2. Subgradients

- definition
- subgradient calculus
- duality and optimality conditions
- directional derivative

Basic inequality

recall the basic inequality for differentiable convex functions:

- the first-order approximation of f at x is a global lower bound
- $\nabla f(x)$ defines non-vertical supporting hyperplane to epigraph of f at (x, f(x)):

$$\begin{bmatrix} \nabla f(x) \\ -1 \end{bmatrix}^T \left(\begin{bmatrix} y \\ t \end{bmatrix} - \begin{bmatrix} x \\ f(x) \end{bmatrix} \right) \le 0 \quad \text{for all } (y,t) \in \text{epi } f$$

Subgradient

g is a subgradient of a convex function f at $x \in \text{dom } f$ if

$$f(y) \ge f(x) + g^T(y - x)$$
 for all $y \in \text{dom } f$

 g_1 , g_2 are subgradients at x_1 ; g_3 is a subgradient at x_2

Subdifferential

the *subdifferential* $\partial f(x)$ of f at x is the set of all subgradients:

$$\partial f(x) = \{g \mid g^T(y - x) \le f(y) - f(x), \ \forall y \in \text{dom } f\}$$

Properties

• $\partial f(x)$ is a closed convex set (possibly empty)

this follows from the definition: $\partial f(x)$ is an intersection of halfspaces

if *x* ∈ int dom *f* then ∂*f*(*x*) is nonempty and bounded
 proof on next two pages

Proof: we show that $\partial f(x)$ is nonempty when $x \in \operatorname{int} \operatorname{dom} f$

- (x, f(x)) is in the boundary of the convex set epi f
- therefore there exists a supporting hyperplane to epi f at (x, f(x)):

$$\exists (a,b) \neq 0, \qquad \left[\begin{array}{c} a \\ b \end{array}\right]^T \left(\left[\begin{array}{c} y \\ t \end{array}\right] - \left[\begin{array}{c} x \\ f(x) \end{array}\right] \right) \leq 0 \qquad \forall (y,t) \in \operatorname{epi} f$$

- b > 0 gives a contradiction as $t \to \infty$
- b = 0 gives a contradiction for $y = x + \epsilon a$ with small $\epsilon > 0$

• therefore
$$b < 0$$
 and $g = \frac{1}{|b|}a$ is a subgradient of f at x

Proof: $\partial f(x)$ is bounded when $x \in \operatorname{int} \operatorname{dom} f$

• for small r > 0, define a set of 2n points

$$B = \{x \pm re_k \mid k = 1, \dots, n\} \subset \operatorname{dom} f$$

and define $M = \max_{y \in B} f(y) < \infty$

• for every $g \in \partial f(x)$, there is a point $y \in B$ with

$$r||g||_{\infty} = g^T(y - x)$$

(choose an index k with $|g_k| = ||g||_{\infty}$, and take $y = x + r \operatorname{sign}(g_k)e_k$)

• since g is a subgradient, this implies that

$$f(x) + r ||g||_{\infty} = f(x) + g^{T}(y - x) \le f(y) \le M$$

• we conclude that $\partial f(x)$ is bounded:

$$\|g\|_{\infty} \le \frac{M - f(x)}{r}$$
 for all $g \in \partial f(x)$

Example

 $f(x) = \max \{f_1(x), f_2(x)\}$ with f_1, f_2 convex and differentiable

- if $f_1(\hat{x}) = f_2(\hat{x})$, subdifferential at \hat{x} is line segment $[\nabla f_1(\hat{x}), \nabla f_2(\hat{x})]$
- if $f_1(\hat{x}) > f_2(\hat{x})$, subdifferential at \hat{x} is $\{\nabla f_1(\hat{x})\}$
- if $f_1(\hat{x}) < f_2(\hat{x})$, subdifferential at \hat{x} is $\{\nabla f_2(\hat{x})\}$

Examples

Absolute value f(x) = |x|

Euclidean norm $f(x) = ||x||_2$

$$\partial f(x) = \{\frac{1}{\|x\|_2}x\}$$
 if $x \neq 0$, $\partial f(x) = \{g \mid \|g\|_2 \le 1\}$ if $x = 0$

