18. Symmetric cones

- definition
- spectral decomposition
- quadratic representation
- log-det barrier

Introduction

This lecture: theoretical properties of the following cones

- nonnegative orthant

$$
\mathbf{R}_{+}^{p}=\left\{x \in \mathbf{R}^{p} \mid x_{k} \geq 0, k=1, \ldots, p\right\}
$$

- second-order cone

$$
\mathcal{Q}^{p}=\left\{\left(x_{0}, x_{1}\right) \in \mathbf{R} \times \mathbf{R}^{p-1} \mid\left\|x_{1}\right\|_{2} \leq x_{0}\right\}
$$

- positive semidefinite cone

$$
\mathcal{S}^{p}=\left\{x \in \mathbf{R}^{p(p+1) / 2} \mid \operatorname{mat}(x) \succeq 0\right\}
$$

these cones are not only self-dual, but symmetric (also known as self-scaled)

Outline

- definition
- spectral decomposition
- quadratic representation
- log-det barrier

Cones of squares

the three basic cones can be expressed as cones of squares

$$
x^{2}=x \circ x
$$

for appropriately defined vector products $x \circ y$

- nonnegative orthant: componentwise product $x \circ y=\operatorname{diag}(x) y$
- second-order cone: the product of $x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ is

$$
x \circ y=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
x^{T} y \\
x_{0} y_{1}+y_{0} x_{1}
\end{array}\right]
$$

- positive semidefinite cone: symmetrized matrix product

$$
x \circ y=\frac{1}{2} \operatorname{vec}(X Y+Y X) \quad \text { with } X=\operatorname{mat}(x), Y=\operatorname{mat}(Y)
$$

Symmetric cones

the vector products satisfy the following properties

1. $x \circ y$ is bilinear (linear in x for fixed y and vice-versa)
2. $x \circ y=y \circ x$
3. $x^{2} \circ(y \circ x)=\left(x^{2} \circ y\right) \circ x$
4. $x^{T}(y \circ z)=(x \circ y)^{T} z$
except for the componentwise product, the products are not associative:

$$
x \circ(y \circ z) \neq(x \circ y) \circ z \quad \text { in general }
$$

Definition: a cone is symmetric if it is the cone of squares

$$
\left\{x^{2}=x \circ x \mid x \in \mathbf{R}^{n}\right\}
$$

for a product $x \circ y$ that satisfies these four properties

Classification

- symmetric cones are studied in the theory of Euclidean Jordan algebras
- all possible symmetric cones have been characterized

List of symmetric cones

- the second-order cone
- the p.s.d. cone of Hermitian matrices with real, complex, or quaternion entries
- 3×3 positive semidefinite matrices with octonion entries
- Cartesian products of these 'primitive' symmetric cones (such as \mathbf{R}_{+}^{p})

Practical implication

can focus on $\mathcal{Q}^{p}, \mathcal{S}^{p}$ and study these cones using elementary linear algebra

Outline

- definition
- spectral decomposition
- quadratic representation
- log-det barrier

Vector product

with each symmetric cone K we associate a bilinear vector product

- for $\mathbf{R}_{+}^{p}, \mathcal{Q}^{p}, \mathcal{S}^{p}$ we use the products on page 18-3
- for a cone $K=K_{1} \times \cdots \times K_{N}$, with K_{i} of one of the three basic types,

$$
\left(x_{1}, \ldots, x_{N}\right) \circ\left(y_{1}, \ldots, y_{N}\right)=\left(x_{1} \circ y_{1}, \ldots, x_{N} \circ y_{N}\right)
$$

we refer to the product associated with the cone K as 'the product for K '

Identity element

Identity element: the element \mathbf{e} that satisfies $\mathbf{e} \circ x=x \circ \mathbf{e}=x$ for all x

- product for \mathbf{R}_{+}^{p} : $\mathbf{e}=\mathbf{1}=(1,1, \ldots, 1)$
- product for $\mathcal{Q}^{p}: \quad \mathbf{e}=(\sqrt{2}, 0, \ldots, 0)$
- product for $\mathcal{S}^{p}: \quad \mathbf{e}=\operatorname{vec}(I)$
- product for $K_{1} \times \cdots \times K_{N}$: the product of the N identity elements note we use the same symbol e for the identity element for each product

