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Lecture 13
The central path

• nonlinear optimization methods for linear optimization

• logarithmic barrier

• central path
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Ellipsoid method

ellipsoid algorithm

• a general method for (nonlinear) convex optimization, invented ca. 1972

• Khachiyan (1979): complexity is polynomial when applied to LP

importance

• answered an open question: worst-case complexity of LP is polynomial

• practical performance was disappointing; much slower than simplex

• useful as a very simple algorithm for nonlinear convex optimization

• idea is very different from simplex; motivated research in new directions
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Interior-point methods

1950s–1960s: several related methods for nonlinear convex optimization

• sequential unconstrained minimization (Fiacco & McCormick),
logarithmic barrier method (Frisch), affine scaling method (Dikin),
method of centers (Huard & Lieu)

• no worst-case complexity theory, but often work well in practice

1980s-1990s: interior-point methods for linear optimization

• Karmarkar (1984): new polynomial-time method (‘projective algorithm’)

• later recognized as related to the earlier methods

• many variations and improvements since 1984

• competitive with simplex; often faster for very large problems
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• LP algorithms based on nonlinear optimization

• logarithmic barrier

• central path



Logarithmic barrier

• we consider inequalities Ax ≤ b with A of size m× n and with rows aTi

• define P = {x | Ax ≤ b} and P ◦ = {x | Ax < b}

logarithmic barrier for the inequalities Ax ≤ b:

φ(x) = −

m
∑

i=1

log(bi − aTi x) with domain P ◦
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Gradient and Hessian

gradient: ∇φ(x) is the n-vector with ∇φ(x)i = ∂φ(x)/∂xi

∇φ(x) =

m
∑

k=1

1

bk − aTk x
ak = ATdx

dx denotes the positive m-vector

dx =

(

1

b1 − aT1 x
, . . . ,

1

bm − aTmx

)

Hessian: ∇2φ(x) is the n× n-matrix with ∇φ(x)ij = ∂2φ(x)/∂xi∂xj

∇2φ(x) =

m
∑

k=1

1

(bk − aTk x)
2
aka

T
k = AT diag(dx)

2A
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Convexity

second-order condition for convexity of φ

• ∇2φ(x) is positive semidefinite for all x ∈ P ◦:

uT∇2φ(x)u = uTAT diag(dx)
2Au = ‖diag(dx)Au‖2 ≥ 0 ∀u

• if rank(A) = n, then ∇2φ(x) is positive definite for all x ∈ P ◦:

uT∇2φ(x)u = ‖diag(dx)Au‖2 > 0 ∀u 6= 0

local (semi-)norm: we will use the notation

‖u‖x = (uT∇2φ(x)u)1/2 = ‖diag(dx)Au‖
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Dikin ellipsoid

definition: the Dikin ellipsoid at x ∈ P ◦ is the set

Ex = {y | (y − x)T∇2φ(x)(y − x) ≤ 1}

= {y | ‖y − x‖x ≤ 1}

property: Dikin ellipsoid at any x ∈ P ◦ is contained in P
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proof: consider x ∈ P ◦

• points y in the Dikin ellipsoid at x satisfy

(y − x)T∇2φ(x)(y − x) = (y − x)TAT diag(dx)
2A(y − x)

=

m
∑

i=1

(aTi (y − x))2

(bi − aTi x)
2

≤ 1

• therefore each term in the sum is less than or equal to one:

−(b−Ax) ≤ A(y − x) ≤ b−Ax

the right-hand side inequality shows that Ay ≤ b
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Convexity: first-order condition

linearization of φ at x ∈ P ◦ gives lower bound on φ:

φ(y) ≥ φ(x) +∇φ(x)T (y − x) for all x, y ∈ P ◦

strict inequality holds if x 6= y and rank(A) = n

φ(y)

φ(x) +∇φ(x)T (y − x)
(x, φ(x))

• x minimizes φ(x) if and only if ∇φ(x) = 0

• if rank(A) = n, minimizer of φ(x) is unique if it exists
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proof of lower bound:

φ(y) = −

m
∑

i=1

log(bi − aTi y)

≥ −

m
∑

i=1

log(bi − aTi x) +

m
∑

i=1

aTi (y − x)

bi − aTi x

= φ(x) +∇φ(x)T (y − x)

• inequality follows from log ui ≤ ui − 1 with ui = (bi − aTi y)/(bi − aTi x)

• equality holds only if ui = 1 for i = 1, . . . ,m, i.e., A(y − x) = 0
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Analytic center

definition: the analytic center of a system of inequalities Ax ≤ b is

xac = argmin
x

φ(x)

= argmin
x

−

m
∑

i=1

log(bi − aTi x)

• xac is solution of nonlinear equation

∇φ(x) =

m
∑

i=1

1

bi − aTi x
ai = 0

• different descriptions Ax ≤ b of same polyhedron can have different xac

• xac exists and is unique if and only if P ◦ is nonempty and bounded
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Central path

primal-dual pair of LPs

minimize cTx
subject to Ax ≤ b

maximize −bTz
subject to ATz + c = 0

z ≥ 0

we assume primal and dual problems are strictly feasible and rank(A) = n

central path: set of points {x⋆(t) | t > 0} with

x⋆(t) = argmin
x

(tcTx+ φ(x))

= argmin
x

(tcTx−

m
∑

i=1

log(bi − aTi x))

x⋆(t) exists and is unique for all t > 0 (constructive proof in next lecture)
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Optimality condition

x⋆(t) is solution of tc+∇φ(x) = 0

c

x⋆(t)

hyperplane cTx = cTx⋆(t) is tangent to level curve of φ through x⋆(t)
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Force field interpretation

• optimality condition can be interpreted as force equilibrium

−tc+
m
∑

i=1

Fi(x) = 0 with Fi(x) =
−1

bi − aTi x
ai

• force Fi(x) decays as inverse distance to Hi = {x | aTi x = bi}:

‖Fi(x)‖ =
1

dist(x,Hi)

−c

−3c
t = 1 t = 3
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Central path and duality

point x⋆(t) on central path is strictly primal feasible and satisfies

c+

m
∑

i=1

z⋆i (t)ai = 0 with z⋆i (t) =
1

t(bi − aTi x
⋆(t))

• z⋆(t) is strictly dual feasible: ATz⋆(t) + c = 0 and z⋆(t) > 0

• duality gap between x = x⋆(t) and z = z⋆(t) is

cTx+ bTz = (b−Ax)Tz =
m

t

• gives bound on sub-optimality of x⋆(t)

cTx⋆(t)− p⋆ ≤
m

t

(p⋆ is optimal value of LP)
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Central path and complementarity

optimality conditions

x, z are primal, dual optimal if and only if

s = b−Ax ≥ 0, z ≥ 0, sizi = 0, i = 1, . . . ,m

central path equations

x = x⋆(t) and z = z⋆(t) if and only if

s = b−Ax > 0, z > 0, sizi =
1

t
, i = 1, . . . ,m
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Interior-point methods

common characteristics

• follow the central path to find optimal solution

• use Newton’s method to follow central path

differences

• algorithms can update primal, dual, or pairs of primal, dual variables

• can keep iterates feasible or allow infeasible iterates (and starting points)

• different techniques for following central path

The central path 13–17