Monotonicity

the subdifferential of a convex function is a monotone operator:

$$(u-v)^T(x-y) \ge 0$$
 for all $x, y, u \in \partial f(x), v \in \partial f(y)$

Proof: by definition

$$f(y) \ge f(x) + u^{T}(y - x), \qquad f(x) \ge f(y) + v^{T}(x - y)$$

combining the two inequalities shows monotonicity

Examples of non-subdifferentiable functions

the following functions are not subdifferentiable at x = 0

• $f : \mathbf{R} \to \mathbf{R}$, dom $f = \mathbf{R}_+$

$$f(x) = 1$$
 if $x = 0$, $f(x) = 0$ if $x > 0$

•
$$f : \mathbf{R} \to \mathbf{R}$$
, dom $f = \mathbf{R}_+$
 $f(x) = -\sqrt{x}$

the only supporting hyperplane to epi f at (0, f(0)) is vertical

Subgradients and sublevel sets

if g is a subgradient of f at x, then

$$f(y) \le f(x) \implies g^T(y-x) \le 0$$

the nonzero subgradients at x define supporting hyperplanes to the sublevel set

 $\{y \mid f(y) \le f(x)\}$

Outline

- definition
- subgradient calculus
- duality and optimality conditions
- directional derivative

Subgradient calculus

Weak subgradient calculus: rules for finding one subgradient

- sufficient for most nondifferentiable convex optimization algorithms
- if you can evaluate f(x), you can usually compute a subgradient

Strong subgradient calculus: rules for finding $\partial f(x)$ (*all* subgradients)

- some algorithms, optimality conditions, etc., need entire subdifferential
- can be quite complicated

we will assume that $x \in \operatorname{int} \operatorname{dom} f$

Basic rules

Differentiable functions: $\partial f(x) = \{\nabla f(x)\}$ if *f* is differentiable at *x*

Nonnegative linear combination

if $f(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x)$ with $\alpha_1, \alpha_2 \ge 0$, then

$$\partial f(x) = \alpha_1 \partial f_1(x) + \alpha_2 \partial f_2(x)$$

(right-hand side is addition of sets)

Affine transformation of variables: if f(x) = h(Ax + b), then

$$\partial f(x) = A^T \partial h(Ax + b)$$

Pointwise maximum

 $f(x) = \max \left\{ f_1(x), \dots, f_m(x) \right\}$

define $I(x) = \{i \mid f_i(x) = f(x)\}$, the 'active' functions at x

Weak result

to compute a subgradient at x, choose any $k \in I(x)$, any subgradient of f_k at x

Strong result

$$\partial f(x) = \operatorname{conv} \bigcup_{i \in I(x)} \partial f_i(x)$$

- the convex hull of the union of subdifferentials of 'active' functions at x
- if f_i 's are differentiable, $\partial f(x) = \operatorname{conv} \{ \nabla f_i(x) \mid i \in I(x) \}$

Example: piecewise-linear function

the subdifferential at x is a polyhedron

$$\partial f(x) = \operatorname{conv} \{a_i \mid i \in I(x)\}$$

with
$$I(x) = \{i \mid a_i^T x + b_i = f(x)\}$$

Subgradients

Example: ℓ_1 -norm

$$f(x) = \|x\|_1 = \max_{s \in \{-1,1\}^n} s^T x$$

the subdifferential is a product of intervals

$$\partial f(x) = J_1 \times \dots \times J_n, \qquad J_k = \begin{cases} [-1,1] & x_k = 0\\ \{1\} & x_k > 0\\ \{-1\} & x_k < 0 \end{cases}$$

 $\partial f(0,0) = [-1,1] \times [-1,1] \qquad \qquad \partial f(1,0) = \{1\} \times [-1,1] \qquad \qquad \partial f(1,1) = \{(1,1)\}$

Pointwise supremum

 $f(x) = \sup_{\alpha \in \mathcal{A}} f_{\alpha}(x), \qquad f_{\alpha}(x) \text{ convex in } x \text{ for every } \alpha$

Weak result: to find a subgradient at \hat{x} ,

- find any β for which $f(\hat{x}) = f_{\beta}(\hat{x})$ (assuming maximum is attained)
- choose any $g \in \partial f_{\beta}(\hat{x})$

(Partial) strong result: define $I(x) = \{ \alpha \in \mathcal{A} \mid f_{\alpha}(x) = f(x) \}$

$$\operatorname{conv} \bigcup_{\alpha \in I(x)} \partial f_{\alpha}(x) \subseteq \partial f(x)$$

equality requires extra conditions (for example, \mathcal{A} compact, f_{α} continuous in α)

