Lecture 14
Barrier method

• centering problem
• Newton decrement
• local convergence of Newton method
• short-step barrier method
• global convergence of Newton method
• predictor-corrector method
Centering problem

centering problem (with notation and assumptions of page 13–12)

\[\text{minimize } f_t(x) = t c^T x + \phi(x) \]

- \(\phi(x) = - \sum_{i=1}^{m} \log(b_i - a_i^T x) \) is logarithmic barrier of \(A x \leq b \)
- minimizer \(x \) is point \(x^*(t) \) on central path
- minimizer is \(m/t \)-suboptimal solution of LP:

\[c^T x^*(t) - p^* \leq \frac{m}{t} \]

barrier method(s):

use Newton’s method to (approximately) minimize \(f_t \), for a sequence of \(t \)
Properties of centering cost function

gradient and Hessian

\[\nabla f_t(x) = tc + A^T d_x, \quad \nabla^2 f_t(x) = A^T \text{diag}(d_x)^2 A \]

\[d_x = \left(\frac{1}{b_1 - a^T_1 x}, \ldots, \frac{1}{b_m - a^T_m x} \right) \text{ is a positive } m \text{-vector} \]

(strict) convexity and its consequences (see pages 13–6 and 13–9)

• \(\nabla^2 f_t(x) \) is positive definite for all \(x \in P^\circ \)

• first order condition:

\[f_t(y) > f_t(x) + \nabla f_t(x)^T (y - x) \quad \text{for all } x, y \in P^\circ \text{ with } x \neq y \]

• \(x \) minimizes \(f_t \) if and only if \(\nabla f_t(x) = 0 \); if minimizer exists, it is unique
Lower bound for centering problem

centering problem is bounded below if dual LP is strictly feasible:

\[f_t(y) \geq -tb^Tz + \sum_{i=1}^{m} \log z_i + m \log t + m \quad \text{for all } y \in P^o \]

here \(z \) can be any strictly dual feasible point \((A^Tz + c = 0, z > 0)\)

proof: difference of left- and right-hand sides is

\[t(c^T y + b^T z) - \sum_{i=1}^{m} \log(t(b_i - a_i^T y)z_i) - m \]

\[= t(b - Ay)^Tz - \sum_{i=1}^{m} \log(t(b_i - a_i^T y)z_i) - m \]

\[\geq 0 \quad \text{(since } u - \log u - 1 \geq 0) \]
Newton method for centering problem

Newton step for f_t at $x \in P^\circ = \{y \mid Ay < b\}$

$$
\Delta x_{nt} = -\nabla^2 f_t(x)^{-1} \nabla f_t(x) = -\nabla^2 \phi(x)^{-1} (tc + \nabla \phi(x)) = -\left(A^T \text{diag}(d_x)^2 A \right)^{-1} (tc + A^T d_x)
$$

Newton iteration: choose suitable stepsize α and make update

$$
x := x + \alpha \Delta x_{nt}
$$

we will show that Newton method converges if f_t is bounded below
Outline

- centering problem

- **Newton decrement**

- local convergence of Newton method

- short-step barrier method

- global convergence of Newton method

- predictor-corrector method
Newton decrement

the Newton decrement at $x \in P^\circ$ is

$$\lambda_t(x) = \left(\Delta x_{nt}^T \nabla^2 \phi(x) \Delta x_{nt} \right)^{1/2}$$

$$= \| \text{diag}(d_x) A \Delta x_{nt} \|$$

$$= \| \Delta x_{nt} \|_x$$

- $-\lambda_t(x)^2$ is the directional derivative of f_t at x in the direction Δx_{nt}:

$$-\lambda_t(x)^2 = \nabla f_t(x)^T \Delta x_{nt} = \frac{d}{d\alpha} f_t(x + \alpha \Delta x_{nt})\bigg|_{\alpha=0}$$

