Lecture 13 The central path

- nonlinear optimization methods for linear optimization
- logarithmic barrier
- central path

Ellipsoid method

ellipsoid algorithm

- a general method for (nonlinear) convex optimization, invented ca. 1972
- Khachiyan (1979): complexity is polynomial when applied to LP

importance

- answered an open question: worst-case complexity of LP is polynomial
- practical performance was disappointing; much slower than simplex
- useful as a very simple algorithm for nonlinear convex optimization
- idea is very different from simplex; motivated research in new directions

Interior-point methods

1950s–1960s: several related methods for nonlinear convex optimization

- sequential unconstrained minimization (Fiacco & McCormick), logarithmic barrier method (Frisch), affine scaling method (Dikin), method of centers (Huard & Lieu)
- no worst-case complexity theory, but often work well in practice

1980s-1990s: interior-point methods for linear optimization

- Karmarkar (1984): new polynomial-time method ('projective algorithm')
- later recognized as related to the earlier methods
- many variations and improvements since 1984
- competitive with simplex; often faster for very large problems

Outline

- LP algorithms based on nonlinear optimization
- logarithmic barrier
- central path

Logarithmic barrier

- we consider inequalities $Ax \leq b$ with A of size $m \times n$ and with rows a_i^T
- define $P = \{x \mid Ax \le b\}$ and $P^{\circ} = \{x \mid Ax < b\}$

logarithmic barrier for the inequalities $Ax \leq b$:

$$\phi(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$
 with domain P°

Gradient and Hessian

gradient: $\nabla \phi(x)$ is the *n*-vector with $\nabla \phi(x)_i = \partial \phi(x) / \partial x_i$

$$\nabla \phi(x) = \sum_{k=1}^{m} \frac{1}{b_k - a_k^T x} a_k = A^T d_x$$

 d_x denotes the positive *m*-vector

$$d_x = \left(\frac{1}{b_1 - a_1^T x}, \ \dots, \ \frac{1}{b_m - a_m^T x}\right)$$

Hessian: $\nabla^2 \phi(x)$ is the $n \times n$ -matrix with $\nabla \phi(x)_{ij} = \partial^2 \phi(x) / \partial x_i \partial x_j$

$$\nabla^2 \phi(x) = \sum_{k=1}^m \frac{1}{(b_k - a_k^T x)^2} a_k a_k^T = A^T \operatorname{diag}(d_x)^2 A$$

The central path

Convexity

second-order condition for convexity of ϕ

• $\nabla^2 \phi(x)$ is positive semidefinite for all $x \in P^\circ$:

$$u^T \nabla^2 \phi(x) u = u^T A^T \operatorname{diag}(d_x)^2 A u = \|\operatorname{diag}(d_x) A u\|^2 \ge 0 \qquad \forall u$$

• if $\operatorname{rank}(A) = n$, then $\nabla^2 \phi(x)$ is positive definite for all $x \in P^\circ$:

$$u^T \nabla^2 \phi(x) u = \| \operatorname{diag}(d_x) A u \|^2 > 0 \qquad \forall u \neq 0$$

local (semi-)norm: we will use the notation

$$||u||_x = (u^T \nabla^2 \phi(x) u)^{1/2} = ||\operatorname{diag}(d_x) A u||$$

Dikin ellipsoid

definition: the Dikin ellipsoid at $x \in P^{\circ}$ is the set

$$\mathcal{E}_{x} = \{ y \mid (y - x)^{T} \nabla^{2} \phi(x)(y - x) \leq 1 \} \\ = \{ y \mid ||y - x||_{x} \leq 1 \}$$

property: Dikin ellipsoid at any $x \in P^{\circ}$ is contained in P

proof: consider $x \in P^{\circ}$

• points y in the Dikin ellipsoid at x satisfy

$$(y-x)^{T} \nabla^{2} \phi(x)(y-x) = (y-x)^{T} A^{T} \operatorname{diag}(d_{x})^{2} A(y-x)$$
$$= \sum_{i=1}^{m} \frac{(a_{i}^{T}(y-x))^{2}}{(b_{i}-a_{i}^{T}x)^{2}}$$
$$\leq 1$$

• therefore each term in the sum is less than or equal to one:

$$-(b - Ax) \le A(y - x) \le b - Ax$$

the right-hand side inequality shows that $Ay \leq b$

Convexity: first-order condition

linearization of ϕ at $x \in P^{\circ}$ gives **lower bound** on ϕ :

$$\phi(y) \ge \phi(x) + \nabla \phi(x)^T (y - x)$$
 for all $x, y \in P^\circ$

strict inequality holds if $x \neq y$ and $\operatorname{rank}(A) = n$

- x minimizes $\phi(x)$ if and only if $\nabla \phi(x) = 0$
- if rank(A) = n, minimizer of $\phi(x)$ is unique if it exists

