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2. Subgradients

e definition
e subgradient calculus
e duality and optimality conditions

e directional derivative
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Basic inequality

recall the basic inequality for differentiable convex functions:

f(y) = F(x)+Vf(x) (y=x) forally e dom f

(x, f(x))
[ Vfx) ]

e the first-order approximation of f at x is a global lower bound

e V f(x) defines non-vertical supporting hyperplane to epigraph of f at (x, f(x)):

I
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) <0 forall (y,t) €epif



Subgradient

g is a subgradient of a convex function f at x € dom f if

f(y) = f(x) +gT(y —x) forally € dom f

f()

fx1) +gl (v —x1)

fx1) +gh(y—x1)

f(02) +83(y —x2)

X1 X2

g1, &2 are subgradients at x1; g3 is a subgradient at x;
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Subdifferential

the subdifferential 0 f (x) of f at x is the set of all subgradients:

af(x)={g g (y—x) < f(y) - f(x), Vy € dom f}

Properties

e 0 f(x) is aclosed convex set (possibly empty)

this follows from the definition: d f(x) is an intersection of halfspaces

e if x € intdom f then 0 f(x) is nonempty and bounded

proof on next two pages
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Proof: we show that 0 f (x) is nonempty when x € intdom f

e (x, f(x)) is in the boundary of the convex set epi f

e therefore there exists a supporting hyperplane to epi f at (x, f(x)):

d(a,b) # 0, [

a

b

]T([ : ]‘[ £

) <0 V(y,t)eepif

e b > ( gives a contradiction as t —

e b = (0 gives a contradiction for y = x + ea with small € > 0

e therefore b <0Oand g =
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a is a subgradient of f at x
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Proof: 0 f(x) is bounded when x € intdom f

e for small r > 0, define a set of 2n points
B={xzxre,|k=1,...,n} Cdom f
and define M = max f(y) < oo

YEB
o for every g € 0 f(x), there is a point y € B with

rliglleo = &' (y — x)

(choose an index k with |gx| = ||g]|le, and take y = x + r sign(gy)ey)

e since g is a subgradient, this implies that
F@+rlgle=fx)+8" G -x) < f(y) <M

e we conclude that d f(x) is bounded:

M — f(x)

1glleo < forall g € 4 f(x)
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Example

f(x) =max {fi(x), /(x)} with fi, f» convex and differentiable

o if f1(X) = f2(X), subdifferential at £ is line segment [V f1 (%), V f2(X)]
o if f1(X) > f2(X), subdifferential at X is {V f1(£) }
o if f1(X) < f2(%), subdifferential at £ is {V f2(X) }
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Examples

Absolute value f(x) = |x|

f(x) df(x)

Euclidean norm f(x) = ||x]||»

af<x>={ﬁx} fx#0, 0f(x)=1{g]lgl<1} ifx=0
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Monotonicity

the subdifferential of a convex function is a monotone operator:

(u—0)'(x=y)=0 forallx,y,ucdf(x),vedf(y

Proof: by definition

FO) = f@+u’ (y=x),  f) 2 f)+0"(x-y)

combining the two inequalities shows monotonicity
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Examples of non-subdifferentiable functions

the following functions are not subdifferentiable at x = 0
e f:R—R,domf =R,

f(x)=1 ifx=0, f(x)=0 ifx>0

e f:R— R,domf =R,
fx) = =Vx

the only supporting hyperplane to epi f at (0, f(0)) is vertical
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Subgradients and sublevel sets

if g is a subgradient of f at x, then

f)<fx) = gy-x<0

the nonzero subgradients at x define supporting hyperplanes to the sublevel set

SANACOIEVACY);
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Subgradient calculus

Weak subgradient calculus: rules for finding one subgradient

e sufficient for most nondifferentiable convex optimization algorithms

e if you can evaluate f(x), you can usually compute a subgradient

Strong subgradient calculus: rules for finding d f (x) (all subgradients)

e some algorithms, optimality conditions, etc., need entire subdifferential

e can be quite complicated

we will assume that x € intdom f
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Basic rules

Differentiable functions: 0 f(x) = {V f(x)} if f is differentiable at x

Nonnegative linear combination

if f(x)=a;fi(x)+arfr(x) with ay,ap > 0, then

0f(x) = a10f1(x) + a20 f>(x)

(right-hand side is addition of sets)