Rank of the cone: $\theta=\mathbf{e}^{T} \mathbf{e}$ is called the rank of K

$$
\theta=p \quad\left(K=\mathbf{R}_{+}^{p}\right), \quad \theta=2 \quad\left(K=\mathcal{Q}^{p}\right), \quad \theta=p \quad\left(K=\mathcal{S}^{p}\right)
$$

and $\theta=\sum_{i=1}^{N} \theta_{i}$ if $K=K_{1} \times \cdots \times K_{N}$ and θ_{i} is the rank of K_{i}

Spectral decomposition

with each symmetric cone/product we associate a 'spectral' decomposition

$$
x=\sum_{i=1}^{\theta} \lambda_{i} q_{i}
$$

λ_{i} are the eigenvalues of x; the eigenvectors q_{i} satisfy

$$
q_{i}^{2}=q_{i}, \quad q_{i} \circ q_{j}=0 \quad(i \neq j), \quad \sum_{i=1}^{\theta} q_{i}=\mathbf{e}
$$

- theory can be developed from properties of the vector product on page 18-4
- we will define the decomposition by enumerating the symmetric cones

Spectral decomposition for primitive cones

Positive semidefinite cone ($K=\mathcal{S}^{p}$)
spectral decomposition of x follows from eigendecomposition of mat (x) :

$$
\operatorname{mat}(x)=\sum_{i=1}^{p} \lambda_{i} v_{i} v_{i}^{T}, \quad q_{i}=\operatorname{vec}\left(v_{i} v_{i}^{T}\right)
$$

Second-order cone ($K=\mathcal{Q}^{p}$)
spectral decomposition of $x=\left(x_{0}, x_{1}\right) \in \mathbf{R} \times \mathbf{R}^{p-1}$ is

$$
\lambda_{i}=\frac{x_{0} \pm\left\|x_{1}\right\|_{2}}{\sqrt{2}}, \quad q_{i}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
\pm y
\end{array}\right], \quad i=1,2
$$

$y=x_{1} /\left\|x_{1}\right\|_{2}$ if $x_{1} \neq 0$, and y is an arbitrary unit-norm vector otherwise

Spectral decomposition for composite cones

Product cone ($K=K_{1} \times \cdots \times K_{N}$)

- spectral decomposition follows from decomposition of different blocks
- example ($K=K_{1} \times K_{2}$): decomposition of $x=\left(x_{1}, x_{2}\right)$ is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\sum_{i=1}^{\theta_{1}} \lambda_{1 i}\left[\begin{array}{c}
q_{1 i} \\
0
\end{array}\right]+\sum_{i=1}^{\theta_{2}} \lambda_{2 i}\left[\begin{array}{c}
0 \\
q_{2 i}
\end{array}\right]
$$

where $x_{j}=\sum_{i=1}^{\theta_{j}} \lambda_{j i} q_{j i}$ is the spectral decomposition of $x_{j}, j=1,2$

Nonnegative orthant ($K=\mathbf{R}_{+}^{p}$)

$$
\lambda_{i}=x_{i}, \quad q_{i}=e_{i} \quad(i \text { th unit vector }), \quad i=1, \ldots, n
$$

Some properties

- the eigenvectors are normalized $\left(\left\|q_{i}\right\|_{2}=1\right)$ and nonnegative $\left(q_{i} \in K\right)$
- eigenvectors are orthogonal: $q_{i}^{T} q_{j}=0$ for $i \neq j$
can be verified from the definitions, or from the properties on page 18-4

$$
q_{i}^{T} q_{j}=q_{i}^{T}\left(q_{j} \circ q_{j}\right)=\left(q_{i} \circ q_{j}\right)^{T} q_{j}=0
$$

- $\mathbf{e}^{T} q_{i}=\left(\sum_{j} q_{j}\right)^{T} q_{i}=q_{i}^{T} q_{i}=1$
- $\mathbf{e}^{T} x=\sum_{i=1}^{\theta} \lambda_{i}$
- $x \in K$ if and only $\lambda_{i} \geq 0$ for $i=1, \ldots, \theta$
- $x \in \operatorname{int} K$ if and only $\lambda_{i}>0$ for $i=1, \ldots, \theta$

Trace, determinant, and norm

$$
\operatorname{tr} x=\sum_{i=1}^{\theta} \lambda_{i}, \quad \operatorname{det} x=\prod_{i=1}^{\theta} \lambda_{i}, \quad\|x\|_{F}=\left(\sum_{i=1}^{\theta} \lambda_{i}^{2}\right)^{1 / 2}
$$

