piecewise-linear minimization

$$
f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)
$$

Optimality condition

$$
0 \in \operatorname{conv}\left\{a_{i} \mid i \in I\left(x^{\star}\right)\right\} \quad \text { where } I(x)=\left\{i \mid a_{i}^{T} x+b_{i}=f(x)\right\}
$$

- in other words, x^{\star} is optimal if and only if there is a λ with

$$
\lambda \geq 0, \quad \mathbf{1}^{T} \lambda=1, \quad \sum_{i=1}^{m} \lambda_{i} a_{i}=0, \quad \lambda_{i}=0 \text { for } i \notin I\left(x^{\star}\right)
$$

- these are the optimality conditions for the equivalent linear program

$$
\begin{array}{llll}
\operatorname{minimize} & t & \text { maximize } & b^{T} \lambda \\
\text { subject to } & A x+b \leq t \mathbf{1} & \text { subject to } & A^{T} \lambda=0 \\
& & \lambda \geq 0, \quad \mathbf{1}^{T} \lambda=1
\end{array}
$$

Optimality conditions - constrained

```
minimize }\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{i}{}(x)\leq0,\quadi=1,\ldots,
```

assume dom $f_{i}=\mathbf{R}^{n}$, so functions f_{i} are subdifferentiable everywhere

Karush-Kuhn-Tucker conditions

if strong duality holds, then $x^{\star}, \lambda^{\star}$ are primal, dual optimal if and only if

1. x^{\star} is primal feasible
2. $\lambda^{\star} \geq 0$
3. $\lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0$ for $i=1, \ldots, m$
4. x^{\star} is a minimizer of $L\left(x, \lambda^{\star}\right)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x)$:

$$
0 \in \partial f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} \partial f_{i}\left(x^{\star}\right)
$$

Outline

- definition
- subgradient calculus
- duality and optimality conditions
- directional derivative

Directional derivative

Definition (for general f): the directional derivative of f at x in the direction y is

$$
\begin{aligned}
f^{\prime}(x ; y) & =\lim _{\alpha \searrow 0} \frac{f(x+\alpha y)-f(x)}{\alpha} \\
& =\lim _{t \rightarrow \infty}\left(t f\left(x+\frac{1}{t} y\right)-t f(x)\right)
\end{aligned}
$$

(if the limit exists)

- $f^{\prime}(x ; y)$ is the right derivative of $g(\alpha)=f(x+\alpha y)$ at $\alpha=0$
- $f^{\prime}(x ; y)$ is homogeneous in y :

$$
f^{\prime}(x ; \lambda y)=\lambda f^{\prime}(x ; y) \quad \text { for } \lambda \geq 0
$$

Directional derivative of a convex function

Equivalent definition (for convex f): replace lim with inf

$$
\begin{aligned}
f^{\prime}(x ; y) & =\inf _{\alpha>0} \frac{f(x+\alpha y)-f(x)}{\alpha} \\
& =\inf _{t>0}\left(t f\left(x+\frac{1}{t} y\right)-t f(x)\right)
\end{aligned}
$$

Proof

- the function $h(y)=f(x+y)-f(x)$ is convex in y, with $h(0)=0$
- its perspective $t h(y / t)$ is nonincreasing in t (ECE236B ex. A3.5); hence

$$
f^{\prime}(x ; y)=\lim _{t \rightarrow \infty} t h(y / t)=\inf _{t>0} t h(y / t)
$$

Properties

consequences of the expressions (for convex f)

$$
\begin{aligned}
f^{\prime}(x ; y) & =\inf _{\alpha>0} \frac{f(x+\alpha y)-f(x)}{\alpha} \\
& =\inf _{t>0}\left(t f\left(x+\frac{1}{t} y\right)-t f(x)\right)
\end{aligned}
$$

- $f^{\prime}(x ; y)$ is convex in y (partial minimization of a convex function in y, t)
- $f^{\prime}(x ; y)$ defines a lower bound on f in the direction y :

$$
f(x+\alpha y) \geq f(x)+\alpha f^{\prime}(x ; y) \quad \text { for all } \alpha \geq 0
$$

Directional derivative and subgradients

for convex f and $x \in \operatorname{int} \operatorname{dom} f$

$$
f^{\prime}(x ; y)=\sup _{g \in \partial f(x)} g^{T} y
$$

$f^{\prime}(x ; y)$ is support function of $\partial f(x)$

- generalizes $f^{\prime}(x ; y)=\nabla f(x)^{T} y$ for differentiable functions
- implies that $f^{\prime}(x ; y)$ exists for all $x \in \operatorname{int} \operatorname{dom} f$, all y (see page 2.4)