Affine transformation of variables: if f(x) = h(Ax + b), then

df(x) = ATOh(Ax + b)
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Pointwise maximum

f(x) =max {fi(x),..., fn(x)}

define I(x) = {i | fi(x) = f(x)}, the ‘active’ functions at x

Weak result

to compute a subgradient at x, choose any k € I(x), any subgradient of f; at x

Strong result

0f(x) =conv U 0 fi(x)

iel(x)

e the convex hull of the union of subdifferentials of ‘active’ functions at x

e if f;’s are differentiable, 0 f(x) = conv{Vfi(x) |i € I(x)}
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Example: piecewise-linear function

f(x) = max (al x+b;)
i=1,....m

the subdifferential at x is a polyhedron
Of(x) =conv{a; |ie€l(x)}

with I(x) = {i | aiTx +b;i=f(x)}
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Example: {;-norm

T
X)=|1X|l1 = mMmax § X
F) = il = _max

the subdifferential is a product of intervals

[—1, 1] Xk = 0
Hf(x):]1><~-><.ln, Ji = {1} x>0
{—1} x <0
(-1,1) (1,1) (1,1) e(1,1)
(-1,-1) (1,-1) (1)
0f(0,0) = [-1,1] x [-1,1] 0f(1,0) = {1} x [-1,1] af(1,1) ={(1,1)}
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Pointwise supremum

f(x) = sup fu(x), fa(x) convex in x for every
aeA

Weak result: to find a subgradient at %,

e find any B for which f(£) = fg(£) (assuming maximum is attained)

e choose any g € df3(%)

(Partial) strong result: define I(x) = {a € A | fo(x) = f(x)}

conv U Jfa(x) COf(x)

acl(x)

equality requires extra conditions (for example, ‘A compact, f, continuous in @)
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Exercise: maximum eigenvalue

Problem: explain how to find a subgradient of

F(x) = Amax (A(x)) = Sup Y A(x)y
Y=

where A(x) = Ag+x1A1 + - - - + x,A,, with symmetric coefficients A;

Solution: to find a subgradient at X,

e choose any unit eigenvector y with eigenvalue Apax(A(X))

e the gradient of y/ A(x)y at £ is a subgradient of £:

YT Ay, ...,y Ayy) € 0 ()
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Minimization
f(x) =inf h(x,y), h jointly convex in (x, y)
y

Weak result: to find a subgradient at %,

e find § that minimizes h(X, y) (assuming minimum is attained)

e find subgradient (g, 0) € dh(Z, )

Proof: for all x, y,
h(x,y) = h(x9)+g (x-%)+0"(y-9)
= f@+g (x-%)

therefore
fx) =infh(x,y) 2 f(#) + gl (x - %)
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Exercise: Euclidean distance to convex set

Problem: explain how to find a subgradient of

f(x) = inf [lx -yl
yeC

where C is a closed convex set

Solution: to find a subgradient at X,
o if f(X)=0 (thatis,x € C),takeg =0

o if f(X) > 0, find projection § = P(x) on C and take

L o
R Y TR
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Composition

f(x)=h(fix),..., fr(x), h convex and nondecreasing, f; convex

Weak result: to find a subgradient at %,

o findz € dh(f1(X),..., fr(X)) and g; € 4 f;(X)

e then g =z1g1 + -+ 28k € 0 f(X)

reduces to standard formula for differentiable £, f;

Proof:
FO 2 h{A@+el (=0, fi(®) + gl (x - D)

> h(AG. @)+ (g -2 gl - )

= h(Ai®),..., fi®) + (z1g1 + -+ zxg) (x = %)
= f(X)+g' (x-3%)
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Optimal value function

define f(u,v) as the optimal value of convex problem

minimize  fy(x)
subjectto  fi(x) <u;, i=1,...,m
Ax=b+v

(functions f; are convex; optimization variable is x)

Weak result: suppose f(ii, D) is finite and strong duality holds with the dual

maximize inf { fo(x) + D A(fi(x) — i) + v (Ax — b - b)

subjectto 4 >0

if A, ¥ are dual optimal (for right-hand sides i, §) then (=4, —¥) € 8 f (i, b)
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Proof: by weak duality for problem with right-hand sides u, v
f(u,v) > inf (fo(x) + > Ai(fi(x) —up) + V' (Ax — b - v))
X .
l

= ir;f (f()(x) + Z /il(f,(x) — ;) + II)T(AX — b — ﬁ))

-0 -9 (-0

= (4,0 - AT (u-0)-9?(v-19)
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Expectation

f(x)=Eh(x,u) u random, h convex in x for every u

Weak result: to find a subgradient at %,

e choose a function u — g(u) with g(u) € ovh(X, u)

o then,g =E, g(u) € 4f(X)

Proof: by convexity of & and definition of g(u),

Eh(x,u)
E (h(;e, w) + ()7 (x — )e))

= f(X)+g' (x-3%)

f(x)

