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Introduction

This lecture: theoretical properties of the following cones

• nonnegative orthant

Rp
+ = {x ∈ Rp | xk ≥ 0, k = 1, . . . , p}

• second-order cone

Qp = {(x0, x1) ∈ R×Rp−1 | ‖x1‖2 ≤ x0}

• positive semidefinite cone

Sp = {x ∈ Rp(p+1)/2 | mat(x) � 0}

these cones are not only self-dual, but symmetric (also known as self-scaled)
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Cones of squares

the three basic cones can be expressed as cones of squares

x2 = x ◦ x

for appropriately defined vector products x ◦ y

• nonnegative orthant: componentwise product x ◦ y = diag(x)y

• second-order cone: the product of x = (x0, x1) and y = (y0, y1) is

x ◦ y =
1√
2

[
xTy

x0y1 + y0x1

]

• positive semidefinite cone: symmetrized matrix product

x ◦ y =
1

2
vec(XY + Y X) with X = mat(x), Y = mat(Y )
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Symmetric cones

the vector products satisfy the following properties

1. x ◦ y is bilinear (linear in x for fixed y and vice-versa)

2. x ◦ y = y ◦ x

3. x2 ◦ (y ◦ x) = (x2 ◦ y) ◦ x

4. xT (y ◦ z) = (x ◦ y)Tz

except for the componentwise product, the products are not associative:

x ◦ (y ◦ z) 6= (x ◦ y) ◦ z in general

Definition: a cone is symmetric if it is the cone of squares

{x2 = x ◦ x | x ∈ Rn}

for a product x ◦ y that satisfies these four properties
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Classification

• symmetric cones are studied in the theory of Euclidean Jordan algebras

• all possible symmetric cones have been characterized

List of symmetric cones

• the second-order cone

• the p.s.d. cone of Hermitian matrices with real, complex, or quaternion entries

• 3× 3 positive semidefinite matrices with octonion entries

• Cartesian products of these ‘primitive’ symmetric cones (such as Rp
+)

Practical implication

can focus on Qp, Sp and study these cones using elementary linear algebra

Symmetric cones 18-5



Outline

• definition

• spectral decomposition

• quadratic representation

• log-det barrier



Vector product

with each symmetric coneK we associate a bilinear vector product

• for Rp
+, Qp, Sp we use the products on page 18-3

• for a coneK = K1 × · · · ×KN , withKi of one of the three basic types,

(x1, . . . , xN) ◦ (y1, . . . , yN) = (x1 ◦ y1, . . . , xN ◦ yN)

we refer to the product associated with the coneK as ‘the product forK ’
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Identity element

Identity element: the element e that satisfies e ◦ x = x ◦ e = x for all x

• product for Rp
+: e = 1 = (1, 1, . . . , 1)

• product for Qp: e = (
√

2, 0, . . . , 0)

• product for Sp: e = vec(I)

• product forK1 × · · · ×KN : the product of the N identity elements

note we use the same symbol e for the identity element for each product

Rank of the cone: θ = eTe is called the rank ofK

θ = p (K = Rp
+), θ = 2 (K = Qp), θ = p (K = Sp)

and θ =
∑N
i=1 θi ifK = K1 × · · · ×KN and θi is the rank ofKi
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Spectral decomposition

with each symmetric cone/product we associate a ‘spectral’ decomposition

x =

θ∑
i=1

λiqi

λi are the eigenvalues of x; the eigenvectors qi satisfy

q2i = qi, qi ◦ qj = 0 (i 6= j),

θ∑
i=1

qi = e

• theory can be developed from properties of the vector product on page 18-4

• we will define the decomposition by enumerating the symmetric cones
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Spectral decomposition for primitive cones

Positive semidefinite cone (K = Sp)

spectral decomposition of x follows from eigendecomposition of mat(x):

mat(x) =

p∑
i=1

λiviv
T
i , qi = vec(viv

T
i )