- positive semidefinite cone $\left(K=\mathcal{S}^{p}\right)$

$$
\operatorname{tr} x=\operatorname{tr}(\operatorname{mat}(x)), \quad \operatorname{det} x=\operatorname{det}(\operatorname{mat}(x)), \quad\|x\|_{F}=\|\operatorname{mat}(x)\|_{F}
$$

- second-order cone ($K=\mathcal{Q}^{p}$)

$$
\operatorname{tr} x=\sqrt{2} x_{0}, \quad \operatorname{det} x=\frac{1}{2}\left(x_{0}^{2}-x_{1}^{T} x_{1}\right), \quad\|x\|_{F}=\|x\|_{2}
$$

- nonnegative orthant ($K=\mathbf{R}_{+}^{p}$)

$$
\operatorname{tr} x=\sum_{i=1}^{p} x_{i}, \quad \operatorname{det} x=\prod_{i=1}^{p} x_{i}, \quad\|x\|_{F}=\|x\|_{2}
$$

Powers and inverse

powers of x can be defined in terms of the spectral decomposition

$$
x^{\alpha}=\sum_{i} \lambda_{i}^{\alpha} q_{i}
$$

(exists if λ_{i}^{α} is defined for all i)

- $x^{\alpha} \circ x^{\beta}=x^{\alpha+\beta}$

$$
x^{\alpha} \circ x^{\beta}=\left(\sum_{i=1}^{\theta} \lambda_{i}^{\alpha} q_{i}\right) \circ\left(\sum_{i=1}^{\theta} \lambda_{i}^{\beta} q_{i}\right)=\sum_{i=1}^{\theta} \lambda_{i}^{\alpha+\beta} q_{i}=x^{\alpha+\beta}
$$

- x is invertible if all $\lambda_{i} \neq 0$ (i.e., $\operatorname{det} x \neq 0$)
inverse $x^{-1}=\sum_{i=1}^{\theta} \lambda_{i}^{-1} q_{i}$ satisfies $x \circ x^{-1}=x^{-1} \circ x=\mathbf{e}$

Expressions for inverse

for invertible x (i.e., $\lambda_{i} \neq 0$ for $i=1, \ldots, \theta$)

- nonnegative orthant ($K=\mathbf{R}_{+}^{p}$)

$$
x^{-1}=\left(\frac{1}{x_{1}}, \frac{1}{x_{2}}, \ldots, \frac{1}{x_{p}}\right)
$$

- second-order cone ($K=\mathcal{Q}^{p}$)

$$
x^{-1}=\frac{2}{x^{T} J x} J x, \quad J=\left[\begin{array}{cc}
1 & 0 \\
0 & -I
\end{array}\right]
$$

- semidefinite cone $\left(K=\mathcal{S}^{p}\right)$

$$
x^{-1}=\operatorname{vec}\left(\operatorname{mat}(x)^{-1}\right)
$$

Expressions for square root

for nonnegative x (i.e., $\lambda_{i} \geq 0$ for $i=1, \ldots, \theta$)

- nonnegative orthant ($K=\mathbf{R}_{+}^{p}$)

$$
x^{1 / 2}=\left(\sqrt{x_{1}}, \sqrt{x_{2}}, \ldots, \sqrt{x_{p}}\right)
$$

- second-order cone ($K=\mathcal{Q}^{p}$)

$$
x^{1 / 2}=\frac{1}{2^{1 / 4}\left(x_{0}+\sqrt{x^{T} J x}\right)^{1 / 2}}\left[\begin{array}{c}
x_{0}+\sqrt{x^{T} J x} \\
x_{1}
\end{array}\right]
$$

- semidefinite cone $\left(K=\mathcal{S}^{p}\right)$

$$
x^{1 / 2}=\operatorname{vec}\left(\operatorname{mat}(x)^{1 / 2}\right)
$$

Outline

- definition
- spectral decomposition
- quadratic representation
- log-det barrier

Matrix representation of product

since the product is bilinear, it can be expressed as

$$
x \circ y=L(x) y
$$

$L(x)$ is a symmetric matrix, linearly dependent on x

- nonnegative orthant: $L(x)=\operatorname{diag}(x)$
- second-order cone

$$
L(x)=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
x_{0} & x_{1}^{T} \\
x_{1} & x_{0} I
\end{array}\right]
$$

- semidefinite cone: the matrix defined by

$$
L(x) y=\frac{1}{2}(X Y+Y X), \quad X=\operatorname{mat}(x), \quad Y=\operatorname{mat}(y)
$$