Exercise: maximum eigenvalue

Problem: explain how to find a subgradient of

$$f(x) = \lambda_{\max}(A(x)) = \sup_{\|y\|_2=1} y^T A(x) y$$

where $A(x) = A_0 + x_1A_1 + \cdots + x_nA_n$ with symmetric coefficients A_i

Solution: to find a subgradient at \hat{x} ,

- choose *any* unit eigenvector y with eigenvalue $\lambda_{\max}(A(\hat{x}))$
- the gradient of $y^T A(x) y$ at \hat{x} is a subgradient of f:

$$(y^T A_1 y, \ldots, y^T A_n y) \in \partial f(\hat{x})$$

Minimization

 $f(x) = \inf_{y} h(x, y),$ h jointly convex in (x, y)

Weak result: to find a subgradient at \hat{x} ,

- find \hat{y} that minimizes $h(\hat{x}, y)$ (assuming minimum is attained)
- find subgradient $(g, 0) \in \partial h(\hat{x}, \hat{y})$

Proof: for all
$$x$$
, y ,

$$h(x, y) \geq h(\hat{x}, \hat{y}) + g^T (x - \hat{x}) + 0^T (y - \hat{y})$$
$$= f(\hat{x}) + g^T (x - \hat{x})$$

therefore

$$f(x) = \inf_{y} h(x, y) \ge f(\hat{x}) + g^{T}(x - \hat{x})$$

Exercise: Euclidean distance to convex set

Problem: explain how to find a subgradient of

 $f(x) = \inf_{y \in C} \|x - y\|_2$

where C is a closed convex set

Solution: to find a subgradient at \hat{x} ,

- if $f(\hat{x}) = 0$ (that is, $\hat{x} \in C$), take g = 0
- if $f(\hat{x}) > 0$, find projection $\hat{y} = P(\hat{x})$ on *C* and take

$$g = \frac{1}{\|\hat{y} - \hat{x}\|_2}(\hat{x} - \hat{y}) = \frac{1}{\|\hat{x} - P(\hat{x})\|_2}(\hat{x} - P(\hat{x}))$$

Composition

 $f(x) = h(f_1(x), \dots, f_k(x)),$ h convex and nondecreasing, f_i convex

Weak result: to find a subgradient at \hat{x} ,

- find $z \in \partial h(f_1(\hat{x}), \dots, f_k(\hat{x}))$ and $g_i \in \partial f_i(\hat{x})$
- then $g = z_1g_1 + \dots + z_kg_k \in \partial f(\hat{x})$

reduces to standard formula for differentiable h, f_i

Proof:

$$f(x) \geq h\left(f_{1}(\hat{x}) + g_{1}^{T}(x - \hat{x}), \dots, f_{k}(\hat{x}) + g_{k}^{T}(x - \hat{x})\right)$$

$$\geq h\left(f_{1}(\hat{x}), \dots, f_{k}(\hat{x})\right) + z^{T}\left(g_{1}^{T}(x - \hat{x}), \dots, g_{k}^{T}(x - \hat{x})\right)$$

$$= h\left(f_{1}(\hat{x}), \dots, f_{k}(\hat{x})\right) + (z_{1}g_{1} + \dots + z_{k}g_{k})^{T}(x - \hat{x})$$

$$= f(\hat{x}) + g^{T}(x - \hat{x})$$

Optimal value function

define f(u, v) as the optimal value of convex problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le u_i$, $i = 1, ..., m$
 $Ax = b + v$

(functions f_i are convex; optimization variable is x)

Weak result: suppose $f(\hat{u}, \hat{v})$ is finite and strong duality holds with the dual

$$\begin{array}{ll} \text{maximize} & \inf_{x} \left(f_0(x) + \sum_{i} \lambda_i (f_i(x) - \hat{u}_i) + \nu^T (Ax - b - \hat{v}) \right) \\ \text{subject to} & \lambda \ge 0 \end{array}$$

if $\hat{\lambda}$, $\hat{\nu}$ are dual optimal (for right-hand sides \hat{u}, \hat{v}) then $(-\hat{\lambda}, -\hat{\nu}) \in \partial f(\hat{u}, \hat{v})$

Subgradients

Proof: by weak duality for problem with right-hand sides u, v

$$f(u,v) \geq \inf_{x} \left(f_{0}(x) + \sum_{i} \hat{\lambda}_{i}(f_{i}(x) - u_{i}) + \hat{v}^{T}(Ax - b - v) \right)$$
$$= \inf_{x} \left(f_{0}(x) + \sum_{i} \hat{\lambda}_{i}(f_{i}(x) - \hat{u}_{i}) + \hat{v}^{T}(Ax - b - \hat{v}) \right)$$
$$- \hat{\lambda}^{T}(u - \hat{u}) - \hat{v}^{T}(v - \hat{v})$$
$$= f(\hat{u}, \hat{v}) - \hat{\lambda}^{T}(u - \hat{u}) - \hat{v}^{T}(v - \hat{v})$$

