Lecture 13 The central path

- nonlinear optimization methods for linear optimization
- logarithmic barrier
- central path

Ellipsoid method

ellipsoid algorithm

- a general method for (nonlinear) convex optimization, invented ca. 1972
- Khachiyan (1979): complexity is polynomial when applied to LP

importance

- answered an open question: worst-case complexity of LP is polynomial
- practical performance was disappointing; much slower than simplex
- useful as a very simple algorithm for nonlinear convex optimization
- idea is very different from simplex; motivated research in new directions

Interior-point methods

1950s-1960s: several related methods for nonlinear convex optimization

- sequential unconstrained minimization (Fiacco \& McCormick), logarithmic barrier method (Frisch), affine scaling method (Dikin), method of centers (Huard \& Lieu)
- no worst-case complexity theory, but often work well in practice

1980s-1990s: interior-point methods for linear optimization

- Karmarkar (1984): new polynomial-time method ('projective algorithm')
- later recognized as related to the earlier methods
- many variations and improvements since 1984
- competitive with simplex; often faster for very large problems

Outline

- LP algorithms based on nonlinear optimization
- logarithmic barrier
- central path

Logarithmic barrier

- we consider inequalities $A x \leq b$ with A of size $m \times n$ and with rows a_{i}^{T}
- define $P=\{x \mid A x \leq b\}$ and $P^{\circ}=\{x \mid A x<b\}$
logarithmic barrier for the inequalities $A x \leq b$:

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right) \quad \text { with domain } P^{\circ}
$$

Gradient and Hessian

gradient: $\nabla \phi(x)$ is the n-vector with $\nabla \phi(x)_{i}=\partial \phi(x) / \partial x_{i}$

$$
\nabla \phi(x)=\sum_{k=1}^{m} \frac{1}{b_{k}-a_{k}^{T} x} a_{k}=A^{T} d_{x}
$$

d_{x} denotes the positive m-vector

$$
d_{x}=\left(\frac{1}{b_{1}-a_{1}^{T} x}, \ldots, \frac{1}{b_{m}-a_{m}^{T} x}\right)
$$

Hessian: $\nabla^{2} \phi(x)$ is the $n \times n$-matrix with $\nabla \phi(x)_{i j}=\partial^{2} \phi(x) / \partial x_{i} \partial x_{j}$

$$
\nabla^{2} \phi(x)=\sum_{k=1}^{m} \frac{1}{\left(b_{k}-a_{k}^{T} x\right)^{2}} a_{k} a_{k}^{T}=A^{T} \operatorname{diag}\left(d_{x}\right)^{2} A
$$

Convexity

second-order condition for convexity of ϕ

- $\nabla^{2} \phi(x)$ is positive semidefinite for all $x \in P^{\circ}$:

$$
u^{T} \nabla^{2} \phi(x) u=u^{T} A^{T} \operatorname{diag}\left(d_{x}\right)^{2} A u=\left\|\operatorname{diag}\left(d_{x}\right) A u\right\|^{2} \geq 0 \quad \forall u
$$

- if $\operatorname{rank}(A)=n$, then $\nabla^{2} \phi(x)$ is positive definite for all $x \in P^{\circ}$:

$$
u^{T} \nabla^{2} \phi(x) u=\left\|\operatorname{diag}\left(d_{x}\right) A u\right\|^{2}>0 \quad \forall u \neq 0
$$

local (semi-)norm: we will use the notation

$$
\|u\|_{x}=\left(u^{T} \nabla^{2} \phi(x) u\right)^{1 / 2}=\left\|\operatorname{diag}\left(d_{x}\right) A u\right\|
$$

Dikin ellipsoid

definition: the Dikin ellipsoid at $x \in P^{\circ}$ is the set

$$
\begin{aligned}
\mathcal{E}_{x} & =\left\{y \mid(y-x)^{T} \nabla^{2} \phi(x)(y-x) \leq 1\right\} \\
& =\left\{y \mid\|y-x\|_{x} \leq 1\right\}
\end{aligned}
$$

property: Dikin ellipsoid at any $x \in P^{\circ}$ is contained in P

proof: consider $x \in P^{\circ}$

- points y in the Dikin ellipsoid at x satisfy

$$
\begin{aligned}
(y-x)^{T} \nabla^{2} \phi(x)(y-x) & =(y-x)^{T} A^{T} \operatorname{diag}\left(d_{x}\right)^{2} A(y-x) \\
& =\sum_{i=1}^{m} \frac{\left(a_{i}^{T}(y-x)\right)^{2}}{\left(b_{i}-a_{i}^{T} x\right)^{2}} \\
& \leq 1
\end{aligned}
$$

