L. Vandenberghe EE236C (Spring 2016)

18. Symmetric cones

e definition
e spectral decomposition
e quadratic representation

e |og-det barrier
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Introduction

This lecture: theoretical properties of the following cones

e nonnegative orthant

RY ={z eRP |21, >0, k=1,...,p}

e second-order cone

QP = {(x0,71) € R X RP™ | [z |2 < wo}

e positive semidefinite cone

SP = {x € RPPTV/2 | mat(x) = 0}

these cones are not only self-dual, but symmetric (also known as self-scaled)
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Cones of squares

the three basic cones can be expressed as cones of squares

ZEQZZEOZE

for appropriately defined vector products x o y

e nonnegative orthant: componentwise product x o y = diag(z)y

e second-order cone: the product of x = (g, z1) and y = (yo, y1) is

1 [ Ty ]
€T O y = —
V2 | Toy1 + Yox1

e positive semidefinite cone: symmetrized matrix product

1
roy = §Vec(XY +YX) with X = mat(z), Y = mat(Y)
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Symmetric cones

the vector products satisfy the following properties

1. x oy is bilinear (linear in x for fixed y and vice-versa)
2. roy=yox
3. 1?0 (yoxz)=(z’0y)ox

4. 2t (yoz)=(zoy)lz

except for the componentwise product, the products are not associative:

ro(yoz)# (roy)oz ingeneral

Definition: a cone is symmetric if it is the cone of squares
{(z2=xzozx |z cR"}

for a product x o y that satisfies these four properties
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Classification

e symmetric cones are studied in the theory of Euclidean Jordan algebras

e all possible symmetric cones have been characterized

List of symmetric cones

e the second-order cone
e the p.s.d. cone of Hermitian matrices with real, complex, or quaternion entries
e 3 X J positive semidefinite matrices with octonion entries

e Cartesian products of these ‘primitive’ symmetric cones (such as Rﬁ)

Practical implication

can focus on QF, SP and study these cones using elementary linear algebra
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Vector product

with each symmetric cone K we associate a bilinear vector product

o for RY, OP, SP we use the products on page 18-3

e foracone K = K x --- x Ky, with K; of one of the three basic types,

($1a---75’3N)O(yla--->yN) — (xloyla'“aajNoyN)

we refer to the product associated with the cone K as ‘the product for K’
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Identity element

Identity element: the element e that satisfieseox =xroe =z forall x

e productfor RY: e=1=(1,1,...,1)
e product for OP: e = (1/2,0,...,0)
e product for SP: e = vec(I)

e product for i1 X --- X Kp: the product of the IV identity elements

note we use the same symbol e for the identity element for each product

T

Rank of the cone: 0 = e* e is called the rank of K

o=p (K=RZ), 6=2 (K=0Q"), f6=p (K=35")

andH:Zleé’iifK:Kl x -+- X Ky and 6; is the rank of K
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Spectral decomposition

with each symmetric cone/product we associate a ‘spectral’ decomposition

6
r = Z Aid
i=1

A; are the eigenvalues of x; the eigenvectors ¢; satisfy

0
7 = a4, giog; =0 (i#7]) Z%‘Ze
i=1

e theory can be developed from properties of the vector product on page 18-4

e we will define the decomposition by enumerating the symmetric cones
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Spectral decomposition for primitive cones

Positive semidefinite cone (/X = S7)

spectral decomposition of x follows from eigendecomposition of mat(x):
p

mat(x) = Z A\iviv] ¢ = vec(v; )
i=1

Second-order cone (K = QP)

spectral decomposition of 7 = (zg, 1) € R x RP7Lis

ro £ ||z1||2 1 [ 1 ] .
)\’I:: , ;= ——= , 7/:1,2
V2 V2L ty

y = x1/||x1||2 if z1 # 0, and y is an arbitrary unit-norm vector otherwise
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Spectral decomposition for composite cones

Product cone (K = K X --- X Kp)

e spectral decomposition follows from decomposition of different blocks

e example (K = K7 x K5): decomposition of x = (x1, x2) is

G -

J
where x; = > \,;q;; is the spectral decomposition of x, j = 1,2
i=1

Nonnegative orthant (X' = RY)