Quadratic representation

the quadratic representation of x is the matrix

$$
P(x)=2 L(x)^{2}-L\left(x^{2}\right)
$$

(terminology is motivated by the property $P(x) \mathbf{e}=x^{2}$)

- nonnegative orthant

$$
P(x)=\operatorname{diag}(x)^{2}
$$

- second-order cone

$$
P(x)=x x^{T}-\frac{x^{T} J x}{2} J, \quad J=\left[\begin{array}{cc}
1 & 0 \\
0 & -I
\end{array}\right]
$$

- positive semidefinite cone

$$
P(x) y=\operatorname{vec}(X Y X) \quad \text { where } X=\operatorname{mat}(x), Y=\operatorname{mat}(y)
$$

Some useful properties

Powers

- $P(x)^{\alpha}=P\left(x^{\alpha}\right)$ if x^{α} exists
- $P(x) x^{-1}=x$ if x is invertible

Derivative of x^{-1} : for x invertible, $P(x)^{-1}$ is the derivative of $-x^{-1}$, i.e.,

$$
\left.\frac{d}{d \alpha}(x+\alpha y)^{-1}\right|_{\alpha=0}=-P(x)^{-1} y
$$

Scaling with $P(x)$

affine transformations $y \rightarrow P(x) y$ have important properties

- if x is invertible, then

$$
P(x) K=K, \quad P(x) \operatorname{int} K=\operatorname{int} K
$$

multiplication with $P(x)$ preserves the conic inequalities

- if x and y are invertible, then $P(x) y$ is invertible with inverse

$$
(P(x) y)^{-1}=P\left(x^{-1}\right) y^{-1}=P(x)^{-1} y^{-1}
$$

- quadratic representation of $P(x) y$

$$
P(P(x) y)=P(x) P(y) P(x)
$$

hence also $\operatorname{det}(P(x) y)=(\operatorname{det} x)^{2} \operatorname{det} y$

Distance to cone boundary

for $x \succ 0$ define $\sigma_{x}(y)=0$ if $y \succeq 0$ and

$$
\sigma_{x}(y)=-\lambda_{\min }\left(P\left(x^{-1 / 2}\right) y\right) \text { otherwise }
$$

$\sigma_{x}(y)$ characterizes distance of x to the boundary of K in the direction y :

$$
x+\alpha y \succeq 0 \quad \Longleftrightarrow \quad \alpha \sigma_{x}(y) \leq 1
$$

Proof:

- from the definition of P on page 18-17: $P\left(x^{1 / 2}\right) \mathbf{e}=x$
- therefore, with $v=P\left(x^{-1 / 2}\right) y$

$$
\begin{aligned}
x+\alpha y \succeq 0 & \Longleftrightarrow P\left(x^{1 / 2}\right)(\mathbf{e}+\alpha v) \succeq 0 \\
& \Longleftrightarrow \mathbf{e}+\alpha v \succeq 0 \\
& \Longleftrightarrow 1+\alpha \lambda_{i}(v) \geq 0
\end{aligned}
$$

Scaling point

for a pair $s, z \succ 0$, the point

$$
w=P\left(z^{-1 / 2}\right)\left(P\left(z^{1 / 2}\right) s\right)^{1 / 2}
$$

satisfies $w \succ 0$ and $s=P(w) z$

- the linear transformation $P(w)$ preserves the cone and maps z to s
- equivalently, $v=w^{1 / 2}$ defines a scaling $P(v)=P(w)^{1 / 2}$ that satisfies

$$
P(v)^{-1} s=P(v) z
$$

Proof: we use the properties

$$
P(x) \mathbf{e}=x^{2}, \quad P(P(x) y)=P(x) P(y) P(x)
$$

- if we define $u=P\left(z^{1 / 2}\right) s$, we can write $P(w)$ as

$$
P(w)=P\left(z^{-1 / 2}\right) P\left(u^{1 / 2}\right) P\left(z^{-1 / 2}\right)
$$

- therefore

$$
\begin{aligned}
P(w) z & =P\left(z^{-1 / 2}\right) P\left(u^{1 / 2}\right) \mathbf{e} \\
& =P\left(z^{-1 / 2}\right) u \\
& =s
\end{aligned}
$$

Scaling point for nonnegative orthant

Scaling point

$$
w=\left(\sqrt{s_{1} / z_{1}}, \sqrt{s_{2} / z_{2}}, \ldots, \sqrt{s_{p} / z_{p}}\right)
$$

