L. Vandenberghe EE236A (Fall 2013-14)

Lecture 11 Control applications

- optimal input design
- pole placement with low-authority control

System model

$$y(t) = h_0 u(t) + h_1 u(t-1) + h_2 u(t-2) + \cdots$$

u(t) is input, y(t) is output, (h_0, h_1, \ldots) is impulse response

matrix description: assuming u(t) = 0 for t < 0 and t > M

$$y = Hu$$

with
$$\mathbf{y}=(y(0),y(1),\ldots,y(N))$$
, $\mathbf{u}=(u(0),u(1),\ldots,u(M))$, and

$$H = \begin{bmatrix} h_0 & 0 & 0 & \cdots & 0 \\ h_1 & h_0 & 0 & \cdots & 0 \\ h_2 & h_1 & h_0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h_M & h_{M-1} & h_{M-2} & \cdots & h_0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h_N & h_{N-1} & h_{N-2} & \cdots & h_{N-M} \end{bmatrix}$$

Output tracking problem

choose input sequence u(0), . . . , u(M) (with $M \leq N$) such that

ullet output minimizes peak deviation with desired output $y_{
m des}(t)$,

$$\max_{t=0,\dots,N} |y(t) - y_{\text{des}}(t)|$$

• input satisfies amplitude constraints:

$$|u(t)| \le U, \quad t = 0, \dots, M$$

• input satisfies slew rate constraints:

$$|u(t+1) - u(t)| \le S, \quad t = 0, \dots, M-1$$

can include other linear constraints on inputs or outputs

Linear programming formulation

output tracking in matrix notation

minimize
$$\|H\mathbf{u} - \mathbf{y}_{\text{des}}\|_{\infty}$$

subject to $\|\mathbf{u}\|_{\infty} \leq U$
 $\|D\mathbf{u}\|_{\infty} \leq S$

here, $\mathbf{y}_{\text{des}} = (y_{\text{des}}(0), \dots, y_{\text{des}}(N))$ and D is the $M \times (M+1)$ matrix

$$D = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}$$

equivalent linear program (with variables γ , \mathbf{u})

Example

- \bullet input horizon M=150
- $\bullet \ \, {\rm output \,\, horizon} \,\, N=200$
- amplitude constraint $|u(t)| \le 1.1$
- slew rate constraint $|u(t) u(t-1)| \le 0.25$

output and desired output

optimal input sequence

Robust output tracking (version 1)

uncertain system model: impulse response can take two values

$$(h_{10}, h_{11}, h_{12}, \ldots), \qquad (h_{20}, h_{21}, h_{22}, \ldots)$$

robust tracking problem: minimize worst-case peak tracking error

minimize $\max\{\|H_1\mathbf{u} - \mathbf{y}_{\mathrm{des}}\|_{\infty}, \|H_2\mathbf{u} - \mathbf{y}_{\mathrm{des}}\|_{\infty}\}$ subject to limits on input magnitude and slew rate

 H_1 , H_2 are Toeplitz matrices constructed from two impulse responses equivalent linear program (variables γ , \mathbf{u})

$$\begin{array}{ll} \text{minimize} & \gamma \\ \text{subject to} & -\gamma \mathbf{1} \leq H_1 \mathbf{u} - \mathbf{y}_{\text{des}} \leq \gamma \mathbf{1} \\ & -\gamma \mathbf{1} \leq H_2 \mathbf{u} - \mathbf{y}_{\text{des}} \leq \gamma \mathbf{1} \\ & A \mathbf{u} \leq b \end{array}$$

(inequalities $A\mathbf{u} \leq b$ include $-U\mathbf{1} \leq \mathbf{u} \leq U\mathbf{1}$ and $-S\mathbf{1} \leq D\mathbf{u} \leq S\mathbf{1}$)

Example

Robust output tracking (version 2)

uncertain system model

$$\begin{bmatrix} h_0 \\ h_1 \\ \vdots \\ h_N \end{bmatrix} = \begin{bmatrix} \bar{h}_0 \\ \bar{h}_1 \\ \vdots \\ \bar{h}_N \end{bmatrix} + \begin{bmatrix} v_{01} & v_{02} & \cdots & v_{0K} \\ v_{11} & v_{12} & \cdots & v_{1K} \\ \vdots & \vdots & & \vdots \\ v_{N1} & v_{N2} & \cdots & v_{NK} \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_K \end{bmatrix}$$

- \bullet $(\bar{h}_0, \bar{h}_1, \ldots)$ is known (nominal) impulse response
- s_1, \ldots, s_K are unknown parameters in [-1, 1]

robust tracking problem: minimize worst-case tracking error

minimize
$$\max_{\|s\|_{\infty} \leq 1} \|(\bar{H} + \sum_{k=1}^K s_k V_k) \mathbf{u} - \mathbf{y}_{\mathrm{des}}\|_{\infty}$$
 subject to
$$A\mathbf{u} \leq b$$