- $\lambda_t(x) = 0$ if and only if $x = x^*(t)$

- we will use $\lambda_t(x)$ to measure proximity of x to $x^*(t)$
Dual feasible points near central path

on central path (p. 13–15): strictly dual feasible point from \(x = x^*(t) \)

\[
z^*(t) = \frac{1}{t} d_x, \quad z^*_i(t) = \frac{1}{t(b_i - a^T_i x)}, \quad i = 1, \ldots, m
\]

near central path: for \(x \in P^o \) with \(\lambda_t(x) < 1 \), define

\[
z = \frac{1}{t} (d_x + \text{diag}(d_x)^2 A \Delta x_{nt})
\]

- \(\Delta x_{nt} \) is the Newton step for \(f_t \) at \(x \)
- \(z \) is strictly dual feasible (see next page); duality gap with \(x \) is

\[
(b - Ax)^T z = \frac{m + d^T_x A \Delta x_{nt}}{t} \leq \left(1 + \frac{\lambda_t(x)}{\sqrt{m}} \right) \frac{m}{t}
\]
proof:

• by definition, Newton step Δx_{nt} at x satisfies

\[A^T \text{diag}(d_x)^2 A \Delta x_{nt} = -tc - A^T d_x \]

therefore z satisfies the equality constraints $A^T z + c = 0$

• $z > 0$ if and only if

\[1 + \text{diag}(d_x) A \Delta x_{nt} > 0 \]

a sufficient condition is $\lambda_t(x) = \| \text{diag}(d_x) A \Delta x_{nt} \| < 1$

• bound on duality gap follows from Cauchy-Schwarz inequality
Lower bound for centering problem near central path

• substituting the dual z of p.14–7 in the lower bound of p.14–4 gives

$$f_t(y) \geq f_t(x) - \sum_{i=1}^{m} (w_i - \log(1 + w_i)) \quad \forall y \in P^o$$

where $w_i = (a_i^T \Delta x_{nt})/(b_i - a_i^T x)$

• this bound holds if $\lambda_t(x) < 1$; a simpler bound holds if $\lambda_t(x) \leq 0.68$:

$$f_t(y) \geq f_t(x) - \sum_{i=1}^{m} w_i^2 = f_t(x) - \lambda_t(x)^2$$

(since $u - \log(1 + u) \leq u^2$ for $|u| \leq 0.68$)
Outline

- centering problem
- Newton decrement
- local convergence of Newton method
- short-step barrier method
- global convergence of Newton method
- predictor-corrector method
Quadratic convergence of Newton’s method

Theorem: if $\lambda_t(x) < 1$ and Δx_{nt} is Newton step of f_t at x, then

$$x^+ = x + \Delta x_{nt} \in P^\circ, \quad \lambda_t(x^+) \leq \lambda_t(x)^2$$

Newton method (with unit stepsize)

$$x^{(k+1)} = x^{(k)} - \nabla^2 f_t(x^{(k)})^{-1} \nabla f_t(x^{(k)})$$

- if $\lambda_t(x^{(0)}) \leq 1/2$, Newton decrement after k iterations is

$$\lambda_t(x^{(k)}) \leq (1/2)^{2^k}$$

 decreases very quickly: $(1/2)^{2^5} = 2.3 \cdot 10^{-10}$, $(1/2)^{2^6} = 5.4 \cdot 10^{-20}$, . . .

- $\lambda_t(x^{(k)})$ very small after a few iterations
proof of quadratic convergence result

feasibility of x^+: follows from $\lambda_t(x) = \|\Delta x_{nt}\|_x$ and result on p.13–7

quadratic convergence: define $D = \text{diag}(d_x)$, $D_+ = \text{diag}(d_{x^+})$

\[
\begin{align*}
\lambda_t(x^+)^2 &= \|D_+A \Delta x_{nt}^+\|^2 \\
&\leq \|D_+A \Delta x_{nt}^+\|^2 + \|(I - D_{+1}^{-1}D)DA \Delta x_{nt} + D_+A \Delta x_{nt}^+\|^2 \\
&= \|(I - D_{+1}^{-1}D)DA \Delta x_{nt}\|^2 \\
&= \|(I - D_{+1}^{-1}D)^21\|^2 \\
&\leq \|(I - D_{+1}^{-1}D)1\|^4 \\
&= \|DA \Delta x_{nt}\|^2 \\
&= \lambda_t(x)^4
\end{align*}
\]
• on lines 4 and 6 we used

\[DA \Delta x_{nt} = D(b - Ax - b + Ax^+) \]
\[= (I - D^{-1}_+D)1 \]