Scaling transformation: a positive diagonal scaling

$$
P(w)=\left[\begin{array}{cccc}
s_{1} / z_{1} & 0 & \cdots & 0 \\
0 & s_{2} / z_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & s_{p} / z_{p}
\end{array}\right]
$$

Scaling point for positive semidefinite cone

Scaling point: $w=\operatorname{vec}\left(R R^{T}\right)$

- R simultaneously diagonalizes mat (z) and $\operatorname{mat}(s)^{-1}$:

$$
R^{T} \operatorname{mat}(z) R=R^{-1} \operatorname{mat}(s) R^{-T}=\Sigma
$$

- can be computed from two Cholesky factorizations and an SVD: if

$$
\operatorname{mat}(s)=L_{1} L_{1}^{T}, \quad \operatorname{mat}(z)=L_{2} L_{2}^{T}, \quad L_{2}^{T} L_{1}=U \Sigma V^{T}
$$

then $R=L_{1} V \Sigma^{-1 / 2}=L_{2} U \Sigma^{1 / 2}$

Scaling transformation: a congruence transformation

$$
P(w) y=R R^{T} \operatorname{mat}(y) R R^{T}
$$

Outline

- definition
- spectral decomposition
- quadratic representation
- log-det barrier

Log-det barrier

Definition: the log-det barrier of a symmetric cone K is

$$
\phi(x)=-\log \operatorname{det} x=-\sum_{i=1}^{\theta} \log \lambda_{i}, \quad \operatorname{dom} \phi=\operatorname{int} K
$$

ϕ is logarithmically homogeneous with degree θ (i.e., the rank of K)

- nonnegative orthant $\left(K=\mathbf{R}_{+}^{p}\right): \phi(x)=-\sum_{i=1}^{p} \log x_{i}$
- second-order cone $\left(K=\mathcal{Q}^{p}\right)$:

$$
\phi(x)=-\log \left(x_{0}^{2}-x_{1}^{T} x_{1}\right)+\log 2
$$

- semidefinite cone $\left(K=\mathcal{S}^{p}\right): \phi(x)=-\log \operatorname{det}(\operatorname{mat} x)$
- composition $K=K_{1} \times \cdots \times K_{N}$: sum of the log-det barriers

Convexity

ϕ is a convex function

Proof: consider arbitrary y and let λ_{i} be the eigenvalues of $v=P\left(x^{-1 / 2}\right) y$ the restriction $g(\alpha)=\phi(x+\alpha y)$ of ϕ to the line $x+\alpha y$ is

$$
\begin{aligned}
g(\alpha) & =-\log \operatorname{det}(x+\alpha y) \\
& =-\log \operatorname{det}\left(P\left(x^{1 / 2}\right)(\mathbf{e}+\alpha v)\right) \\
& =-\log \operatorname{det} x-\log \operatorname{det}(\mathbf{e}+\alpha v) \\
& =-\log \operatorname{det} x-\sum_{i=1}^{\theta} \log \left(1+\alpha \lambda_{i}\right)
\end{aligned}
$$

(line 3 follows from page 18-18 and page 18-21)
hence restriction of ϕ to arbitrary line is convex

Gradient and Hessian

the gradient and Hessian of ϕ at a point $x \succ 0$ are

$$
\nabla \phi(x)=-x^{-1}, \quad \nabla^{2} \phi(x)=P(x)^{-1}=P\left(x^{-1}\right)
$$

Proof: continues from last page

$$
\nabla \phi(x)^{T} y=g^{\prime}(0)=-\sum_{i=1}^{\theta} \lambda_{i}=-\operatorname{tr}\left(P\left(x^{-1 / 2}\right) y\right)=-\mathbf{e}^{T} P\left(x^{-1 / 2}\right) y
$$

since this holds for all $y, \nabla \phi(x)=-P\left(x^{-1 / 2}\right) \mathbf{e}=-x^{-1}$
the expression for the Hessian follows from page 18-18

Dikin ellipsoid theorem for symmetric cones

recall the definition of the Dikin ellipsoid at $x \succ 0$:

$$
\mathcal{E}_{x}=\left\{x+y \mid y^{T} \nabla^{2} \phi(x) y \leq 1\right\}=\left\{x+y \mid y^{T} P(x)^{-1} y \leq 1\right\}
$$