Y
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Optimality conditions — unconstrained

x* minimizes f(x) if and only
0€df(x™)

this follows directly from the definition of subgradient:

f(y) = FEN)+0l (y—x*) forally — 0edf(x®
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Example: piecewise-linear minimization

f(x) = max (al x+b;)
i=1,....m
Optimality condition

0 €convia; |icI(x*)} where I(x) = {i | al.Tx +b;=f(x)}

e in other words, x* is optimal if and only if there is a A with

m
>0, 1a=1, > Aa;=0, A;=0forig¢l(x*)
i=1

e these are the optimality conditions for the equivalent linear program

minimize ¢ maximize b1
subjectto Ax+b <1l subjectto ATA=0
1>0, 17a=1
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Optimality conditions — constrained

minimize  fy(x)
subjectto  fi(x) <0, i=1,...,m

assume dom f; = R”, so functions f; are subdifferentiable everywhere

Karush—Kuhn-Tucker conditions

if strong duality holds, then x*, A* are primal, dual optimal if and only if
1. x* is primal feasible

2. * =0

3. /l;(fi(x*) =Qfori=1,...,m

4. x* is a minimizer of L(x, A*) = fo(x) + X A% fi(x):
0 € dfo(x™) + DD fi(x*)
i=1
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Directional derivative

Definition (for general f): the directional derivative of f at x in the direction y is

Py lim LERO) =)

a\,0 a

= lim tf(x+;y) —tf(x)

I—00

(if the limit exists)

e f’(x;y) is the right derivative of g(@) = f(x+ay) ata =0
e f’(x;y)is homogeneousin y:

f(x;dy) = Af (x;y) ford >0
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Directional derivative of a convex function

Equivalent definition (for convex f): replace lim with inf

oSG ay) - F)

a>0 (04

1
= glg tf(x+ ;)’) —1f(x)

fxy) =

Proof

e the function i(y) = f(x +y) — f(x) is convex in y, with 2(0) =0

e its perspective th(y/t) is nonincreasing in t (ECE236B ex. A3.5); hence

f(xy) = lim th(y/t) = inf th(y/1)
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Properties

consequences of the expressions (for convex f)

oSG ay) - F)

a>0 (04

1
= glg tf(x+ ;Y) —1f(x)

fxy) =

e f/(x;y) is convex in y (partial minimization of a convex function in y, 1)

e f’(x;y) defines a lower bound on f in the direction y:

fx+ay) > f(x)+af’(x;y) foralla >0
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Directional derivative and subgradients

for convex f and x € intdom f

f(x;y)= sup gly
g€l f(x)

frx,y)=gTy

f'(x;y) is support function of 0 f (x)
y af(x)

e generalizes f’(x;y) = Vf(x)!y for differentiable functions

e implies that f”(x;y) exists for all x € intdom f, all y (see page 2.4)
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Proof: if g € 0 f(x) then from page 2.29

fx)+agly—fx)  r
- =g’y

f'(x;y) > inf
a>0
it remains to show that f’(x;y) = g’y for at least one ¢ € 9 f(x)

e f’/(x;y)is convex in y with domain R”, hence subdifferentiable at all y

e let g be a subgradient of f’(x;y) at y: then forall v, 4 > 0,
Af' (x30) = f'(x;0) 2 f/(x;y) + & (A0 —y)
e taking 1 — oo shows that f’(x;v) > ¢’ v; from the lower bound on page 2.30,
fx+v) = f(X)+f(x0) = fx)+ 870 forallv
hence ¢ € 0f(x)

e taking 1 = 0 we see that f/(x;y) < &'y
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Descent directions and subgradients

y is a descent direction of f atx if f’(x;y) <0

e the negative gradient of a differentiable f is a descent direction (if V f(x) # 0)

e negative subgradient is not always a descent direction

Example: f(x1,x2) = |x1| + 2|xp]

X2
/ g=(1,2)
\ X1

(1,0)

g=(1,2) € 0f(1,0), buty = (-1, -2) is not a descent direction at (1, 0)
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Steepest descent direction
Definition: (normalized) steepest descent direction at x € intdom f is

Axpgq = argmin f”(x; y)
Iylb<1

Axpqq is the primal solution y of the pair of dual problems (BV §8.1.3)

minimize (over y) f’(x;y) maximize (over g) —||gl|>
subject to Iyl <1 subject to g €df(x)

e dual optimal g* is subgradient with least norm
o f/(x;Axnsa) = —lIg*Il2

o ifOZdf(x), Axpgg = _g*/”g*HZ /

s
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Subgradients and distance to sublevel sets

if fisconvex, f(y) < f(x),g € df(x), then for small ¢ > 0,

Ix—tg—yll5 = lx—ylZ-2tg" (x—y)+*lgll5
< lx =yl =2t(f(x) = £() +22]lgll3
< x—y%

e —g is descent direction for ||[x — y||p, for any y with f(y) < f(x)

e in particular, —g is descent direction for distance to any minimizer of f
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