Second-order cone (K = Qp)

spectral decomposition of x = (x0, x1) ∈ R×Rp−1 is

λi =
x0 ± ‖x1‖2√

2
, qi =

1√
2

[
1
±y

]
, i = 1, 2

y = x1/‖x1‖2 if x1 6= 0, and y is an arbitrary unit-norm vector otherwise
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Spectral decomposition for composite cones

Product cone (K = K1 × · · · ×KN )

• spectral decomposition follows from decomposition of different blocks

• example (K = K1 ×K2): decomposition of x = (x1, x2) is

[
x1
x2

]
=

θ1∑
i=1

λ1i

[
q1i
0

]
+

θ2∑
i=1

λ2i

[
0
q2i

]

where xj =
θj∑
i=1

λjiqji is the spectral decomposition of xj, j = 1, 2

Nonnegative orthant (K = Rp
+)

λi = xi, qi = ei (ith unit vector), i = 1, . . . , n
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Some properties

• the eigenvectors are normalized (‖qi‖2 = 1) and nonnegative (qi ∈ K)

• eigenvectors are orthogonal: qTi qj = 0 for i 6= j

can be verified from the definitions, or from the properties on page 18-4

qTi qj = qTi (qj ◦ qj) = (qi ◦ qj)Tqj = 0

• eTqi = (
∑
j qj)

Tqi = qTi qi = 1

• eTx =
θ∑
i=1

λi

• x ∈ K if and only λi ≥ 0 for i = 1, . . . , θ

• x ∈ intK if and only λi > 0 for i = 1, . . . , θ
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Trace, determinant, and norm

trx =

θ∑
i=1

λi, detx =

θ∏
i=1

λi, ‖x‖F = (

θ∑
i=1

λ2i )
1/2

• positive semidefinite cone (K = Sp)

trx = tr(mat(x)), detx = det(mat(x)), ‖x‖F = ‖mat(x)‖F

• second-order cone (K = Qp)

trx =
√

2x0, detx =
1

2
(x20 − xT1 x1), ‖x‖F = ‖x‖2

• nonnegative orthant (K = Rp
+)

trx =

p∑
i=1

xi, detx =

p∏
i=1

xi, ‖x‖F = ‖x‖2
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Powers and inverse

powers of x can be defined in terms of the spectral decomposition

xα =
∑
i

λαi qi

(exists if λαi is defined for all i)

• xα ◦ xβ = xα+β

xα ◦ xβ =

(
θ∑
i=1

λαi qi

)
◦

(
θ∑
i=1

λβi qi

)
=

θ∑
i=1

λα+βi qi = xα+β

• x is invertible if all λi 6= 0 (i.e., detx 6= 0)

inverse x−1 =
θ∑
i=1

λ−1i qi satisfies x ◦ x−1 = x−1 ◦ x = e
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Expressions for inverse

for invertible x (i.e., λi 6= 0 for i = 1, . . . , θ)

• nonnegative orthant (K = Rp
+)

x−1 =

(
1

x1
,

1

x2
, . . . ,

1

xp

)

• second-order cone (K = Qp)

x−1 =
2

xTJx
Jx, J =

[
1 0
0 −I

]

• semidefinite cone (K = Sp)

x−1 = vec
(
mat(x)−1

)
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Expressions for square root

for nonnegative x (i.e., λi ≥ 0 for i = 1, . . . , θ)

• nonnegative orthant (K = Rp
+)

x1/2 =
(√
x1,
√
x2, . . . ,

√
xp
)

• second-order cone (K = Qp)

x1/2 =
1

21/4
(
x0 +

√
xTJx

)1/2 [ x0 +
√
xTJx

x1

]

• semidefinite cone (K = Sp)

x1/2 = vec
(

mat(x)1/2
)
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Matrix representation of product

since the product is bilinear, it can be expressed as

x ◦ y = L(x)y

L(x) is a symmetric matrix, linearly dependent on x

• nonnegative orthant: L(x) = diag(x)