Expectation

 $f(x) = \mathbf{E} h(x, u)$ *u* random, *h* convex in *x* for every *u*

Weak result: to find a subgradient at \hat{x} ,

- choose a function $u \mapsto g(u)$ with $g(u) \in \partial_x h(\hat{x}, u)$
- then, $g = \mathbf{E}_u g(u) \in \partial f(\hat{x})$

Proof: by convexity of h and definition of g(u),

$$f(x) = \mathbf{E} h(x, u)$$

$$\geq \mathbf{E} \left(h(\hat{x}, u) + g(u)^T (x - \hat{x}) \right)$$

$$= f(\hat{x}) + g^T (x - \hat{x})$$

Outline

- definition
- subgradient calculus
- duality and optimality conditions
- directional derivative

Optimality conditions — unconstrained

 x^{\star} minimizes f(x) if and only

 $0\in\partial f(x^{\star})$

this follows directly from the definition of subgradient:

$$f(y) \ge f(x^{\star}) + 0^T (y - x^{\star})$$
 for all $y \iff 0 \in \partial f(x^{\star})$

Example: piecewise-linear minimization

$$f(x) = \max_{i=1,\dots,m} \left(a_i^T x + b_i\right)$$

Optimality condition

$$0 \in \operatorname{conv} \{a_i \mid i \in I(x^*)\} \quad \text{where } I(x) = \{i \mid a_i^T x + b_i = f(x)\}$$

• in other words, x^* is optimal if and only if there is a λ with

$$\lambda \ge 0,$$
 $\mathbf{1}^T \lambda = 1,$ $\sum_{i=1}^m \lambda_i a_i = 0,$ $\lambda_i = 0$ for $i \notin I(x^*)$

• these are the optimality conditions for the equivalent linear program

$$\begin{array}{ll} \text{minimize} & t & \text{maximize} & b^T \lambda \\ \text{subject to} & Ax + b \leq t \mathbf{1} & \text{subject to} & A^T \lambda = 0 \\ & \lambda \geq 0, \quad \mathbf{1}^T \lambda = 1 \end{array}$$

Optimality conditions — constrained

minimize $f_0(x)$ subject to $f_i(x) \le 0$, i = 1, ..., m

assume dom $f_i = \mathbf{R}^n$, so functions f_i are subdifferentiable everywhere

Karush–Kuhn–Tucker conditions

if strong duality holds, then x^* , λ^* are primal, dual optimal if and only if

1. x^* is primal feasible

2. $\lambda^{\star} \geq 0$

3.
$$\lambda_i^{\star} f_i(x^{\star}) = 0$$
 for $i = 1, ..., m$

4. x^* is a minimizer of $L(x, \lambda^*) = f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x)$:

$$0 \in \partial f_0(x^{\star}) + \sum_{i=1}^m \lambda_i^{\star} \partial f_i(x^{\star})$$

Outline

- definition
- subgradient calculus
- duality and optimality conditions
- directional derivative

Directional derivative

Definition (for general f): the *directional derivative* of f at x in the direction y is

$$f'(x; y) = \lim_{\alpha \searrow 0} \frac{f(x + \alpha y) - f(x)}{\alpha}$$
$$= \lim_{t \to \infty} \left(tf(x + \frac{1}{t}y) - tf(x) \right)$$

(if the limit exists)

- f'(x; y) is the right derivative of $g(\alpha) = f(x + \alpha y)$ at $\alpha = 0$
- f'(x; y) is homogeneous in y:

$$f'(x; \lambda y) = \lambda f'(x; y) \text{ for } \lambda \ge 0$$

Directional derivative of a convex function

Equivalent definition (for convex f): replace lim with inf

$$f'(x; y) = \inf_{\alpha > 0} \frac{f(x + \alpha y) - f(x)}{\alpha}$$
$$= \inf_{t > 0} \left(tf(x + \frac{1}{t}y) - tf(x) \right)$$

