Lecture 4
 Convexity

- convex hull
- polyhedral cone
- decomposition

Convex combination

a convex combination of points v_{1}, \ldots, v_{k} is a linear combination

$$
x=\theta_{1} v_{1}+\theta_{2} v_{2}+\cdots+\theta_{k} v_{k}
$$

with $\theta_{i} \geq 0$ and $\sum_{i=1}^{k} \theta_{i}=1$
for $k=2$, the point x is in the line segment with endpoints v_{1}, v_{2}

Convex set

a set S is convex if it contains all convex combinations of points in S

examples

- affine sets: if $C x=d$ and $C y=d$, then

$$
C(\theta x+(1-\theta) y)=\theta C x+(1-\theta) C y=d \quad \forall \theta \in \mathbf{R}
$$

- polyhedra: if $A x \leq b$ and $A y \leq b$, then

$$
A(\theta x+(1-\theta) y)=\theta A x+(1-\theta) A y \leq b \quad \forall \theta \in[0,1]
$$

Convex hull and polytope

convex hull of a set S : the set of all convex combinations of points in S notation: conv S

polytope: the convex hull $\operatorname{conv}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ of a finite set of points (the first set in the figure is an example)

Exercise: Carathéodory's theorem

by definition, $\operatorname{conv}(S)$ is the set of points x that can be expressed as

$$
x=\theta_{1} v_{1}+\cdots+\theta_{k} v_{k} \quad \text { with } \quad \sum_{i=1}^{k} \theta_{i}=1, \quad \theta_{i} \geq 0, \quad v_{1}, \ldots, v_{k} \in S
$$

show that if $S \subseteq \mathbf{R}^{n}$ then k can be taken less than or equal to $n+1$

in \mathbf{R}^{2}, every $x \in \operatorname{conv} S$ can be written as a convex combination of 3 points in S
solution: start from any convex decomposition of x :

$$
\left[\begin{array}{c}
x \\
1
\end{array}\right]=\left[\begin{array}{cccc}
v_{1} & v_{2} & \cdots & v_{m} \\
1 & 1 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{m}
\end{array}\right], \quad \theta_{i} \geq 0, \quad i=1, \ldots, m
$$

let P be the set of vectors $\theta=\left(\theta_{1}, \ldots, \theta_{m}\right)$ that satisfy these conditions

- P is a nonempty polyhedron, described in 'standard form' (page 3-27)
- if $\hat{\theta} \in P$ is an extreme point of P, then (from page 3-27)

$$
\operatorname{rank}\left(\left[\begin{array}{cccc}
v_{i_{1}} & v_{i_{2}} & \cdots & v_{i_{k}} \\
1 & 1 & \cdots & 1
\end{array}\right]=k\right.
$$

where $\left\{i_{1}, \ldots, i_{k}\right\}=\left\{i \mid \hat{\theta}_{i}>0\right\}$

- the rank condition implies $k \leq n+1$

Convex cone

convex cone: a nonempty set S with the property

$$
x_{1}, \ldots, x_{k} \in S, \quad \theta_{1} \geq 0, \ldots, \theta_{k} \geq 0 \quad \Longrightarrow \quad \theta_{1} x_{1}+\cdots+\theta_{k} \in S
$$

- all nonnegative combinations of points in S are in S
- S is a convex set and a cone (i.e., $\alpha x \in S$ implies $\alpha x \in S$ for $\alpha \geq 0$)

examples

- subspaces
- a polyhedral cone: a set defined as

$$
S=\{x \mid A x \leq 0, C x=0\}
$$

(the solution of a finite system of homogeneous linear inequalities)

Conic hull

conic hull of a set S : set of all nonnegative combinations of points in S

- also known as the cone generated by S
- notation: cone S

finitely generated cone: the conic hull cone $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ of a finite set

Pointed polyhedral cone

consider a polyhedral cone $K=\left\{x \in \mathbf{R}^{n} \mid A x \leq 0, C x=0\right\}$

- the lineality space is the nullspace of $\left[\begin{array}{l}A \\ C\end{array}\right]$
- K is pointed if $\left[\begin{array}{l}A \\ C\end{array}\right]$ has rank n
- if K is pointed, it has one extreme point (the origin)
- the one-dimensional faces are called extreme rays

Recession cone

the recession cone of a polyhedron $P=\{x \mid A x \leq b, C x=d\}$ is

$$
K=\{y \mid A y \leq 0, C y=0\}
$$

(also known as the asymptotic cone of P)

- K has the same lineality space as P
- K is pointed if and only if P is pointed
- if $x \in P$ then $x+y \in P$ for all $y \in K$

Decomposition

every polyhedron P can be decomposed as

$$
P=L+Q=L+\operatorname{conv}\left\{v_{1}, \ldots, v_{r}\right\}+\operatorname{cone}\left\{w_{1}, \ldots, w_{s}\right\}
$$

- L is the lineality space
- Q is a pointed polyhedron
- v_{1}, \ldots, v_{r} are the extreme points of Q
- w_{1}, \ldots, w_{s} generate the extreme rays of the recession cone of Q (we'll skip the proof) applications
- useful for theoretical purposes
- in general, extremely costly to compute from inequality description of P
- implicitly used by some algorithms

