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2. Subgradients

• definition

• subgradient calculus

• duality and optimality conditions

• directional derivative

2.1



Basic inequality

recall the basic inequality for differentiable convex functions:

5 (H) ≥ 5 (G) + ∇ 5 (G)) (H − G) for all H ∈ dom 5

[ ∇ 5 (G)
−1

](G, 5 (G))

• the first-order approximation of 5 at G is a global lower bound

• ∇ 5 (G) defines non-vertical supporting hyperplane to epigraph of 5 at (G, 5 (G)):
[ ∇ 5 (G)
−1

]) ( [
H
C

]
−

[
G
5 (G)

] )
≤ 0 for all (H, C) ∈ epi 5
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Subgradient

6 is a subgradient of a convex function 5 at G ∈ dom 5 if

5 (H) ≥ 5 (G) + 6) (H − G) for all H ∈ dom 5

G1 G2

5 (G1) + 6)1 (H − G1)

5 (G1) + 6)2 (H − G1)

5 (G2) + 6)3 (H − G2)

5 (H)

61, 62 are subgradients at G1; 63 is a subgradient at G2
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Subdifferential

the subdifferential m 5 (G) of 5 at G is the set of all subgradients:

m 5 (G) = {6 | 6) (H − G) ≤ 5 (H) − 5 (G), ∀H ∈ dom 5 }

Properties

• m 5 (G) is a closed convex set (possibly empty)

this follows from the definition: m 5 (G) is an intersection of halfspaces

• if G ∈ int dom 5 then m 5 (G) is nonempty and bounded

proof on next two pages

Subgradients 2.4



Proof: we show that m 5 (G) is nonempty when G ∈ int dom 5

• (G, 5 (G)) is in the boundary of the convex set epi 5

• therefore there exists a supporting hyperplane to epi 5 at (G, 5 (G)):

∃(0, 1) ≠ 0,
[
0
1

]) ( [
H
C

]
−

[
G
5 (G)

] )
≤ 0 ∀(H, C) ∈ epi 5

• 1 > 0 gives a contradiction as C →∞

• 1 = 0 gives a contradiction for H = G + n0 with small n > 0

• therefore 1 < 0 and 6 =
1
|1 |0 is a subgradient of 5 at G
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Proof: m 5 (G) is bounded when G ∈ int dom 5

• for small A > 0, define a set of 2= points

� = {G ± A4: | : = 1, . . . , =} ⊂ dom 5

and define " = max
H∈�

5 (H) < ∞

• for every 6 ∈ m 5 (G), there is a point H ∈ � with

A ‖6‖∞ = 6) (H − G)

(choose an index : with |6: | = ‖6‖∞, and take H = G + A sign(6:)4:)
• since 6 is a subgradient, this implies that

5 (G) + A ‖6‖∞ = 5 (G) + 6) (H − G) ≤ 5 (H) ≤ "

• we conclude that m 5 (G) is bounded:

‖6‖∞ ≤ " − 5 (G)
A

for all 6 ∈ m 5 (G)
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Example

5 (G) = max { 51(G), 52(G)} with 51, 52 convex and differentiable

51(H)

52(H)

5 (H)

• if 51(Ĝ) = 52(Ĝ), subdifferential at Ĝ is line segment [∇ 51(Ĝ),∇ 52(Ĝ)]
• if 51(Ĝ) > 52(Ĝ), subdifferential at Ĝ is {∇ 51(Ĝ)}
• if 51(Ĝ) < 52(Ĝ), subdifferential at Ĝ is {∇ 52(Ĝ)}

Subgradients 2.7



Examples

Absolute value 5 (G) = |G |

G

5 (G)

1

−1

G

m 5 (G)

Euclidean norm 5 (G) = ‖G‖2

m 5 (G) = { 1
‖G‖2

G} if G ≠ 0, m 5 (G) = {6 | ‖6‖2 ≤ 1} if G = 0
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Monotonicity

the subdifferential of a convex function is a monotone operator:

(D − {)) (G − H) ≥ 0 for all G, H, D ∈ m 5 (G), { ∈ m 5 (H)

Proof: by definition

5 (H) ≥ 5 (G) + D) (H − G), 5 (G) ≥ 5 (H) + {) (G − H)

combining the two inequalities shows monotonicity
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Examples of non-subdifferentiable functions

the following functions are not subdifferentiable at G = 0

• 5 : R→ R, dom 5 = R+

5 (G) = 1 if G = 0, 5 (G) = 0 if G > 0

• 5 : R→ R, dom 5 = R+
5 (G) = −√G

the only supporting hyperplane to epi 5 at (0, 5 (0)) is vertical
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Subgradients and sublevel sets

if 6 is a subgradient of 5 at G, then

5 (H) ≤ 5 (G) =⇒ 6) (H − G) ≤ 0

6

5 (H) ≤ 5 (G)
G

the nonzero subgradients at G define supporting hyperplanes to the sublevel set

{H | 5 (H) ≤ 5 (G)}
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Subgradient calculus