- $x+y \in \mathcal{E}_{x}$ if and only if the eigenvalues λ_{i} of $P\left(x^{-1 / 2}\right) y$ satisfy

$$
\sum_{i=1}^{\theta} \lambda_{i}^{2} \leq 1
$$

- for symmetric cones the Dikin ellipsoid theorem $\mathcal{E}_{x} \subseteq K$ follows from

$$
\sum_{i=1}^{\theta} \lambda_{i}^{2} \leq 1 \quad \Longrightarrow \quad \min _{i} \lambda_{i} \geq-1
$$

therefore $x+y \in \mathcal{E}_{x}$ implies $\sigma_{x}(y) \leq 1$ and $x+y \succeq 0$

Generalized convexity of inverse

for all $w \succeq 0$, the function

$$
f(x)=w^{T} x^{-1}, \quad \operatorname{dom} f=\operatorname{int} K
$$

is convex

Proof: restriction $g(\alpha)=f(x+\alpha y)$ of f to a line is

$$
\begin{aligned}
g(\alpha)=w^{T}(x+\alpha y)^{-1} & =w^{T}\left(P\left(x^{-1 / 2}\right)(\mathbf{e}+\alpha v)\right)^{-1} \\
& =w^{T} P\left(x^{1 / 2}\right)(\mathbf{e}+\alpha v)^{-1} \\
& =\sum_{i-1}^{\theta} \frac{w^{T} P\left(x^{1 / 2}\right) q_{i}}{1+\alpha \lambda_{i}}
\end{aligned}
$$

- λ_{i}, q_{i} are eigenvalues and eigenvectors of $v=P\left(x^{-1 / 2}\right) y$
- $g(\alpha)$ is convex because $P\left(x^{1 / 2}\right) K=K$; therefore $w^{T} P\left(x^{1 / 2}\right) q_{i} \geq 0$

Self-concordance

for all $x \succ 0$ and all y,

$$
\left.\frac{d}{d \alpha} \nabla^{2} \phi(x+\alpha y)\right|_{\alpha=0} \preceq 2 \sigma_{x}(y) \nabla^{2} \phi(x)
$$

- from page 18-20, with $v=P\left(x^{-1 / 2}\right) y$ and $\lambda_{i}=\lambda_{i}(v)$

$$
\sigma_{x}(y)=-\min \left\{0, \lambda_{\min }\right\} \leq\left(\sum_{i=1}^{\theta} \lambda_{i}^{2}\right)^{1 / 2}=\|y\|_{x}
$$

hence, inequality implies self-concordance inequality on page 16-2

- this shows that the log-det barrier ϕ is a θ-normal barrier

Proof: choose any $\sigma>\sigma_{x}(y)$; by definition of σ_{x} we have $\sigma x+y \succeq 0$

$$
\frac{d}{d \alpha} \nabla^{2} \phi(x+\alpha y)=\frac{d}{d \alpha} \nabla^{2} \phi(x-\alpha \sigma x)+\frac{d}{d \alpha} \nabla^{2} \phi(x+\alpha(\sigma x+y))
$$

- from page 16-24, the first term on the r.h.s. (evaluated at $\alpha=0$) is

$$
-\left.\sigma \frac{d}{d t} \nabla^{2} \phi(t x)\right|_{t=1}=2 \sigma \nabla^{2} \phi(x)
$$

- 2nd term is $\nabla^{2} g(x)$ where $g(u)=w^{T} \nabla \phi(u)$ and $w=\sigma x+y$:

$$
\nabla g(u)=\left.\frac{d}{d \alpha} \nabla \phi(u+\alpha w)\right|_{\alpha=0}, \quad \nabla^{2} g(u)=\left.\frac{d}{d \alpha} \nabla^{2} \phi(u+\alpha w)\right|_{\alpha=0}
$$

- $\nabla^{2} g(u) \preceq 0$ because from page 18-29, $g(u)=-w^{T} u^{-1}$ is concave

References

- J. Faraut and A. Korányi, Analysis on Symmetric Cones (1994).
- Yu. E. Nesterov and M. J. Todd, Self-scaled barriers and interior-point methods for convex programming, Mathematics of Operations Research (1997).
- L. Faybusovich, Euclidean Jordan algebras and interior-point algorithms, Positivity (1997).
- J. F. Sturm, Similarity and other spectral relations for symmetric cones, Linear Algebra and Its Applications (2000).
- S. H. Schmieta and F. Alizadeh, Extension of primal-dual interior point algorithms to symmetric cones, Math. Prog. (2003).
- F. Alizadeh and D. Goldfarb, Second-order cone programming, Math. Prog. (2003).

