Lecture 4 Convexity

- convex hull
- polyhedral cone
- decomposition

Convex combination

a convex combination of points v_1, \ldots, v_k is a linear combination

$$x = \theta_1 v_1 + \theta_2 v_2 + \dots + \theta_k v_k$$

with $\theta_i \ge 0$ and $\sum_{i=1}^k \theta_i = 1$

for k = 2, the point x is in the **line segment** with endpoints v_1 , v_2

Convex set

a set S is $\ensuremath{\textbf{convex}}$ if it contains all convex combinations of points in S

examples

• affine sets: if Cx = d and Cy = d, then

$$C(\theta x + (1 - \theta)y) = \theta Cx + (1 - \theta)Cy = d \qquad \forall \theta \in \mathbf{R}$$

• polyhedra: if $Ax \leq b$ and $Ay \leq b$, then

$$A(\theta x + (1 - \theta)y) = \theta Ax + (1 - \theta)Ay \le b \qquad \forall \theta \in [0, 1]$$

Convex hull and polytope

convex hull of a set S: the set of all convex combinations of points in S**notation:** conv S

polytope: the convex hull $conv\{v_1, v_2, \ldots, v_k\}$ of a finite set of points (the first set in the figure is an example)

Exercise: Carathéodory's theorem

by definition, $\operatorname{conv}(S)$ is the set of points x that can be expressed as

$$x = \theta_1 v_1 + \dots + \theta_k v_k$$
 with $\sum_{i=1}^k \theta_i = 1, \quad \theta_i \ge 0, \quad v_1, \dots, v_k \in S$

show that if $S \subseteq \mathbf{R}^n$ then k can be taken less than or equal to n+1

in \mathbb{R}^2 , every $x \in \operatorname{conv} S$ can be written as a convex combination of 3 points in S

solution: start from any convex decomposition of x:

$$\begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} v_1 & v_2 & \cdots & v_m \\ 1 & 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_m \end{bmatrix}, \qquad \theta_i \ge 0, \quad i = 1, \dots, m$$

let P be the set of vectors $\theta = (\theta_1, \dots, \theta_m)$ that satisfy these conditions

- P is a nonempty polyhedron, described in 'standard form' (page 3–27)
- if $\hat{\theta} \in P$ is an extreme point of P, then (from page 3–27)

$$\operatorname{rank}\left(\left[\begin{array}{cccc} v_{i_1} & v_{i_2} & \cdots & v_{i_k} \\ 1 & 1 & \cdots & 1 \end{array}\right] = k$$

where $\{i_1, \ldots, i_k\} = \{i \mid \hat{\theta}_i > 0\}$

• the rank condition implies $k \le n+1$

Convexity

Convex cone

convex cone: a nonempty set S with the property

 $x_1, \ldots, x_k \in S, \quad \theta_1 \ge 0, \ldots, \theta_k \ge 0 \qquad \Longrightarrow \qquad \theta_1 x_1 + \cdots + \theta_k \in S$

- all **nonnegative combinations** of points in S are in S
- S is a convex set and a cone (*i.e.*, $\alpha x \in S$ implies $\alpha x \in S$ for $\alpha \geq 0$)

examples

- subspaces
- a polyhedral cone: a set defined as

$$S = \{ x \mid Ax \le 0, \ Cx = 0 \}$$

(the solution of a finite system of homogeneous linear inequalities)

Conic hull

conic hull of a set S: set of all nonnegative combinations of points in S

- $\bullet\,$ also known as the cone generated by S
- notation: $\operatorname{cone} S$

finitely generated cone: the conic hull $cone\{v_1, v_2, \ldots, v_k\}$ of a finite set

Pointed polyhedral cone

consider a polyhedral cone $K = \{x \in \mathbf{R}^n \mid Ax \le 0, \ Cx = 0\}$

• the lineality space is the nullspace of
$$\begin{bmatrix} A \\ C \end{bmatrix}$$

•
$$K \text{ is pointed if } \left[\begin{array}{c} A \\ C \end{array} \right]$$
 has rank n

- if K is pointed, it has one extreme point (the origin)
- the one-dimensional faces are called **extreme rays**

Recession cone

the **recession cone** of a polyhedron $P = \{x \mid Ax \leq b, Cx = d\}$ is

$$K = \{ y \mid Ay \le 0, \, Cy = 0 \}$$

(also known as the **asymptotic cone** of P)

- $\bullet~K$ has the same lineality space as P
- K is pointed if and only if P is pointed
- if $x \in P$ then $x + y \in P$ for all $y \in K$

Decomposition

every polyhedron P can be decomposed as

 $P = L + Q = L + \operatorname{conv}\{v_1, \dots, v_r\} + \operatorname{cone}\{w_1, \dots, w_s\}$

- L is the lineality space
- $\bullet \ Q$ is a pointed polyhedron
- v_1, \ldots, v_r are the extreme points of Q
- w_1, \ldots, w_s generate the extreme rays of the recession cone of Q

(we'll skip the proof)

applications

- useful for theoretical purposes
- $\bullet\,$ in general, extremely costly to compute from inequality description of P
- implicitly used by some algorithms