Lecture 5 Alternatives

- theorem of alternatives for linear inequalities
- Farkas' lemma and other variants

Theorem of alternatives for linear inequalities

for given A, b, exactly one of the following two statements is true

1. there exists an x that satisfies $A x \leq b$
2. there exists a z that satisfies $z \geq 0, A^{T} z=0, b^{T} z<0$

- it is clear that 1 and 2 cannot be both true:

$$
\begin{aligned}
A x \leq b, \quad z \geq 0 & \Longrightarrow \quad z^{T}(A x-b) \leq 0 \\
A^{T} z=0, \quad b^{T} z<0 \quad & \Longrightarrow \quad z^{T}(A x-b)>0
\end{aligned}
$$

- proof that 1 and 2 cannot be both false is less obvious (see page 5-7)
- z in statement 2 is a certificate of infeasibility of $A x \leq b$

Farkas' lemma

for given A, b, exactly one of the following statements is true:

1. there exists an x with with $A x=b, x \geq 0$
2. there exists a y with $A^{T} y \geq 0, b^{T} y<0$
proof: apply previous theorem to

$$
\left[\begin{array}{r}
A \\
-A \\
-I
\end{array}\right] x \leq\left[\begin{array}{r}
b \\
-b \\
0
\end{array}\right]
$$

- this system is infeasible if and only if there exist u, v, w such that

$$
u \geq 0, v \geq 0, w \geq 0, \quad A^{T}(u-v)=w, \quad b^{T}(u-v)<0
$$

- in simpler notation (defining $y=u-v$): $A^{T} y \geq 0, b^{T} y<0$

Geometric interpretation of Farkas' lemma

assume A is $m \times n$ with columns a_{i}
first alternative
$b=\sum_{i=1}^{n} x_{i} a_{i}, \quad x_{i} \geq 0, \quad i=1, \ldots, n$

b is in the cone generated by the columns of A
second alternative
$y^{T} a_{i} \geq 0, \quad i=1, \ldots, m, \quad y^{T} b<0$

the hyperplane $y^{T} z=0$ separates b from a_{1}, \ldots, a_{m}

Mixed inequalities and equalities

given A, b, C, d, exactly one of the following statements is true

1. there exists an x that satisfies

$$
A x \leq b, \quad C x=d
$$

2. there exist y, z that satisfy

$$
z \geq 0, \quad A^{T} z+C^{T} y=0, \quad b^{T} z+d^{T} y<0
$$

proof: apply theorem of page 5-2 to

$$
\left[\begin{array}{r}
A \\
C \\
-C
\end{array}\right] x \leq\left[\begin{array}{r}
b \\
d \\
-d
\end{array}\right]
$$

Exercise: strict inequalities

show that exactly one of the following statements is true

1. there exists an x that satisfies

$$
A x<b, \quad B x \leq c
$$

2. there exist y, z that satisfy

$$
y \geq 0, \quad z \geq 0, \quad A^{T} y+B^{T} z=0
$$

and

$$
b^{T} y+c^{T} z<0 \quad \text { or } \quad b^{T} y+c^{T} z=0, \quad y \neq 0
$$

hint. statement 1 is equivalent to: there exist u, t such that

$$
A u \leq t b-1, \quad B u \leq t c, \quad t \geq 1
$$

Proof of the theorem of alternatives

- we show that if statement 1 on page $5-2$ is false, then 2 is true
- the proof is by induction on the column dimension of A
basic case: if A has zero columns, the alternatives are

1. $b \geq 0$
2. there exists a $z \geq 0$ with $b^{T} z<0$
clearly, if 1 is false ($b_{i}<0$ for some i), then 2 is true (take $z=e_{i}$)

induction step

- assume the theorem holds for sets of inequalities with $n-1$ variables
- consider an inequality $A x \leq b$ with an $m \times n$ matrix A
- we divide the inequalities $A x \leq b$ in three groups:

$$
I_{+}=\left\{i \mid A_{i n}>0\right\}, \quad I_{0}=\left\{i \mid A_{\text {in }}=0\right\}, \quad I_{-}=\left\{i \mid A_{\text {in }}<0\right\}
$$

- scale the inequalities with $A_{i n} \neq 0$ to get an equivalent system

$$
\begin{aligned}
\sum_{\substack{k=1 \\
n-1}} C_{i k} x_{k}+x_{n} \leq d_{i} & \text { for } i \in I_{+} \\
\sum_{k=1} C_{i k} x_{k}-x_{n} \leq d_{i} & \text { for } i \in I_{-} \\
\sum_{k=1}^{n-1} A_{i k} x_{k} \leq b_{i} & \text { for } i \in I_{0}
\end{aligned}
$$

where

$$
C_{i k}=\left\{\begin{array}{ll}
A_{i k} / A_{i n} & i \in I_{+} \\
-A_{i k} / A_{i n} & i \in I_{-}
\end{array} \quad d_{i}= \begin{cases}b_{i} / A_{i n} & i \in I_{+} \\
-b_{i} / A_{i n} & i \in I_{-}\end{cases}\right.
$$

- the inequalities indexed by I_{+}and I_{-}hold for some x_{n} if and only if

$$
\max _{i \in I_{-}}\left(\sum_{k=1}^{n-1} C_{i k} x_{k}-d_{i}\right) \leq \min _{i \in I_{+}}\left(d_{i}-\sum_{k=1}^{n-1} C_{i k} x_{k}\right)
$$

- therefore $A x \leq b$ is solvable if and only if there exist $\left(x_{1}, \ldots, x_{n-1}\right)$ s.t.

$$
\begin{array}{cl}
\sum_{k=1}^{n-1}\left(C_{i k}+C_{j k}\right) x_{k} \leq d_{i}+d_{j} & \text { for all } i \in I_{-}, j \in I_{+} \\
\sum_{k=1}^{n-1} A_{i k} x_{k} \leq b_{i} & \text { for all } i \in I_{0}
\end{array}
$$

this is a system of inequalities with $n-1$ variables

- if this system is infeasible, there exist $u_{i j}\left(i \in I_{-}, j \in I_{+}\right), v_{i}\left(i \in I_{0}\right)$,

$$
\begin{gathered}
u_{i j} \geq 0 \quad \text { for } i \in I_{-}, j \in I_{+}, \quad v_{i} \geq 0 \quad \text { for } i \in I_{0} \\
\sum_{i \in I_{-}, j \in I_{+}}\left(C_{i k}+C_{j k}\right) u_{i j}+\sum_{i \in I_{0}} v_{i} A_{i k}=0, \quad k=1, \ldots, n-1 \\
\sum_{i \in I_{-}, j \in I_{+}}\left(d_{i}+d_{j}\right) u_{i j}+\sum_{i \in I_{0}} b_{i} v_{i}<0
\end{gathered}
$$

- now define

$$
\begin{array}{rr}
z_{i}=\frac{1}{-A_{i n}} \sum_{j \in I_{+}} u_{i j} & \text { for } i \in I_{-} \\
z_{j}=\frac{1}{A_{j n}} \sum_{i \in I_{-}} u_{i j} & \text { for } j \in I_{+} \\
z_{i}=v_{i} & \text { for } i \in I_{0}
\end{array}
$$

to get a vector z that satisfies $z \geq 0, A^{T} z=0, b^{T} z<0$

