L. Vandenberghe EE236A (Fall 2013-14)

Lecture 13
The central path

e nonlinear optimization methods for linear optimization
e |ogarithmic barrier

e central path
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Ellipsoid method

ellipsoid algorithm

e a general method for (nonlinear) convex optimization, invented ca. 1972

e Khachiyan (1979): complexity is polynomial when applied to LP

importance

e answered an open question: worst-case complexity of LP is polynomial
e practical performance was disappointing; much slower than simplex
e useful as a very simple algorithm for nonlinear convex optimization

e idea is very different from simplex; motivated research in new directions

The central path 13-2



Interior-point methods

1950s—-1960s: several related methods for nonlinear convex optimization

e sequential unconstrained minimization (Fiacco & McCormick),
logarithmic barrier method (Frisch), affine scaling method (Dikin),
method of centers (Huard & Lieu)

e no worst-case complexity theory, but often work well in practice

1980s-1990s: interior-point methods for linear optimization

e Karmarkar (1984): new polynomial-time method (‘projective algorithm')
e |ater recognized as related to the earlier methods
e many variations and improvements since 1984

e competitive with simplex; often faster for very large problems
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Outline

e LP algorithms based on nonlinear optimization
e logarithmic barrier

e central path



Logarithmic barrier

T

)

e we consider inequalities Ax < b with A of size m x n and with rows a

o define P = {z | Az < b} and P° ={x | Az < b}

logarithmic barrier for the inequalities Ax < b:

o(r) = — Zlog(bi —alz) with domain P°
i=1
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Gradient and Hessian

gradient: V¢(x) is the n-vector with Vo(x); = 0¢(x)/0x;

m

1

VQb(CC) — T ap = ATd:IJ
— b —apx
d, denotes the positive m-vector
1 1
e (L)
b1 — ay x b — Ay, T

Hessian: V2¢(x) is the n x n-matrix with V¢(z);; = 8?¢(x)/0x;0z;

Z akag = A’ diag(d,)*A
oo (b —ajz
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Convexity

second-order condition for convexity of ¢

o V2¢(x) is positive semidefinite for all z € P°:

u' V2 (x)u = u' AT diag(d,)?Au = || diag(d,) Aul|* > 0

e if rank(A) = n, then V2¢(x) is positive definite for all z € P°:

uw!' V2 (z)u = || diag(d,) Aul* > 0 Vu # 0

local (semi-)norm: we will use the notation

Julle = (" VE(a)u)/? = || diag(d,) Aul
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Dikin ellipsoid

definition: the Dikin ellipsoid at z € P° is the set

& = {ylly—a)'Vo(x)(y —z) <1}

property: Dikin ellipsoid at any x € P° is contained in P
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proof: consider x € P°

e points y in the Dikin ellipsoid at = satisfy

(y—2)"'Vo(z)(y—z) = (y—az) A" diag(d,)*A(y — z)
_ (el (y—2)?
— (b —ajx)?
< 1

e therefore each term in the sum is less than or equal to one:
—(b—Ax) <Ay —x) <b— Ax

the right-hand side inequality shows that Ay <b
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Convexity: first-order condition

linearization of ¢ at x € P° gives lower bound on ¢:

o(y) > ¢(z) + Vo(z) (y — z) for all z,y € P°

strict inequality holds if x # y and rank(A) =n

e & minimizes ¢(x) if and only if V() =0

e if rank(A) = n, minimizer of ¢(x) is unique if it exists
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proof of lower bound:

6ly) = = log(bi —aly)

e inequality follows from logu; < u; — 1 with u; = (b; — aly)/(b; — al )

e equality holds only if u; =1 fori=1,...,m, i.e., Aly —x) =0
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Analytic center

definition: the analytic center of a system of inequalities Ax < b is

Tae = argmino(z)

— argmm Zlog (b; — al )
1=1

e 1.. Is solution of nonlinear equation

Zb—aa: =0

i=1 ¢

e different descriptions Az < b of same polyhedron can have different x,.

e 1, exists and is unique if and only if P° is nonempty and bounded

The central path 13-11



Outline

e LP algorithms based on nonlinear optimization
e logarithmic barrier

e central path



Central path

primal-dual pair of LPs

minimize clzx maximize —blz

subject to Az <b subjectto Alz4+c¢=0
z>0

we assume primal and dual problems are strictly feasible and rank(A) =n

central path: set of points {z*(¢) | t > 0} with

¥ (t) = argarjnin (tchx + ¢(x))

— argmin (tc' z — Z log(b; — al x))
v i=1

x*(t) exists and is unique for all £ > 0 (constructive proof in next lecture)
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Optimality condition

x*(t) is solution of tc + V¢(x) =0

hyperplane ¢!z = ¢l'2*(t) is tangent to level curve of ¢ through x*(t)
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Force field interpretation

e optimality condition can be interpreted as force equilibrium

—1

b; —alx

a;

~tc+ Y Fi(z) =0 with F;()
1=1

e force Fj(x) decays as inverse distance to H; = {z | al x = b;}:

1

”E@w:mamﬂo

The central path 13-14



Central path and duality

point x*(t) on central path is strictly primal feasible and satisfies

m

1
*(t ;, =0 ith *(t) =
c+;zz( )a Wi 27 () 10 — T2 (1))

o 2*(t) is strictly dual feasible: AT2*(¢) +c¢ =0 and 2*(t) > 0
e duality gap between z = z*(¢) and z = z*(¢) is
o 4+bl2=(b-Ax) 2 = %

e gives bound on sub-optimality of x*(%)

cla*(t) — p* < ?

*

(p* is optimal value of LP)
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Central path and complementarity

optimality conditions

x, z are primal, dual optimal if and only if

s=b— Az >0, z >0, sizi=0, 1=1,....m

central path equations

r = 1x*(t) and z = z*(¢) if and only if

s=b—Ax > 0, z > 0, sizi=—, 1=1,...,m
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Interior-point methods

common characteristics

e follow the central path to find optimal solution

e use Newton's method to follow central path

differences

e algorithms can update primal, dual, or pairs of primal, dual variables
e can keep iterates feasible or allow infeasible iterates (and starting points)

e different techniques for following central path
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