Weak subgradient calculus: rules for finding one subgradient

• sufficient for most nondifferentiable convex optimization algorithms

• if you can evaluate 5 (G), you can usually compute a subgradient

Strong subgradient calculus: rules for finding m 5 (G) (all subgradients)
• some algorithms, optimality conditions, etc., need entire subdifferential

• can be quite complicated

we will assume that G ∈ int dom 5
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Basic rules

Differentiable functions: m 5 (G) = {∇ 5 (G)} if 5 is differentiable at G

Nonnegative linear combination

if 5 (G) = U1 51(G) + U2 52(G) with U1, U2 ≥ 0, then

m 5 (G) = U1m 51(G) + U2m 52(G)

(right-hand side is addition of sets)

Affine transformation of variables: if 5 (G) = ℎ(�G + 1), then

m 5 (G) = �)mℎ(�G + 1)
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Pointwise maximum

5 (G) = max { 51(G), . . . , 5< (G)}

define � (G) = {8 | 58 (G) = 5 (G)}, the ‘active’ functions at G

Weak result

to compute a subgradient at G, choose any : ∈ � (G), any subgradient of 5: at G

Strong result
m 5 (G) = conv

⋃
8∈� (G)

m 58 (G)

• the convex hull of the union of subdifferentials of ‘active’ functions at G

• if 58’s are differentiable, m 5 (G) = conv {∇ 58 (G) | 8 ∈ � (G)}
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Example: piecewise-linear function

5 (G) = max
8=1,...,<

(0)8 G + 18)

5 (G)

0)8 G + 18

G

the subdifferential at G is a polyhedron

m 5 (G) = conv {08 | 8 ∈ � (G)}

with � (G) = {8 | 0)8 G + 18 = 5 (G)}
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Example: ℓ1-norm

5 (G) = ‖G‖1 = max
B∈{−1,1}=

B)G

the subdifferential is a product of intervals

m 5 (G) = �1 × · · · × �=, �: =



[−1, 1] G: = 0
{1} G: > 0
{−1} G: < 0

(1, 1)(−1, 1)

(−1,−1) (1,−1)

(1, 1)

(1,−1)

(1, 1)

m 5 (0, 0) = [−1, 1] × [−1, 1] m 5 (1, 0) = {1} × [−1, 1] m 5 (1, 1) = {(1, 1)}
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Pointwise supremum

5 (G) = sup
U∈A

5U(G), 5U(G) convex in G for every U

Weak result: to find a subgradient at Ĝ,

• find any V for which 5 (Ĝ) = 5V(Ĝ) (assuming maximum is attained)

• choose any 6 ∈ m 5V(Ĝ)

(Partial) strong result: define � (G) = {U ∈ A | 5U(G) = 5 (G)}

conv
⋃
U∈� (G)

m 5U(G) ⊆ m 5 (G)

equality requires extra conditions (for example, A compact, 5U continuous in U)
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Exercise: maximum eigenvalue

Problem: explain how to find a subgradient of

5 (G) = _max(�(G)) = sup
‖H‖2=1

H)�(G)H

where �(G) = �0 + G1�1 + · · · + G=�= with symmetric coefficients �8

Solution: to find a subgradient at Ĝ,

• choose any unit eigenvector H with eigenvalue _max(�(Ĝ))
• the gradient of H)�(G)H at Ĝ is a subgradient of 5 :

(H)�1H, . . . , H
)�=H) ∈ m 5 (Ĝ)
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Minimization

5 (G) = inf
H
ℎ(G, H), ℎ jointly convex in (G, H)

Weak result: to find a subgradient at Ĝ,

• find Ĥ that minimizes ℎ(Ĝ, H) (assuming minimum is attained)

• find subgradient (6, 0) ∈ mℎ(Ĝ, Ĥ)

Proof: for all G, H,

ℎ(G, H) ≥ ℎ(Ĝ, Ĥ) + 6) (G − Ĝ) + 0) (H − Ĥ)
= 5 (Ĝ) + 6) (G − Ĝ)

therefore
5 (G) = inf

H
ℎ(G, H) ≥ 5 (Ĝ) + 6) (G − Ĝ)
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Exercise: Euclidean distance to convex set

Problem: explain how to find a subgradient of

5 (G) = inf
H∈�
‖G − H‖2

where � is a closed convex set

Solution: to find a subgradient at Ĝ,

• if 5 (Ĝ) = 0 (that is, Ĝ ∈ �), take 6 = 0

• if 5 (Ĝ) > 0, find projection Ĥ = %(Ĝ) on � and take

6 =
1

‖ Ĥ − Ĝ‖2
(Ĝ − Ĥ) = 1

‖Ĝ − %(Ĝ)‖2
(Ĝ − %(Ĝ))
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Composition