 \bar{H} , V_k are Toeplitz matrices constructed from $(\bar{h}_0, \bar{h}_1, \ldots)$, (v_{0k}, v_{1k}, \ldots)

Naive linear programming formulation

enumerate 2^K corners of model set and apply the method of p. 11–7

LP formulation (variables γ , \mathbf{u})

minimize
$$\gamma$$
 subject to
$$-\gamma \mathbf{1} \leq (\bar{H} + \sum\limits_{k=1}^K s_k V_k) \mathbf{u} - \mathbf{y}_{\mathrm{des}} \leq \gamma \mathbf{1} \quad \text{for all } s \in \{-1, +1\}^K$$

$$A\mathbf{u} \leq b$$

a very large set of inequalities when K is not small

Compact linear programming formulation

worst-case tracking error (as an explicit function of \mathbf{u}):

$$\max_{\|s\|_{\infty} \le 1} \|(\bar{H} + \sum_{k=1}^{K} s_k V_k) \mathbf{u} - \mathbf{y}_{\text{des}}\|_{\infty}$$

$$= \max_{i=0,...,N} \max_{\|s\|_{\infty} \le 1} |(\bar{H} \mathbf{u} + \sum_{k=1}^{K} s_k V_k \mathbf{u} - \mathbf{y}_{\text{des}})_i|$$

$$= \max_{i=0,...,N} (|(\bar{H} \mathbf{u} - \mathbf{y}_{\text{des}})_i| + \sum_{k=1}^{K} |(V_k \mathbf{u})_i|)$$

equivalent linear program (variables γ , \mathbf{u} , \mathbf{w}_i , $i=1,\ldots,K$)

$$\begin{array}{ll} \text{minimize} & \gamma \\ \text{subject to} & -\mathbf{w}_i \leq V_i \mathbf{u} \leq \mathbf{w}_i, \quad i=1,\ldots,K \\ & -\gamma \mathbf{1} + \sum\limits_{i=1}^K \mathbf{w}_i \leq \bar{H} \mathbf{u} - \mathbf{y}_{\mathrm{des}} \leq \gamma \mathbf{1} - \sum\limits_{i=1}^K \mathbf{w}_i \\ & A \mathbf{u} \leq b \end{array}$$

Example

system models (K = 6)

figure shows a few step responses from model set

design for nominal system

robust design

- on nominal system, robust design does worse than non-robust design
- however, performance does not degrade much over the model set

Outline

- optimal input design
- pole placement with low-authority control

Pole placement

autonomous linear system

$$\dot{z}(t) = A(x)z(t), \qquad z(0) = z_0$$

where
$$A(x) = A_0 + x_1 A_1 + \dots + x_p A_p \in \mathbf{R}^{n \times n}$$

solutions have the form

$$z_i(t) = \sum_{k} \beta_{ik} e^{\sigma_k t} \cos(\omega_k t - \phi_{ik})$$

 $\lambda_k = \sigma_k \pm \mathrm{j}\omega_k$ are the eigenvalues of A(x)

• $x \in \mathbf{R}^p$ is design parameter

goal: place eigenvalues of A(x) in a desired region by choosing x

Low-authority control

eigenvalues of A(x) are very complicated functions of x

first-order perturbation: if $\lambda_i(A_0)$ is a *simple* eigenvalue,

$$\lambda_i(A(x)) = \lambda_i(A_0) + \sum_{k=1}^p \frac{w_i^* A_k v_i}{w_i^* v_i} x_k + o(\|x\|)$$

where w_i , v_i are the left and right eigenvectors:

$$w_i^* A_0 = \lambda_i(A_0) w_i^*, \qquad A_0 v_i = \lambda_i(A_0) v_i$$

'low-authority' control

- ullet use linear first-order approximations for λ_i
- ullet can place λ_i in a polyhedral region by imposing linear inequalities on x
- we expect this to work only for small shifts in eigenvalues

Truss example

30 nodes, 83 bars

$$M\ddot{d}(t) + D\dot{d}(t) + Kd(t) = 0$$

- \bullet d(t): vector of horizontal and vertical node displacements
- ullet M is mass matrix, D damping matrix, K stiffness matrix
- to increase damping, we attach external dampers to bars:

$$D(x) = D_0 + x_1 D_1 + \dots + x_p D_p$$

 $x_i > 0$: amount of external damping at bar i

• can be written as $\dot{z}(t) = A(x)z(t)$ with

$$z(t) = \begin{bmatrix} d(t) \\ \dot{d}(t) \end{bmatrix}, \qquad A = \begin{bmatrix} 0 & I \\ -M^{-1}K & -M^{-1}D(x) \end{bmatrix}$$

approximate eigenvalue placement with least external damping:

minimize
$$\sum_{i=1}^p x_i$$
 subject to
$$\lambda_i(M,D(x),K) \in \mathcal{C}, \quad i=1,\dots,n$$

$$x \geq 0$$

an LP if $\mathcal C$ is polyhedral and we use the first-order approximation for λ_i

eigenvalues

location of dampers

Control applications 11–18