L. Vandenberghe EE236A (Fall 2013-14)

Lecture 11
Control applications

e optimal input design

e pole placement with low-authority control
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System model
y(t) = hou(t) + hyu(t — 1) + hou(t — 2) + - -
u(t) is input, y(t) is output, (hg, h1,...) is impulse response

matrix description: assuming u(t) =0 fort <0 and t > M

ho 0 0 0

h1 ho 0 0

ho h1 ho 0
H = = -

hve har—1 har—o ho

hn hn-1 hn-—2 hn—m
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Output tracking problem

choose input sequence u(0), ..., u(M) (with M < N) such that

e output minimizes peak deviation with desired output yqes(t),

,max [y(t) = Yaes(t)

e input satisfies amplitude constraints:

can include other linear constraints on inputs or outputs
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Linear programming formulation

output tracking in matrix notation

minimize  ||HU — Ydes|| oo
subject to  ||ulloe < U
|Dulloc < S

here, Ydes = (Ydes(0), - .., Ydes(IN)) and D is the M x (M + 1) matrix

-1 1 0 --- 0 0]
p=| L 00
0 00 -+ -1 1|

equivalent linear program (with variables 7, u)
minimize vy
subject to —v1 < Hu — yges < 71
—Ul<u<Ul, -5S1<Du<¥s1
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Example

step response Ydes
1,
1 L
0
0
_]_,
0 | 100 | 200 0 | 100 | 200

e input horizon M = 150
e output horizon N = 200
e amplitude constraint |u(t)| < 1.1

e slew rate constraint |u(t) —u(t — 1) < 0.25
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output and desired output

y(1), ydes(t>

0 | 100 | 200

optimal input sequence

1.1 0.250 IW ,,,,,,,,,,,,,,,, —
0.0 0.00
1.1 o . _0.25 | 13 L e I R
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Robust output tracking (version 1)

uncertain system model: impulse response can take two values

(h107h117h127' ")7 (h203h217h227---)

robust tracking problem: minimize worst-case peak tracking error

minimize  max{||H1U — Ydes|loco, |[H21 — Ydes||oo }
subject to limits on input magnitude and slew rate
Hy, Hy are Toeplitz matrices constructed from two impulse responses
equivalent linear program (variables ~, u)
minimize 7y
subject to —v1 < Hiu — yges < 71

_71 S H2u — Ydes S fy]-
Au <b

(inequalities Au < b include —U1 <u < U1 and —51 < Du < S1)
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Example

_ step responses outputs and desired output
1 L
0
0 100 200 0 100 200
u(t) —u(t —1)
0.250 17— T =
0.00
_0.25,,H ,,,,,,,,,,,,,,, b
0 100 200
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Robust output tracking (version 2)

uncertain system model

ho flo Yor Vo2 -+ VoK S1
hy | | M U1 V12 - U1K 59
_ _ 4
| hn | hn | | UN1 UN2 0 UNK | | SK |

e (hg,h1,...) is known (nominal) impulse response

® S1, ..., Sk are unknown parameters in [—1, 1]
robust tracking problem: minimize worst-case tracking error

K
minimize  max |[(H 4+ Y skVi)u — ydes||oo
[8]leo<1 k=1

subject to Au <b

H, Vj, are Toeplitz matrices constructed from (hg, h1,...), (Vor, Vik, - - -)

Control applications 11-9



Naive linear programming formulation

enumerate 2% corners of model set and apply the method of p. 11-7

LP formulation (variables v, u)

minimize 7y
_ K
subject to —y1 < (H + 3 s5Vi)u — yaes <71 forall s € {—1,+1}%

k=1
Au <b

a very large set of inequalities when K is not small
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Compact linear programming formulation

worst-case tracking error (as an explicit function of u):

K
Hrﬁla}él H(H =+ Z Skzvk)u - YdesHoo
Flloo= k=1

K
= max max |(Hu+ Z $kViW — Ydes)il
1=0,...,N ||s||co<1 1

— max ( ’(ﬁu _Ydes)z" =+ Z |(Vku)1‘ )

i=0,...,N
k=1
equivalent linear program (variables v, u, w;, i =1,..., K)
minimize vy
subjectto —w; <Viu<w;, 1=1,..., K
K - K
—y1 + ZWZ SHu_Ydes <71 - sz
i=1 i=1

Au <b

Control applications
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Example

system models (K = 6)

figure shows a few step responses
from model set

design for nominal system

output for nominal system

0 50 100

Control applications

nominal and perturbed step responses

output for worst-case system

0 50 100
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robust design

output for nominal system output for worst-case system

0 50 100 0 50 100

e on nominal system, robust design does worse than non-robust design

e however, performance does not degrade much over the model set

Control applications
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Outline

e optimal input design

e pole placement with low-authority control



Pole placement

autonomous linear system

where A(:C) = AO"‘-TlAl + .. +iUpAp c R X"

e solutions have the form

zi(t) = Z Bire*" cos(wit — dir)
k

A = 0k £ jwy are the eigenvalues of A(x)

e © € R” is design parameter

goal: place eigenvalues of A(x) in a desired region by choosing x

Control applications
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Low-authority control

eigenvalues of A(x) are very complicated functions of x

first-order perturbation: if \;(Ap) is a simple eigenvalue,
D w; Ak,
MA@) = Mi(do) + > =+ of )
k=1

where w;, v; are the left and right eigenvectors:

waO p— )\Z(Ao)wf, A()Uq; p— )\Z(A())'UZ

‘low-authority’ control

e use linear first-order approximations for \;
e can place \; in a polyhedral region by imposing linear inequalities on x

e we expect this to work only for small shifts in eigenvalues
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Truss example

30 nodes, 83 bars

Md(t) + Dd(t) + Kd(t) = 0

e d(t): vector of horizontal and vertical node displacements
e M is mass matrix, D damping matrix, K stiffness matrix

e to increase damping, we attach external dampers to bars:
D(ZC) = DO —|— CE’lDl —|— c e —|— ZEpr

x; > 0: amount of external damping at bar ¢

e can be written as 2(t) = A(x)z(t) with

2(t) = [ ) ] , A= [ _Mo—lK —M‘IlD(x)
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approximate eigenvalue placement with least external damping:

minimize

subject to )\_i(M,D(x),K) cC, 1

p
> T
=1

x>0

=1,....,n

an LP if C is polyhedral and we use the first-order approximation for \;

eigenvalues
5 before 5
% ** ..
b 1;& . . *F
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location of dampers
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