A = X5, q; = e; (ith unit vector), 1=1,...,n
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Some properties

e the eigenvectors are normalized (||¢;||2 = 1) and nonnegative (¢; € K)

e eigenvectors are orthogonal: ¢/ q; = 0 fori # j

can be verified from the definitions, or from the properties on page 18-4

¢ 4j=q; (gjoq;) =(g0¢) ¢ =0

e r € Kifandonly \; > 0fori=1,...,0

e rcintKifandonly \; >0fort=1,...,60

Symmetric cones 18-11



Trace, determinant, and norm

0 0 0
trx = Z)\@-, det x = H Ais |z||F = (Z )‘7,2)1/2
i=1 i=1 i=1

e positive semidefinite cone (K = S?)

trx = tr(mat(x)), detxz = det(mat(x)), ||z||r = | mat(z)|r

e second-order cone (K = QP)

1
troe = \/5:60, det xz = 5(338 — IL’1T331), HSUHF — HCUH2

e nonnegative orthant (K = RY)

p p
trx:in, detx:HCBz, HCCHF: HC’?H2
i=1 i=1
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Powers and inverse
powers of x can be defined in terms of the spectral decomposition
% = Z i g
i
(exists if A is defined for all ¢)

Y xa O.CUB — xa_i_/B

7 0 0
e <Z Ag%) O (Z Af%) =D A Tg =2t
1=1 i=1 i=1

e x isinvertible if all \; ## 0 (i.e., det x #£ 0)

0
inverse z71 = > A\ '¢g; satisfiesrox ! =27 loz =e

1=1
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Expressions for inverse
for invertible x (i.e., \; #O0fori =1, ...,0)

e nonnegative orthant (K = RY)

e second-order cone (K = QP)

2 1 0
—1

p— J p—

x i J [ ]

e semidefinite cone (K = SP)
! = vec (mat(x) ")
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Expressions for square root

for nonnegative x (i.e., \; > O0fori =1,...,60)

e nonnegative orthant (K = RY)
261/2 — (\/1‘1, L2y vy \/Zli‘p)

e second-order cone (K = QP)

X

e i 204 VT |
- 1/2
91/4 (a:o + :UTJQU) 1

e semidefinite cone (K = SP)

22 = vec (mat(a:)l/Q)
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Matrix representation of product

since the product is bilinear, it can be expressed as
roy = L(x)y
L(x) is a symmetric matrix, linearly dependent on x

e nonnegative orthant: L(z) = diag(x)

e second-order cone

=

e semidefinite cone: the matrix defined by

L(z)y = %(XY LYX), X =mat(z), Y =mat(y)
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Quadratic representation

the quadratic representation of x is the matrix

(terminology is motivated by the property P(x)e = z?)

e nonnegative orthant
P(z) = diag(z)?

e second-order cone

e positive semidefinite cone

P(z)y = vec(XY X) where X = mat(z), Y = mat(y)
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Some useful properties

Powers
o P(x)* = P(z®)if x“ exists

o P(x)x~1 = zif x isinvertible

1

Derivative of z—!: for x invertible, P(x)~! is the derivative of —z 1, i.e.,
i(-fv+ozy)_1 = —P(x)"y
do
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Scaling with P(z)
affine transformations y — P(x)y have important properties
e if x is invertible, then
Pz)K = K, P(z)int K =int K
multiplication with P(x) preserves the conic inequalities

e if x and y are invertible, then P(x)y is invertible with inverse

(P(z)y) " =P Yy ' =Px) 'y

e quadratic representation of P(x)y

hence also det (P(x)y) = (det )% det y
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Distance to cone boundary
for x > 0 define o,(y) = 0ify = 0 and

02(Y) = —Amin (P(:z:_l/z)y) otherwise

0. (y) characterizes distance of x to the boundary of K in the direction y:
r+ay =0 = ao,(y) <1

Proof:

e from the definition of P on page 18-17: P(z'/?)e = x
e therefore, with v = P(x~1/2)y

r+ay>=0 <= Pa/Hle+aw) =0
— e+av>=0

<— 14+ al(v) >0
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Scaling point
for a pair s, z > 0, the point
1/2
w = P(z"1/2) (P(zl/2)3>

satisfies w > 0 and s = P(w)z

e the linear transformation P(w) preserves the cone and maps z to s

e equivalently, v = w'/2 defines a scaling P(v) = P(w)'/? that satisfies
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Proof: we use the properties

o if we define u = P(2'/2)s, we can write P(w) as

P(w) = P(z~ Y3 P(u/?)P(z~1/?)