• line 3 follows from

\[A^T D_+ (D_+ A \Delta x^+_{nt} + (I - D^{-1}_+D) DA \Delta x_{nt}) \]
\[= A^T D^2_+ A \Delta x^+_{nt} - A^T D^2 A \Delta x_{nt} + A^T D_+ DA \Delta x_{nt} \]
\[= -tc - A^T D_+1 + tc + A^T D1 + A^T D_+(I - D^{-1}_+D)1 \]
\[= 0 \]

• line 5 follows from \((\sum_i y_i^4) \leq (\sum_i y_i^2)^2\)
Outline

- centering problem
- Newton decrement
- local convergence of Newton method
- short-step barrier method
- global convergence of Newton method
- predictor-corrector method
Short-step barrier method

simplifying assumptions

- a central point $x^*(t_0)$ is given
- $x^*(t)$ is computed exactly

algorithm: define tolerance $\epsilon \in (0, 1)$ and parameter

$$\mu = 1 + \frac{1}{2\sqrt{m}}$$

starting at $t = t_0$, repeat until $m/t \leq \epsilon$:

- compute $x^*(\mu t)$ by Newton’s method with unit step started at $x^*(t)$
- set $t := \mu t$
Newton decrement after update of t

- gradient of f_{t^+} at $x = x^*(t)$ for new value $t^+ = \mu t$:

$$\nabla f_{t^+}(x) = \mu tc + A^T d_x = -(\mu - 1)A^T d_x$$

- Newton decrement for new value t^+ is

$$\lambda_{t^+}(x) = \left(\nabla f_{t^+}(x)^T \nabla^2 \phi(x)^{-1} \nabla f_{t^+}(x) \right)^{1/2}$$

$$= (\mu - 1) \left(1^T B (B^T B)^{-1} B^T 1 \right)^{1/2} \quad \text{(with } B = \text{diag}(d_x) A)$$

$$\leq (\mu - 1) \sqrt{m}$$

$$= 1/2$$

Line 3 follows because maximum eigenvalue of $B(B^T B)^{-1} B^T$ is one.

$x^*(t)$ is in region of quadratic convergence of Newton’s method for $f_{\mu t}$
Iteration complexity

- Newton iterations per outer iteration: a small constant
- number of outer iterations: we reach \(t^{(k)} = \mu^k t_0 \geq m/\epsilon \) when

\[
k \geq \frac{\log(m/(\epsilon t_0))}{\log \mu}
\]

cumulative number of Newton iterations

\[
O \left(\sqrt{m} \log \left(\frac{m}{\epsilon t_0} \right) \right)
\]

(we used \(\log \mu = \log(1 + 1/(2\sqrt{m})) \geq (\log 2)/(2\sqrt{m}) \))

- multiply by flops per Newton iteration to get polynomial complexity
- \(\sqrt{m} \) dependence is lowest known complexity for interior-point methods
Outline

- centering problem
- Newton decrement
- local convergence of Newton method
- short-step barrier method
- global convergence of Newton method
- predictor-corrector method
Maximum stepsize to boundary

for \(x \in P^o \) and arbitrary \(v \neq 0 \), define

\[
\sigma_x(v) = \begin{cases}
0 & \text{if } Av \leq 0 \\
\max_{i=1,\ldots,m} \frac{a_i^T v}{b_i - a_i^T x} & \text{otherwise}
\end{cases}
\]

point \(x + \alpha v \ (\alpha \geq 0) \) is in \(P \) if and only if \(\alpha \sigma_x(v) \leq 1 \)

\(x + \sigma^{-1}v \)

\(x + v \)

\(x \)