5 (G) = ℎ( 51(G), . . . , 5: (G)), ℎ convex and nondecreasing, 58 convex

Weak result: to find a subgradient at Ĝ,

• find I ∈ mℎ( 51(Ĝ), . . . , 5: (Ĝ)) and 68 ∈ m 58 (Ĝ)
• then 6 = I161 + · · · + I:6: ∈ m 5 (Ĝ)

reduces to standard formula for differentiable ℎ, 58

Proof:

5 (G) ≥ ℎ
(
51(Ĝ) + 6)1 (G − Ĝ), . . . , 5: (Ĝ) + 6): (G − Ĝ)

)
≥ ℎ ( 51(Ĝ), . . . , 5: (Ĝ)) + I)

(
6)1 (G − Ĝ), . . . , 6): (G − Ĝ)

)
= ℎ ( 51(Ĝ), . . . , 5: (Ĝ)) + (I161 + · · · + I:6:)) (G − Ĝ)
= 5 (Ĝ) + 6) (G − Ĝ)
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Optimal value function

define 5 (D, {) as the optimal value of convex problem

minimize 50(G)
subject to 58 (G) ≤ D8, 8 = 1, . . . , <

�G = 1 + {

(functions 58 are convex; optimization variable is G)

Weak result: suppose 5 (D̂, {̂) is finite and strong duality holds with the dual

maximize inf
G

(
50(G) +

∑
8

_8 ( 58 (G) − D̂8) + a) (�G − 1 − {̂)
)

subject to _ � 0

if _̂, â are dual optimal (for right-hand sides D̂, {̂) then (−_̂,−â) ∈ m 5 (D̂, {̂)
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Proof: by weak duality for problem with right-hand sides D, {

5 (D, {) ≥ inf
G

(
50(G) +

∑
8

_̂8 ( 58 (G) − D8) + â) (�G − 1 − {)
)

= inf
G

(
50(G) +

∑
8

_̂8 ( 58 (G) − D̂8) + â) (�G − 1 − {̂)
)

− _̂) (D − D̂) − â) ({ − {̂)
= 5 (D̂, {̂) − _̂) (D − D̂) − â) ({ − {̂)
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Expectation

5 (G) = E ℎ(G, D) D random, ℎ convex in G for every D

Weak result: to find a subgradient at Ĝ,

• choose a function D ↦→ 6(D) with 6(D) ∈ mGℎ(Ĝ, D)
• then, 6 = ED 6(D) ∈ m 5 (Ĝ)

Proof: by convexity of ℎ and definition of 6(D),

5 (G) = E ℎ(G, D)
≥ E

(
ℎ(Ĝ, D) + 6(D)) (G − Ĝ)

)
= 5 (Ĝ) + 6) (G − Ĝ)
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Optimality conditions — unconstrained

G★ minimizes 5 (G) if and only
0 ∈ m 5 (G★)

G★

5 (H)

this follows directly from the definition of subgradient:

5 (H) ≥ 5 (G★) + 0) (H − G★) for all H ⇐⇒ 0 ∈ m 5 (G★)
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Example: piecewise-linear minimization

5 (G) = max
8=1,...,<

(0)8 G + 18)

Optimality condition

0 ∈ conv {08 | 8 ∈ � (G★)} where � (G) = {8 | 0)8 G + 18 = 5 (G)}

• in other words, G★ is optimal if and only if there is a _ with

_ � 0, 1)_ = 1,
<∑
8=1

_808 = 0, _8 = 0 for 8 ∉ � (G★)

• these are the optimality conditions for the equivalent linear program

minimize C
subject to �G + 1 � C1

maximize 1)_
subject to �)_ = 0

_ � 0, 1)_ = 1
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Optimality conditions — constrained

minimize 50(G)
subject to 58 (G) ≤ 0, 8 = 1, . . . , <

assume dom 58 = R=, so functions 58 are subdifferentiable everywhere

Karush–Kuhn–Tucker conditions

if strong duality holds, then G★, _★ are primal, dual optimal if and only if

1. G★ is primal feasible

2. _★ � 0

3. _★8 58 (G★) = 0 for 8 = 1, . . . , <

4. G★ is a minimizer of ! (G, _★) = 50(G) +∑<
8=1 _

★
8 58 (G):

0 ∈ m 50(G★) +
<∑
8=1

_★8 m 58 (G★)
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Directional derivative

Definition (for general 5 ): the directional derivative of 5 at G in the direction H is

5 ′(G; H) = lim
U↘0

5 (G + UH) − 5 (G)
U

= lim
C→∞

(
C 5 (G + 1

C
H) − C 5 (G)