• second-order cone
L(x) =

1√
2

[
x0 xT1
x1 x0I

]
• semidefinite cone: the matrix defined by

L(x)y =
1

2
(XY + Y X), X = mat(x), Y = mat(y)
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Quadratic representation

the quadratic representation of x is the matrix

P (x) = 2L(x)2 − L(x2)

(terminology is motivated by the property P (x)e = x2)

• nonnegative orthant
P (x) = diag(x)2

• second-order cone

P (x) = xxT − x
TJx

2
J, J =

[
1 0
0 −I

]

• positive semidefinite cone

P (x)y = vec(XYX) where X = mat(x), Y = mat(y)
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Some useful properties

Powers

• P (x)α = P (xα) if xα exists

• P (x)x−1 = x if x is invertible

Derivative of x−1: for x invertible, P (x)−1 is the derivative of −x−1, i.e.,

d

dα
(x+ αy)−1

∣∣∣∣
α=0

= −P (x)−1y
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Scaling with P (x)

affine transformations y → P (x)y have important properties

• if x is invertible, then

P (x)K = K, P (x) intK = intK

multiplication with P (x) preserves the conic inequalities

• if x and y are invertible, then P (x)y is invertible with inverse

(P (x)y)
−1

= P (x−1)y−1 = P (x)−1y−1

• quadratic representation of P (x)y

P (P (x)y) = P (x)P (y)P (x)

hence also det (P (x)y) = (detx)2 det y
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Distance to cone boundary

for x � 0 define σx(y) = 0 if y � 0 and

σx(y) = −λmin

(
P (x−1/2)y

)
otherwise

σx(y) characterizes distance of x to the boundary ofK in the direction y:

x+ αy � 0 ⇐⇒ ασx(y) ≤ 1

Proof:

• from the definition of P on page 18-17: P (x1/2)e = x

• therefore, with v = P (x−1/2)y

x+ αy � 0 ⇐⇒ P (x1/2)(e + αv) � 0

⇐⇒ e + αv � 0

⇐⇒ 1 + αλi(v) ≥ 0
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Scaling point

for a pair s, z � 0, the point

w = P (z−1/2)
(
P (z1/2)s

)1/2
satisfies w � 0 and s = P (w)z

• the linear transformation P (w) preserves the cone and maps z to s

• equivalently, v = w1/2 defines a scaling P (v) = P (w)1/2 that satisfies

P (v)−1s = P (v)z
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Proof: we use the properties

P (x)e = x2, P (P (x)y) = P (x)P (y)P (x)

• if we define u = P (z1/2)s, we can write P (w) as

P (w) = P (z−1/2)P (u1/2)P (z−1/2)

• therefore

P (w)z = P (z−1/2)P (u1/2)e

= P (z−1/2)u

= s
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Scaling point for nonnegative orthant

Scaling point

w =

(√
s1/z1,

√
s2/z2, . . . ,

√
sp/zp

)

Scaling transformation: a positive diagonal scaling

P (w) =


s1/z1 0 · · · 0

0 s2/z2 · · · 0
... ... . . . ...
0 0 · · · sp/zp
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Scaling point for positive semidefinite cone

Scaling point: w = vec(RRT )

• R simultaneously diagonalizes mat(z) and mat(s)−1:

RT mat(z)R = R−1 mat(s)R−T = Σ

• can be computed from two Cholesky factorizations and an SVD: if

mat(s) = L1L
T
1 , mat(z) = L2L

T
2 , LT2 L1 = UΣV T

then R = L1V Σ−1/2 = L2UΣ1/2

Scaling transformation: a congruence transformation

P (w)y = RRT mat(y)RRT
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Log-det barrier

Definition: the log-det barrier of a symmetric coneK is

φ(x) = − log detx = −
θ∑
i=1

log λi, domφ = intK

φ is logarithmically homogeneous with degree θ (i.e., the rank ofK)