\(x + \alpha v \in P \) for

\[
\alpha \in [0, 1/\sigma] \quad \text{if } \sigma > 0 \\
\alpha \in [0, \infty) \quad \text{if } \sigma = 0
\]
Upper bound on centering cost function

arbitrary direction: for \(x \in P^o \) and arbitrary \(v \neq 0 \)

- if \(\sigma = \sigma_x(v) > 0 \) and \(\alpha \in [0, 1/\sigma) \):

 \[
 f_t(x + \alpha v) \leq f_t(x) + \alpha \nabla f_t(x)^T v - \frac{\|v\|_x^2}{\sigma^2} (\alpha \sigma + \log(1 - \alpha \sigma))
 \]

- if \(\sigma = \sigma_x(v) = 0 \) and \(\alpha \in [0, \infty) \):

 \[
 f_t(x + \alpha v) \leq f_t(x) + \alpha \nabla f_t(x)^T v + \frac{\alpha^2}{2} \|v\|_x^2
 \]

on the right-hand sides, \(\|v\|_x = (v^T \nabla^2 f_t(x)v)^{1/2} \)

Newton direction: for \(v = \Delta x_{nt} \), substitute \(-\nabla f_t(x)^T v = \|v\|_x^2 = \lambda_t(x)^2 \)
proof: define \(w_i = (a_i^T v) / (b_i - a_i^T x) \) and note that \(||w|| = ||v||_x \)

- if \(\sigma = \max_i w_i > 0 \):

\[
\begin{align*}
 f_t(x + \alpha v) - f_t(x) - \alpha \nabla f_t(x)^T v &= \quad - \sum_{i=1}^{m} (\alpha w_i + \log(1 - \alpha w_i)) \\
 &\leq \quad - \sum_{w_i > 0} (\alpha w_i + \log(1 - \alpha w_i)) + \sum_{w_i \leq 0} \frac{\alpha^2 w_i^2}{2} \\
 &\leq \quad - \sum_{w_i > 0} \frac{w_i^2}{\sigma^2} (\alpha \sigma + \log(1 - \alpha \sigma)) + \frac{(\alpha \sigma)^2}{2} \sum_{w_i \leq 0} \frac{w_i^2}{\sigma^2} \\
 &\leq \quad - \sum_{i=1}^{m} \frac{w_i^2}{\sigma^2} (\alpha \sigma + \log(1 - \alpha \sigma))
\end{align*}
\]

- if \(\sigma = 0 \), upper bound follows from (*)
Damped Newton iteration

\[x^+ = x + \frac{1}{1 + \sigma_x(\Delta x_{nt})} \Delta x_{nt} \]

Theorem: damped Newton iteration at any \(x \in P^o \) decreases cost

\[f_t(x^+) \leq f_t(x) - \lambda_t(x) + \log(1 + \lambda_t(x)) \]

- graph shows \(u - \log(1 + u) \)
- if \(\lambda_t(x) \geq 0.5 \)

\[f_t(x^+) \leq f_t(x) - 0.09 \]
proof: apply upper bounds on page 14–17 with \(v = \Delta x_{nt} \)

- if \(\sigma > 0 \), the value of the upper bound

\[
f_t(x) - \alpha \lambda_t(x)^2 - \frac{\lambda_t(x)^2}{\sigma^2} (\alpha \sigma + \log(1 - \alpha \sigma))
\]

at \(\alpha = 1/(1 + \sigma) \) is

\[
f_t(x) - \frac{\lambda_t(x)^2}{\sigma^2} (\sigma - \log(1 + \sigma)) \leq f_t(x) - \lambda_t(x) + \log(1 + \lambda_t(x))
\]

- if \(\sigma = 0 \), value of upper bound

\[
f_t(x) - \alpha \lambda_t(x)^2 + \frac{\alpha^2}{2} \lambda_t(x)^2
\]

at \(\alpha = 1 \) is

\[
f_t(x) - \frac{\lambda_t(x)^2}{2} \leq f_t(x) - \lambda_t(x) + \log(1 + \lambda_t(x))
\]
Summary: Newton algorithm for centering

centering problem

minimize \(f_t(x) = tc^T x + \phi(x) \)

given: tolerance \(\delta \in (0, 1) \), starting point \(x := x^{(0)} \in P^o \)

repeat:

1. compute Newton step \(\Delta x_{nt} \) at \(x \) and Newton decrement \(\lambda_t(x) \)
2. if \(\lambda_t(x) \leq \delta \), return \(x \)
3. otherwise, set \(x := x + \alpha \Delta x_{nt} \) with

\[
\alpha = \begin{cases}
1 & \text{if } \lambda_t(x) > 1/2 \\
\frac{1}{1 + \sigma_x(\Delta x_{nt})} & \text{if } \lambda_t(x) \leq 1/2 \\
1 & \text{if } \lambda_t(x) > 1/2 \\
\end{cases}
\]
Convergence

Theorem: if $\delta < 1/2$ and $f_t(x)$ is bounded below, algorithm takes at most

$$\frac{f_t(x^{(0)}) - \min_y f_t(y)}{0.09} + \log_2 \log_2(1/\delta) \text{ iterations} \quad (1)$$

Proof: combine theorems on pages 14–10 and 14–19

- if $\lambda_t(x^{(k)}) > 1/2$, iteration k decreases the function value by at least
 $$\lambda_t(x^{(k)}) - \log(1 - \lambda_t(x^{(k)})) \geq 0.09$$

- the first term in (1) bounds the number of iterations with $\lambda_t(x) > 1/2$

- if $\lambda_t(x^{(l)}) \leq 1/2$, quadratic convergence yields $\lambda_t(x^{(k)}) \leq \delta$ after
 $$k = l + \log_2 \log_2(1/\delta) \text{ iterations}$$
Computable bound on \#iterations

replace unknown $\min_y f_t(y)$ in (1) by the lower bound from page 14–4:

$$f_t(x) - \min_y f_t(y) \leq V_t(x, z)$$

where z is a strictly dual feasible point and

$$V_t(x, z) = f_t(x) + tb^T z - \sum_{i=1}^m \log z_i - m \log t - m$$

number of Newton iterations to minimize f_t starting at x is bounded by

$$10.6 V_t(x, z) + \log_2 \log_2(1/\delta)$$
Outline

• centering problem

• Newton decrement

• local convergence of Newton method

• short-step barrier method

• global convergence of Newton method

• predictor-corrector method
Predictor-corrector methods

short-step methods

- stay in narrow neighborhood of central path, defined by limit on λ_t
- make small, fixed increases $t^+ = \mu t$
- quite slow in practice

predictor-corrector methods

- select new t using a linear approximation to central path (‘predictor’)
- recenter with new t (‘corrector’)
- can make faster and adaptive increases in t
Tangent to central path

central path equation

\[
\begin{bmatrix}
0 \\
\mathbf{s}^*(t)
\end{bmatrix}
= \begin{bmatrix}
0 & A^T \\
-A & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{x}^*(t) \\
\mathbf{z}^*(t)
\end{bmatrix}
+ \begin{bmatrix}
c \\
b
\end{bmatrix}
\]

\[s^*_i(t)z^*_i(t) = \frac{1}{t}, \quad i = 1, \ldots, m\]

derivatives: \(\dot{x} = dx^*(t)/dt, \dot{s} = ds^*/dt, \dot{z} = dz^*(t)/dt\) satisfy

\[
\begin{bmatrix}
0 \\
\dot{s}
\end{bmatrix}
= \begin{bmatrix}
0 & A^T \\
-A & 0
\end{bmatrix}
\begin{bmatrix}
\dot{x} \\
\dot{z}
\end{bmatrix}
\]

\[s^*_i(t)\dot{z}_i + z^*_i(t)\dot{s}_i = -\frac{1}{t^2}, \quad i = 1, \ldots, m\]

tangent direction: defined as \(\Delta x_{tg} = t\dot{x}, \Delta s_{tg} = t\dot{s}, \Delta z_{tg} = t\dot{z}\)
Predictor equations