The central path

proof of lower bound:

$$\phi(y) = -\sum_{i=1}^{m} \log(b_i - a_i^T y)$$

$$\geq -\sum_{i=1}^{m} \log(b_i - a_i^T x) + \sum_{i=1}^{m} \frac{a_i^T (y - x)}{b_i - a_i^T x}$$

$$= \phi(x) + \nabla \phi(x)^T (y - x)$$

- inequality follows from $\log u_i \leq u_i 1$ with $u_i = (b_i a_i^T y)/(b_i a_i^T x)$
- equality holds only if $u_i = 1$ for $i = 1, \ldots, m$, *i.e.*, A(y x) = 0

Analytic center

definition: the analytic center of a system of inequalities $Ax \leq b$ is

$$x_{ac} = \operatorname*{argmin}_{x} \phi(x)$$
$$= \operatorname{argmin}_{x} - \sum_{i=1}^{m} \log(b_i - a_i^T x)$$

• $x_{\rm ac}$ is solution of nonlinear equation

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{b_i - a_i^T x} a_i = 0$$

- different descriptions $Ax \leq b$ of same polyhedron can have different x_{ac}
- $x_{\rm ac}$ exists and is unique if and only if P° is nonempty and bounded

Outline

- LP algorithms based on nonlinear optimization
- logarithmic barrier
- central path

Central path

primal-dual pair of LPs

$$\begin{array}{ll} \mbox{minimize} & c^T x & \mbox{maximize} & -b^T z \\ \mbox{subject to} & Ax \leq b & \mbox{subject to} & A^T z + c = 0 \\ & z \geq 0 \end{array}$$

we assume primal and dual problems are strictly feasible and rank(A) = n

central path: set of points $\{x^{\star}(t) \mid t > 0\}$ with

$$x^{\star}(t) = \operatorname*{argmin}_{x} (tc^{T}x + \phi(x))$$
$$= \operatorname*{argmin}_{x} (tc^{T}x - \sum_{i=1}^{m} \log(b_{i} - a_{i}^{T}x))$$

 $x^{\star}(t)$ exists and is unique for all t > 0 (constructive proof in next lecture)

Optimality condition

 $x^{\star}(t)$ is solution of $tc + \nabla \phi(x) = 0$

hyperplane $c^T x = c^T x^*(t)$ is tangent to level curve of ϕ through $x^*(t)$

Force field interpretation

• optimality condition can be interpreted as force equilibrium

$$-tc + \sum_{i=1}^{m} F_i(x) = 0$$
 with $F_i(x) = \frac{-1}{b_i - a_i^T x} a_i$

• force $F_i(x)$ decays as inverse distance to $\mathcal{H}_i = \{x \mid a_i^T x = b_i\}$:

Central path and duality

point $x^{\star}(t)$ on central path is strictly primal feasible and satisfies

$$c + \sum_{i=1}^{m} z_i^{\star}(t) a_i = 0$$
 with $z_i^{\star}(t) = \frac{1}{t(b_i - a_i^T x^{\star}(t))}$

- $z^{\star}(t)$ is strictly dual feasible: $A^T z^{\star}(t) + c = 0$ and $z^{\star}(t) > 0$
- duality gap between $x=x^\star(t)$ and $z=z^\star(t)$ is

$$c^T x + b^T z = (b - Ax)^T z = \frac{m}{t}$$

• gives bound on sub-optimality of $x^\star(t)$

$$c^T x^\star(t) - p^\star \le \frac{m}{t}$$

 $(p^* \text{ is optimal value of LP})$

The central path

Central path and complementarity

optimality conditions

x, z are primal, dual optimal if and only if

$$s = b - Ax \ge 0,$$
 $z \ge 0,$ $s_i z_i = 0,$ $i = 1, \dots, m$

central path equations

 $x = x^{\star}(t)$ and $z = z^{\star}(t)$ if and only if

$$s = b - Ax > 0,$$
 $z > 0,$ $s_i z_i = \frac{1}{t},$ $i = 1, ..., m$

Interior-point methods

common characteristics

- follow the central path to find optimal solution
- use Newton's method to follow central path

differences

- algorithms can update primal, dual, or pairs of primal, dual variables
- can keep iterates feasible or allow infeasible iterates (and starting points)
- different techniques for following central path