- therefore each term in the sum is less than or equal to one:

$$
-(b-A x) \leq A(y-x) \leq b-A x
$$

the right-hand side inequality shows that $A y \leq b$

Convexity: first-order condition

linearization of ϕ at $x \in P^{\circ}$ gives lower bound on ϕ :

$$
\phi(y) \geq \phi(x)+\nabla \phi(x)^{T}(y-x) \quad \text { for all } x, y \in P^{\circ}
$$

strict inequality holds if $x \neq y$ and $\operatorname{rank}(A)=n$

- x minimizes $\phi(x)$ if and only if $\nabla \phi(x)=0$
- if $\operatorname{rank}(A)=n$, minimizer of $\phi(x)$ is unique if it exists
proof of lower bound:

$$
\begin{aligned}
\phi(y) & =-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} y\right) \\
& \geq-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)+\sum_{i=1}^{m} \frac{a_{i}^{T}(y-x)}{b_{i}-a_{i}^{T} x} \\
& =\phi(x)+\nabla \phi(x)^{T}(y-x)
\end{aligned}
$$

- inequality follows from $\log u_{i} \leq u_{i}-1$ with $u_{i}=\left(b_{i}-a_{i}^{T} y\right) /\left(b_{i}-a_{i}^{T} x\right)$
- equality holds only if $u_{i}=1$ for $i=1, \ldots$, m, i.e., $A(y-x)=0$

Analytic center

definition: the analytic center of a system of inequalities $A x \leq b$ is

$$
\begin{aligned}
x_{\mathrm{ac}} & =\underset{x}{\operatorname{argmin}} \phi(x) \\
& =\underset{x}{\operatorname{argmin}}-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)
\end{aligned}
$$

- x_{ac} is solution of nonlinear equation

$$
\nabla \phi(x)=\sum_{i=1}^{m} \frac{1}{b_{i}-a_{i}^{T} x} a_{i}=0
$$

- different descriptions $A x \leq b$ of same polyhedron can have different x_{ac}
- $x_{\text {ac }}$ exists and is unique if and only if P° is nonempty and bounded

Outline

- LP algorithms based on nonlinear optimization
- logarithmic barrier
- central path

Central path

primal-dual pair of LPs

$$
\begin{array}{llll}
\operatorname{minimize} & c^{T} x & \text { maximize } & -b^{T} z \\
\text { subject to } & A x \leq b & \text { subject to } & A^{T} z+c=0 \\
& & z \geq 0
\end{array}
$$

we assume primal and dual problems are strictly feasible and $\operatorname{rank}(A)=n$ central path: set of points $\left\{x^{\star}(t) \mid t>0\right\}$ with

$$
\begin{aligned}
x^{\star}(t) & =\underset{x}{\operatorname{argmin}}\left(t c^{T} x+\phi(x)\right) \\
& =\underset{x}{\operatorname{argmin}}\left(t c^{T} x-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)\right)
\end{aligned}
$$

$x^{\star}(t)$ exists and is unique for all $t>0$ (constructive proof in next lecture)

Optimality condition

$x^{\star}(t)$ is solution of $t c+\nabla \phi(x)=0$

hyperplane $c^{T} x=c^{T} x^{\star}(t)$ is tangent to level curve of ϕ through $x^{\star}(t)$

Force field interpretation

- optimality condition can be interpreted as force equilibrium

$$
-t c+\sum_{i=1}^{m} F_{i}(x)=0 \quad \text { with } F_{i}(x)=\frac{-1}{b_{i}-a_{i}^{T} x} a_{i}
$$

- force $F_{i}(x)$ decays as inverse distance to $\mathcal{H}_{i}=\left\{x \mid a_{i}^{T} x=b_{i}\right\}$:

$$
\left\|F_{i}(x)\right\|=\frac{1}{\operatorname{dist}\left(x, \mathcal{H}_{i}\right)}
$$

$$
t=1
$$

Central path and duality

point $x^{\star}(t)$ on central path is strictly primal feasible and satisfies

$$
c+\sum_{i=1}^{m} z_{i}^{\star}(t) a_{i}=0 \quad \text { with } \quad z_{i}^{\star}(t)=\frac{1}{t\left(b_{i}-a_{i}^{T} x^{\star}(t)\right)}
$$

- $z^{\star}(t)$ is strictly dual feasible: $A^{T} z^{\star}(t)+c=0$ and $z^{\star}(t)>0$
- duality gap between $x=x^{\star}(t)$ and $z=z^{\star}(t)$ is

$$
c^{T} x+b^{T} z=(b-A x)^{T} z=\frac{m}{t}
$$

- gives bound on sub-optimality of $x^{\star}(t)$

$$
c^{T} x^{\star}(t)-p^{\star} \leq \frac{m}{t}
$$

(p^{\star} is optimal value of LP)

Central path and complementarity

optimality conditions

x, z are primal, dual optimal if and only if

$$
s=b-A x \geq 0, \quad z \geq 0, \quad s_{i} z_{i}=0, \quad i=1, \ldots, m
$$

central path equations

$x=x^{\star}(t)$ and $z=z^{\star}(t)$ if and only if

$$
s=b-A x>0, \quad z>0, \quad s_{i} z_{i}=\frac{1}{t}, \quad i=1, \ldots, m
$$

Interior-point methods

common characteristics

- follow the central path to find optimal solution
- use Newton's method to follow central path

differences

- algorithms can update primal, dual, or pairs of primal, dual variables
- can keep iterates feasible or allow infeasible iterates (and starting points)
- different techniques for following central path