Proof: if $g \in \partial f(x)$ then from page 2.29

$$
f^{\prime}(x ; y) \geq \inf _{\alpha>0} \frac{f(x)+\alpha g^{T} y-f(x)}{\alpha}=g^{T} y
$$

it remains to show that $f^{\prime}(x ; y)=\hat{g}^{T} y$ for at least one $\hat{g} \in \partial f(x)$

- $f^{\prime}(x ; y)$ is convex in y with domain \mathbf{R}^{n}, hence subdifferentiable at all y
- let \hat{g} be a subgradient of $f^{\prime}(x ; y)$ at y : then for all $v, \lambda \geq 0$,

$$
\lambda f^{\prime}(x ; v)=f^{\prime}(x ; \lambda v) \geq f^{\prime}(x ; y)+\hat{g}^{T}(\lambda v-y)
$$

- taking $\lambda \rightarrow \infty$ shows that $f^{\prime}(x ; v) \geq \hat{g}^{T} v$; from the lower bound on page 2.30,

$$
f(x+v) \geq f(x)+f^{\prime}(x ; v) \geq f(x)+\hat{g}^{T} v \quad \text { for all } v
$$

hence $\hat{g} \in \partial f(x)$

- taking $\lambda=0$ we see that $f^{\prime}(x ; y) \leq \hat{g}^{T} y$

Descent directions and subgradients

y is a descent direction of f at x if $f^{\prime}(x ; y)<0$

- the negative gradient of a differentiable f is a descent direction (if $\nabla f(x) \neq 0$)
- negative subgradient is not always a descent direction

Example: $f\left(x_{1}, x_{2}\right)=\left|x_{1}\right|+2\left|x_{2}\right|$

$g=(1,2) \in \partial f(1,0)$, but $y=(-1,-2)$ is not a descent direction at $(1,0)$

Steepest descent direction

Definition: (normalized) steepest descent direction at $x \in \operatorname{int} \operatorname{dom} f$ is

$$
\Delta x_{\mathrm{nsd}}=\underset{\|y\|_{2} \leq 1}{\operatorname{argmin}} f^{\prime}(x ; y)
$$

Δx_{nsd} is the primal solution y of the pair of dual problems (BV §8.1.3)

$$
\begin{array}{llll}
\text { minimize (over } y) & f^{\prime}(x ; y) & \text { maximize (over } g \text {) } & -\|g\|_{2} \\
\text { subject to } & \|y\|_{2} \leq 1 & \text { subject to } & g \in \partial f(x)
\end{array}
$$

- dual optimal g^{\star} is subgradient with least norm
- $f^{\prime}\left(x ; \Delta x_{\mathrm{nsd}}\right)=-\left\|g^{\star}\right\|_{2}$
- if $0 \notin \partial f(x), \Delta x_{\mathrm{nsd}}=-g^{\star} /\left\|g^{\star}\right\|_{2}$
- $\Delta x_{\text {nsd }}$ can be expensive to compute

Subgradients and distance to sublevel sets

if f is convex, $f(y)<f(x), g \in \partial f(x)$, then for small $t>0$,

$$
\begin{aligned}
\|x-\operatorname{tg}-y\|_{2}^{2} & =\|x-y\|_{2}^{2}-2 \operatorname{tg}^{T}(x-y)+t^{2}\|g\|_{2}^{2} \\
& \leq\|x-y\|_{2}^{2}-2 t(f(x)-f(y))+t^{2}\|g\|_{2}^{2} \\
& <\|x-y\|_{2}^{2}
\end{aligned}
$$

- $-g$ is descent direction for $\|x-y\|_{2}$, for any y with $f(y)<f(x)$
- in particular, $-g$ is descent direction for distance to any minimizer of f

References

- A. Beck, First-Order Methods in Optimization (2017), chapter 3.
- D. P. Bertsekas, A. Nedić, A. E. Ozdaglar, Convex Analysis and Optimization (2003), chapter 4.
- J.-B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Minimization Algoritms (1993), chapter VI.
- Yu. Nesterov, Lectures on Convex Optimization (2018), section 3.1.
- B. T. Polyak, Introduction to Optimization (1987), section 5.1.