with \(x = x^*(t) \), \(s = s^*(t) \), \(z = z^*(t) \)

\[
\begin{bmatrix}
\left(\frac{1}{t} \right) \text{diag}(s)^{-2} & 0 & I \\
0 & 0 & AT \\
-I & -A & 0 \\
\end{bmatrix}
\begin{bmatrix}
\Delta s_{tg} \\
\Delta x_{tg} \\
\Delta z_{tg} \\
\end{bmatrix}
=
\begin{bmatrix}
-z \\
0 \\
0 \\
\end{bmatrix}
\tag{1}
\]

equivalent equation (using \(s_i z_i = 1/t \))

\[
\begin{bmatrix}
I & 0 & (1/t) \text{diag}(z)^{-2} \\
0 & 0 & A^T \\
-I & -A & 0 \\
\end{bmatrix}
\begin{bmatrix}
\Delta s_{tg} \\
\Delta x_{tg} \\
\Delta z_{tg} \\
\end{bmatrix}
=
\begin{bmatrix}
-s \\
0 \\
0 \\
\end{bmatrix}
\tag{2}
\]
Properties of tangent direction

- from 2nd and 3rd block in (1): $\Delta s_{tg}^T \Delta z_{tg} = 0$
- take inner product with s on both sides of first block in (1):
 \[s^T \Delta z_{tg} + z^T \Delta s_{tg} = -s^T z \]
- hence, gap in tangent direction is
 \[(s + \alpha \Delta s_{tg})^T (z + \alpha \Delta z_{tg}) = (1 - \alpha) s^T z \]
- take inner product with Δs_{tg} on both sides of first block in (1):
 \[\Delta s_{tg}^T \text{diag}(s)^{-2} \Delta s_{tg} = -tz^T \Delta s_{tg} \]
- similarly, from first block in (2): $\Delta z_{tg}^T \text{diag}(z)^{-2} \Delta z_{tg} = -ts^T \Delta z_{tg}$
Potential function

definition: for strictly primal, dual feasible x, z, define

$$
\Psi(x, z) = m \log \frac{z^T s}{m} - \sum_{i=1}^{m} \log(s_i z_i) \quad \text{with } s = b - Ax
$$

$$
= m \log \frac{(\sum_i z_i s_i)/m}{(\prod_i z_i s_i)^{1/m}}
$$

$$
= m \log \frac{\text{arithmetic mean of } z_1 s_1, \ldots, z_m s_m}{\text{geometric mean of } z_1 s_1, \ldots, s_m z_m}
$$

properties

- $\Psi(x, z)$ is nonnegative for all strictly feasible x, z
- $\Psi(x, z) = 0$ only if x and z are centered, i.e., for some $t > 0$,

$$z_i s_i = 1/t, \quad i = 1, \ldots, m$$
Potential function and proximity to central path

for any strictly feasible x, z, with $s = b - Ax$:

$$\Psi(x, z) = \min_{t > 0} V_t(x, z)$$

(see page 14–23)

$$= \min_{t > 0} \left(ts^T z - \sum_{i=1}^{m} \log(ts_i z_i) - m \right)$$

minimizing t is $t = m / s^T z$

Ψ as global measure of proximity to central path

- $V_t(x, z)$ bounds the effort to compute $x^*(t)$, starting at x (page 14–23)
- $\Psi(x, z)$ bounds centering effort, without imposing a specific t
Predictor-corrector method with exact centering

simplifying assumptions: exact centering, a central point \(x^*(t_0) \) is given

algorithm: define tolerance \(\epsilon \in (0, 1) \), parameter \(\beta > 0 \), and initial values

\[
\begin{align*}
t & := t_0, \\
x & := x^*(t_0), \\
z & := z^*(t_0), \\
s & := b - Ax^*(t_0)
\end{align*}
\]

repeat until \(m/t \leq \epsilon \):