)

(if the limit exists)

• 5 ′(G; H) is the right derivative of 6(U) = 5 (G + UH) at U = 0

• 5 ′(G; H) is homogeneous in H:

5 ′(G;_H) = _ 5 ′(G; H) for _ ≥ 0
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Directional derivative of a convex function

Equivalent definition (for convex 5 ): replace lim with inf

5 ′(G; H) = inf
U>0

5 (G + UH) − 5 (G)
U

= inf
C>0

(
C 5 (G + 1

C
H) − C 5 (G)

)

Proof

• the function ℎ(H) = 5 (G + H) − 5 (G) is convex in H, with ℎ(0) = 0

• its perspective Cℎ(H/C) is nonincreasing in C (ECE236B ex. A3.5); hence

5 ′(G; H) = lim
C→∞ Cℎ(H/C) = inf

C>0
Cℎ(H/C)
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Properties

consequences of the expressions (for convex 5 )

5 ′(G; H) = inf
U>0

5 (G + UH) − 5 (G)
U

= inf
C>0

(
C 5 (G + 1

C
H) − C 5 (G)

)

• 5 ′(G; H) is convex in H (partial minimization of a convex function in H, C)

• 5 ′(G; H) defines a lower bound on 5 in the direction H:

5 (G + UH) ≥ 5 (G) + U 5 ′(G; H) for all U ≥ 0

Subgradients 2.30



Directional derivative and subgradients

for convex 5 and G ∈ int dom 5

5 ′(G; H) = sup
6∈m 5 (G)

6) H

H

5̂ ′(G, H) = 6) H

6̂

m 5 (G)
5 ′(G; H) is support function of m 5 (G)

• generalizes 5 ′(G; H) = ∇ 5 (G)) H for differentiable functions

• implies that 5 ′(G; H) exists for all G ∈ int dom 5 , all H (see page 2.4)
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Proof: if 6 ∈ m 5 (G) then from page 2.29

5 ′(G; H) ≥ inf
U>0

5 (G) + U6) H − 5 (G)
U

= 6) H

it remains to show that 5 ′(G; H) = 6̂) H for at least one 6̂ ∈ m 5 (G)

• 5 ′(G; H) is convex in H with domain R=, hence subdifferentiable at all H

• let 6̂ be a subgradient of 5 ′(G; H) at H: then for all {, _ ≥ 0,

_ 5 ′(G; {) = 5 ′(G;_{) ≥ 5 ′(G; H) + 6̂) (_{ − H)

• taking _→∞ shows that 5 ′(G; {) ≥ 6̂){; from the lower bound on page 2.30,

5 (G + {) ≥ 5 (G) + 5 ′(G; {) ≥ 5 (G) + 6̂){ for all {

hence 6̂ ∈ m 5 (G)

• taking _ = 0 we see that 5 ′(G; H) ≤ 6̂) H

Subgradients 2.32



Descent directions and subgradients

H is a descent direction of 5 at G if 5 ′(G; H) < 0

• the negative gradient of a differentiable 5 is a descent direction (if ∇ 5 (G) ≠ 0)

• negative subgradient is not always a descent direction

Example: 5 (G1, G2) = |G1 | + 2|G2 |

6 = (1, 2)

G1

G2

(1, 0)

6 = (1, 2) ∈ m 5 (1, 0), but H = (−1,−2) is not a descent direction at (1, 0)

Subgradients 2.33



Steepest descent direction

Definition: (normalized) steepest descent direction at G ∈ int dom 5 is

ΔGnsd = argmin
‖H‖2≤1

5 ′(G; H)

ΔGnsd is the primal solution H of the pair of dual problems (BV §8.1.3)

minimize (over H) 5 ′(G; H)
subject to ‖H‖2 ≤ 1

maximize (over 6) −‖6‖2
subject to 6 ∈ m 5 (G)

• dual optimal 6★ is subgradient with least norm

• 5 ′(G;ΔGnsd) = −‖6★‖2
• if 0 ∉ m 5 (G), ΔGnsd = −6★/‖6★‖2
• ΔGnsd can be expensive to compute

m 5 (G)
6★

ΔGnsd 6)ΔGnsd = 5 ′(G,ΔGnsd)
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Subgradients and distance to sublevel sets

if 5 is convex, 5 (H) < 5 (G), 6 ∈ m 5 (G), then for small C > 0,

‖G − C6 − H‖22 = ‖G − H‖22 − 2C6) (G − H) + C2‖6‖22
≤ ‖G − H‖22 − 2C ( 5 (G) − 5 (H)) + C2‖6‖22
< ‖G − H‖22

• −6 is descent direction for ‖G − H‖2, for any H with 5 (H) < 5 (G)

• in particular, −6 is descent direction for distance to any minimizer of 5
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