• nonnegative orthant (K = Rp
+): φ(x) = −

p∑
i=1

log xi

• second-order cone (K = Qp):

φ(x) = − log(x20 − xT1 x1) + log 2

• semidefinite cone (K = Sp): φ(x) = − log det(matx)

• compositionK = K1 × · · · ×KN : sum of the log-det barriers
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Convexity

φ is a convex function

Proof: consider arbitrary y and let λi be the eigenvalues of v = P (x−1/2)y

the restriction g(α) = φ(x+ αy) of φ to the line x+ αy is

g(α) = − log det(x+ αy)

= − log det
(
P (x1/2)(e + αv)

)
= − log detx− log det(e + αv)

= − log detx−
θ∑
i=1

log(1 + αλi)

(line 3 follows from page 18-18 and page 18-21)

hence restriction of φ to arbitrary line is convex
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Gradient and Hessian

the gradient and Hessian of φ at a point x � 0 are

∇φ(x) = −x−1, ∇2φ(x) = P (x)−1 = P (x−1)

Proof: continues from last page

∇φ(x)Ty = g′(0) = −
θ∑
i=1

λi = − tr(P (x−1/2)y) = −eTP (x−1/2)y

since this holds for all y, ∇φ(x) = −P (x−1/2)e = −x−1

the expression for the Hessian follows from page 18-18
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Dikin ellipsoid theorem for symmetric cones

recall the definition of the Dikin ellipsoid at x � 0:

Ex = {x+ y | yT∇2φ(x)y ≤ 1} = {x+ y | yTP (x)−1y ≤ 1}

• x+ y ∈ Ex if and only if the eigenvalues λi of P (x−1/2)y satisfy

θ∑
i=1

λ2i ≤ 1

• for symmetric cones the Dikin ellipsoid theorem Ex ⊆ K follows from

θ∑
i=1

λ2i ≤ 1 =⇒ min
i
λi ≥ −1

therefore x+ y ∈ Ex implies σx(y) ≤ 1 and x+ y � 0
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Generalized convexity of inverse

for all w � 0, the function

f(x) = wTx−1, dom f = intK

is convex

Proof: restriction g(α) = f(x+ αy) of f to a line is

g(α) = wT (x+ αy)−1 = wT
(
P (x−1/2)(e + αv)

)−1
= wTP (x1/2)(e + αv)−1

=

θ∑
i−1

wTP (x1/2)qi
1 + αλi

• λi, qi are eigenvalues and eigenvectors of v = P (x−1/2)y

• g(α) is convex because P (x1/2)K = K; therefore wTP (x1/2)qi ≥ 0
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Self-concordance

for all x � 0 and all y,

d

dα
∇2φ(x+ αy)

∣∣∣∣
α=0

� 2σx(y)∇2φ(x)

• from page 18-20, with v = P (x−1/2)y and λi = λi(v)

σx(y) = −min{0, λmin} ≤ (
θ∑
i=1

λ2i )
1/2 = ‖y‖x

hence, inequality implies self-concordance inequality on page 16-2

• this shows that the log-det barrier φ is a θ-normal barrier
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Proof: choose any σ > σx(y); by definition of σx we have σx+ y � 0

d

dα
∇2φ(x+ αy) =

d

dα
∇2φ(x− ασx) +

d

dα
∇2φ(x+ α(σx+ y))

• from page 16-24, the first term on the r.h.s. (evaluated at α = 0) is

−σ d

dt
∇2φ(tx)

∣∣∣∣
t=1

= 2σ∇2φ(x)

• 2nd term is ∇2g(x) where g(u) = wT∇φ(u) and w = σx+ y:

∇g(u) =
d

dα
∇φ(u+ αw)

∣∣∣∣
α=0

, ∇2g(u) =
d

dα
∇2φ(u+ αw)

∣∣∣∣
α=0

• ∇2g(u) � 0 because from page 18-29, g(u) = −wTu−1 is concave
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