- compute tangent direction \(\Delta x_{tg}, \Delta s_{tg}, \Delta z_{tg} \) at \(x, s, z \)
- determine \(\alpha \) by solving \(\Psi(x + \alpha \Delta x_{tg}, z + \alpha \Delta z_{tg}) = \beta \) and take

\[
\begin{align*}
x & := x + \alpha \Delta x_{tg}, \\
z & := z + \alpha \Delta z_{tg}, \\
s & := b - Ax
\end{align*}
\]

- set \(t := m/(s^Tz) \) and use Newton’s method to compute

\[
\begin{align*}
x & := x^*(t), \\
z & := z^*(t), \\
s & := b - Ax
\end{align*}
\]
Iteration complexity

• bound on potential function in tangent direction (proof on next page):

$$
\Psi(x + \alpha \Delta x_{tg}, z + \alpha \Delta z_{tg}) \leq -\alpha \sqrt{m} - \log(1 - \alpha \sqrt{m})
$$

• lower bound on predictor step length α:

$$
\alpha \sqrt{m} \geq \gamma \quad \text{with } \gamma \text{ the solution of } -\gamma - \log(1 - \gamma) = \beta
$$

• reduction in duality gap after one predictor-corrector cycle:

$$
\frac{t}{t^+} = 1 - \alpha \leq 1 - \frac{\gamma}{\sqrt{m}} \leq \exp\left(\frac{-\gamma}{\sqrt{m}}\right)
$$

• bound on total \#Newton iterations to reach $t^{(k)} \geq m/\epsilon$:

$$
O\left(\sqrt{m} \log \left(\frac{m}{\epsilon t_0}\right)\right)
$$
proof of bound on Ψ: let $s^+ = s + \alpha \Delta s_{tg}$, $z^+ = z + \alpha \Delta z_{tg}$

- from definition of Ψ and $(s^+)^T z^+ = (1 - \alpha)s^T z$:

$$
\Psi(x^+, z^+) - \Psi(x, z) = m \log \frac{(s^+)^T z^+}{z^T s} - \sum_{i=1}^{m} \left(\log \frac{s_i^+}{s_i} + \log \frac{z_i^+}{z_i} \right)
$$

$$
= m \log(1 - \alpha) - \sum_{i=1}^{m} \left(\log \frac{s_i^+}{s_i} + \log \frac{z_i^+}{z_i} \right)
$$

- define a $(2m)$-vector $w = (\text{diag}(s)^{-1} \Delta s_{tg}, \text{diag}(z)^{-1} \Delta z_{tg})$

$$
- \sum_{i=1}^{m} \left(\log \frac{s_i^+}{s_i} + \log \frac{z_i^+}{z_i} \right) = -2m \sum_{i=1}^{2m} \log(1 + \alpha w_i)
$$

$$
\leq -\alpha 1^T w - \alpha \|w\| - \log(1 - \alpha \|w\|)
$$

last inequality can be proved as on page 14–18
• from the properties on page 14–27 and \(s = (1/t)z \):

\[
1^T w = t(s^T \Delta z_{tg} + z^T \Delta s_{tg}) \\
= -ts^T z \\
= -m \\
\|w\|^2 = \Delta s_{tg}^T \text{diag}(s)^{-2} \Delta s_{tg} + \Delta z_{tg}^T \text{diag}(z)^{-2} \Delta z_{tg} \\
= -t(z^T \Delta s_{tg} + s^T \Delta z_{tg}) \\
= m
\]

• substituting this in the upper bound on \(\Psi \) gives

\[
\Psi(x^+, z^+) - \Psi(x, z) \leq m \log(1 - \alpha) + \alpha m - \alpha \sqrt{m} - \log(1 - \alpha \sqrt{m}) \\
\leq -\alpha \sqrt{m} - \log(1 - \alpha \sqrt{m})
\]
Conclusion: barrier methods

started at $x^*(t_0)$, find ϵ-suboptimal point after

$$O \left(\sqrt{m \log \left(\frac{m}{\epsilon t_0} \right)} \right)$$ Newton iterations

- analysis can be modified to account for inexact centering
- end-to-end complexity analysis must include the cost of phase I
- parameters were chosen to simplify analysis, not for efficiency in practice