e therefore

P(w)z = Pz YHPu!/?e
= Pz Y

Symmetric cones
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Scaling point for nonnegative orthant

Scaling point

w = (¢31/z1, NCYER M)

Scaling transformation: a positive diagonal scaling

i 81/21 0 0
P(w) = O 82{22 Q
|0 0 - sp/2p |
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Scaling point for positive semidefinite cone

Scaling point: w = vec(RR?)
e R simultaneously diagonalizes mat(z) and mat(s)~*:
R'mat(z)R=R 'mat(s) R~ =%
e can be computed from two Cholesky factorizations and an SVD: if
mat(s) = L1 LT,  mat(z) = L,LL, LIL,=Uxv?
then R = L1V ~1/2 = L,UR/2
Scaling transformation: a congruence transformation

P(w)y = RR' mat(y)RR"
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Log-det barrier

Definition: the log-det barrier of a symmetric cone K is
0
d(x) = —logdet x = —Zlog)\z-, dom ¢ = int K
i=1

@ is logarithmically homogeneous with degree 6 (i.e., the rank of K)

p
e nonnegative orthant (K = R%): ¢(z) = — glog T

1=

e second-order cone (K = OQP):
#(x) = —log(xg — =1 1) + log 2

e semidefinite cone (K = SP): ¢(x) = — log det(mat x)

e composition K = K7 X --- X Kx: sum of the log-det barriers
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Convexity

@ is a convex function

Proof: consider arbitrary 3 and let \; be the eigenvalues of v = P(z~1/2)y

the restriction g(a) = ¢(x + ay) of ¢ to the line x + ay is

g(a) = —logdet(x + ay)
= —logdet (P(wl/z)(e + ow))

= —logdetx — logdet(e + av)

7
= —logdetz — Z log(1 + a\;)
i=1

(line 3 follows from page 18-18 and page 18-21)

hence restriction of ¢ to arbitrary line is convex

Symmetric cones 18-26



Gradient and Hessian

the gradient and Hessian of ¢ at a point x > 0 are

Vo(x) =—2~",  V¢(z)=Px)" = Pz

Proof: continues from last page

since this holds for all y, Vo (z) = —P(z~/2)e = —z~!

the expression for the Hessian follows from page 18-18
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Dikin ellipsoid theorem for symmetric cones

recall the definition of the Dikin ellipsoid at = > 0:
Ex={z+yly' Vi(x)y <1} ={z+yly Plx) 'y <1}

e x4y € &, if and only if the eigenvalues \; of P(x~1/2)y satisfy
0
<)
i—1

e for symmetric cones the Dikin ellipsoid theorem &, C K follows from

0
Y N<1 = min)>-1
1=1 ’

therefore x +y € &, implies o, (y) < landx+y > 0
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Generalized convexity of inverse

for all w > 0, the function

IS convex

Proof: restriction g(a) = f(z 4+ ay) of f to alineis

gla)=w'(z+ay)™" = w' (P(:U‘l/?)(e + ow)>_1

= wI'P(x'?)(e + av)™!

/ w? P(21/?)q;
1+ Oé)\i

1—1

e )i, ¢; are eigenvalues and eigenvectors of v = P(z~1/?)y

e g(a) is convex because P(z!/?)K = K; therefore w” P(x'/?)q; > 0
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Self-concordance

for all x > 0 and all v,

d
V2 +ay)| = 20,(5) V(o)

a=0

e from page 18-20, with v = P(z~Y/2)y and \; = \;(v)

0
Ux(y) — _min{Oa)\min} < (Z )\3)1/2 — HyHa:

1=1

hence, inequality implies self-concordance inequality on page 16-2

e this shows that the log-det barrier ¢ is a 8-normal barrier
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Proof: choose any o > o.(y); by definition of o, we have ox + y = 0

%V%ﬁ(w +ay) =

d _, d o
%v ¢(xr — aox) + @V ¢(x + alox +y))

e from page 16-24, the first term on the r.h.s. (evaluated at o = 0) is

—0 iV2¢(tx)

_ 2
o = 20V*¢(x)

t=1

e 2ndtermis V2g(z) where g(u) = w!'Vé(u) and w = ox + v

d
do

: VZg(u) = iVng(u + aw)

Vg(u) = -

—Vo(u + aw)

e VZg(u) < 0 because from page 18-29, g(u) = —w! v~ is concave
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