Proof

- the function h(y) = f(x + y) f(x) is convex in y, with h(0) = 0
- its perspective th(y/t) is nonincreasing in t (ECE236B ex. A3.5); hence

$$f'(x; y) = \lim_{t \to \infty} th(y/t) = \inf_{t > 0} th(y/t)$$

Properties

consequences of the expressions (for convex f)

$$f'(x;y) = \inf_{\alpha>0} \frac{f(x+\alpha y) - f(x)}{\alpha}$$
$$= \inf_{t>0} \left(tf(x+\frac{1}{t}y) - tf(x) \right)$$

- f'(x; y) is convex in y (partial minimization of a convex function in y, t)
- f'(x; y) defines a lower bound on f in the direction y:

$$f(x + \alpha y) \ge f(x) + \alpha f'(x; y)$$
 for all $\alpha \ge 0$

Directional derivative and subgradients

for convex f and $x \in \operatorname{int} \operatorname{dom} f$

- generalizes $f'(x; y) = \nabla f(x)^T y$ for differentiable functions
- implies that f'(x; y) exists for all $x \in int \text{ dom } f$, all y (see page 2.4)

Proof: if $g \in \partial f(x)$ then from page 2.29

$$f'(x; y) \ge \inf_{\alpha > 0} \frac{f(x) + \alpha g^T y - f(x)}{\alpha} = g^T y$$

it remains to show that $f'(x; y) = \hat{g}^T y$ for at least one $\hat{g} \in \partial f(x)$

- f'(x; y) is convex in y with domain \mathbb{R}^n , hence subdifferentiable at all y
- let \hat{g} be a subgradient of f'(x; y) at y: then for all $v, \lambda \ge 0$,

$$\lambda f'(x;v) = f'(x;\lambda v) \ge f'(x;y) + \hat{g}^T(\lambda v - y)$$

• taking $\lambda \to \infty$ shows that $f'(x; v) \ge \hat{g}^T v$; from the lower bound on page 2.30,

$$f(x+v) \ge f(x) + f'(x;v) \ge f(x) + \hat{g}^T v \text{ for all } v$$

hence $\hat{g} \in \partial f(x)$

• taking $\lambda = 0$ we see that $f'(x; y) \leq \hat{g}^T y$

Subgradients

Descent directions and subgradients

y is a *descent direction* of *f* at *x* if f'(x; y) < 0

- the negative gradient of a differentiable f is a descent direction (if $\nabla f(x) \neq 0$)
- negative subgradient is **not** always a descent direction

Example: $f(x_1, x_2) = |x_1| + 2|x_2|$

$$g = (1, 2) \in \partial f(1, 0)$$
, but $y = (-1, -2)$ is not a descent direction at $(1, 0)$

Steepest descent direction

Definition: (normalized) steepest descent direction at $x \in int \text{ dom } f$ is

 $\Delta x_{\text{nsd}} = \underset{\|y\|_2 \le 1}{\operatorname{argmin}} f'(x; y)$

 Δx_{nsd} is the primal solution *y* of the pair of dual problems (BV §8.1.3)

minimize (over y)f'(x; y)maximize (over g) $-||g||_2$ subject to $||y||_2 \le 1$ subject to $g \in \partial f(x)$

- dual optimal g^{\star} is subgradient with least norm
- $f'(x; \Delta x_{\text{nsd}}) = -\|g^{\star}\|_2$
- if $0 \notin \partial f(x)$, $\Delta x_{nsd} = -g^* / ||g^*||_2$
- Δx_{nsd} can be expensive to compute

Subgradients and distance to sublevel sets

if f is convex, f(y) < f(x), $g \in \partial f(x)$, then for small t > 0,

$$\begin{aligned} \|x - tg - y\|_{2}^{2} &= \|x - y\|_{2}^{2} - 2tg^{T}(x - y) + t^{2}\|g\|_{2}^{2} \\ &\leq \|x - y\|_{2}^{2} - 2t(f(x) - f(y)) + t^{2}\|g\|_{2}^{2} \\ &< \|x - y\|_{2}^{2} \end{aligned}$$

- -g is descent direction for $||x y||_2$, for **any** *y* with f(y) < f(x)
- in particular, -g is descent direction for distance to any minimizer of f

References

- A. Beck, *First-Order Methods in Optimization* (2017), chapter 3.
- D. P. Bertsekas, A. Nedić, A. E. Ozdaglar, *Convex Analysis and Optimization* (2003), chapter 4.
- J.-B. Hiriart-Urruty, C. Lemaréchal, *Convex Analysis and Minimization Algoritms* (1993), chapter VI.
- Yu. Nesterov, *Lectures on Convex Optimization* (2018), section 3.1.
- B. T. Polyak, Introduction to Optimization (1987), section 5.1.