Lecture 6 Duality

- dual of an LP in inequality form
- variants and examples
- complementary slackness

Dual of linear program in inequality form

we define two LPs with the same parameters $c \in \mathbf{R}^{n}, A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$

- an LP in 'inequality form'

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \leq b
\end{array}
$$

- an LP in 'standard form'

$$
\begin{array}{ll}
\operatorname{maximize} & -b^{T} z \\
\text { subject to } & A^{T} z+c=0 \\
& z \geq 0
\end{array}
$$

this problem is called the dual of the first LP
in the context of duality, the first LP is called the primal problem

Duality theorem

notation

- p^{\star} is the primal optimal value; d^{\star} is the dual optimal value
- $p^{\star}=+\infty$ if primal problem is infeasible; $d^{\star}=-\infty$ if dual is infeasible
- $p^{\star}=-\infty$ if primal problem is unbounded; $d^{\star}=\infty$ if dual is unbounded
duality theorem: if primal or dual problem is feasible, then

$$
p^{\star}=d^{\star}
$$

moreover, if $p^{\star}=d^{\star}$ is finite, then primal and dual optima are attained
note: only exception to $p^{\star}=d^{\star}$ occurs when primal and dual are infeasible

Weak duality

lower bound property: if x is primal feasible and z is dual feasible, then

$$
c^{T} x \geq-b^{T} z
$$

proof: if $A x \leq b, A^{T} z+c=0$, and $z \geq 0$, then

$$
0 \leq z^{T}(b-A x)=b^{T} z+c^{T} x
$$

$c^{T} x+b^{T} z$ is the duality gap associated with primal and dual feasible x, z
weak duality: the lower bound property immediately implies that

$$
p^{\star} \geq d^{\star}
$$

(without exception)

Strong duality

if primal and dual problems are feasible, then there exist x^{\star}, z^{\star} that satisfy

$$
c^{T} x^{\star}=-b^{T} z^{\star}, \quad A x^{\star} \leq b, \quad A^{T} z^{\star}+c=0, \quad z^{\star} \geq 0
$$

combined with the lower bound property, this implies that

- x^{\star} is primal optimal and z^{\star} is dual optimal
- the primal and dual optimal values are finite and equal:

$$
p^{\star}=c^{T} x^{\star}=-b^{T} z^{\star}=d^{\star}
$$

(proof on next page)
proof: we show that there exist x^{\star}, z^{\star} that satisfy

$$
\left[\begin{array}{cc}
A & 0 \\
0 & -I \\
c^{T} & b^{T}
\end{array}\right]\left[\begin{array}{c}
x^{\star} \\
z^{\star}
\end{array}\right] \leq\left[\begin{array}{l}
b \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & -A^{T}
\end{array}\right]\left[\begin{array}{l}
x^{\star} \\
z^{\star}
\end{array}\right]=c
$$

- the lower-bound property implies that any solution necessarily satisfies

$$
c^{T} x^{\star}+b^{T} z^{\star}=0
$$

- to prove a solution exists we show that the alternative system (p. 5-5)

$$
u \geq 0, \quad t \geq 0, \quad A^{T} u+t c=0, \quad A w \leq t b, \quad b^{T} u+c^{T} w<0
$$

has no solution
the alternative system has no solution because:

- if $t>0$, defining $\tilde{x}=w / t, \tilde{z}=u / t$ gives

$$
\tilde{z} \geq 0, \quad A^{T} \tilde{z}+c=0, \quad A \tilde{x} \leq b, \quad c^{T} \tilde{x}<-b^{T} \tilde{z}
$$

this contradicts the lower bound property

- if $t=0$ and $b^{T} u<0, u$ satisfies

$$
u \geq 0, \quad A^{T} u=0, \quad b^{T} u<0
$$

this contradicts feasibility of $A x \leq b$ (page 5-2)

- if $t=0$ and $c^{T} w<0, w$ satisfies

$$
A w \leq 0, \quad c^{T} w<0
$$

this contradicts feasibility of $A^{T} z+c=0, z \geq 0$ (page 5-3)

Primal infeasible problems

if $p^{\star}=+\infty$ then $d^{\star}=+\infty$ or $d^{\star}=-\infty$
proof: if primal is infeasible, then from page 5-2, there exists w such that

$$
w \geq 0, \quad A^{T} w=0, \quad b^{T} w<0
$$

if the dual problem is feasible and z is any dual feasible point, then

$$
z+t w \geq 0, \quad A^{T}(z+t w)+c=0 \quad \text { for all } t \geq 0
$$

therefore $z+t w$ is dual feasible for all $t \geq 0$; moreover, as $t \rightarrow \infty$,

$$
-b^{T}(z+t w)=-b^{T} z-t b^{T} w \rightarrow+\infty
$$

so the dual problem is unbounded above

Dual infeasible problems

if $d^{\star}=-\infty$ then $p^{\star}=-\infty$ or $p^{\star}=+\infty$
proof: if dual is infeasible, then from page 5-3, there exists y such that

$$
A^{T} y \leq 0, \quad c^{T} y<0
$$

if the primal problem is feasible and x is any primal feasible point, then

$$
A^{T}(x+t y) \leq b \quad \text { for all } t \geq 0
$$

therefore $x+t y$ is primal feasible for all $t \geq 0$; moreover, as $t \rightarrow \infty$,

$$
c^{T}(x+t y)=c^{T} x+t c^{T} y \rightarrow-\infty
$$

so the primal problem is unbounded below

Exception to strong duality

an example that shows that $p^{\star}=+\infty, d^{\star}=-\infty$ is possible
primal problem (one variable, one inequality)

$$
\begin{array}{ll}
\operatorname{minimize} & x \\
\text { subject to } & 0 \cdot x \leq-1
\end{array}
$$

optimal value is $p^{\star}=+\infty$
dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & z \\
\text { subject to } & 0 \cdot z+1=0 \\
& z \geq 0
\end{array}
$$

optimal value is $d^{\star}=-\infty$

Summary

$d^{\star}=+\infty$	$p^{\star}=+\infty$	p^{\star} finite	$p^{\star}=-\infty$
	primal inf. dual unb.		
d^{\star} finite		optimal values equal and attained	
$d^{\star}=-\infty$	exception		primal unb. dual inf.

- upper-right part of the table is excluded by weak duality
- first column: proved on page 6-8
- bottom row: proved on page 6-9
- center: proved on page 6-5

Outline

- dual of an LP in inequality form
- variants and examples
- complementary slackness

Variants

LP with inequality and equality constraints

$$
\begin{array}{llll}
\operatorname{minimize} & c^{T} x & \text { maximize } & -b^{T} z-d^{T} y \\
\text { subject to } & A x \leq b & \text { subject to } & A^{T} z+C^{T} y+c=0 \\
& C x=d & & z \geq 0
\end{array}
$$

standard form LP

minimize	$c^{T} x$
subject to	$A x=b$
	$x \geq 0$

maximize $\quad b^{T} y$
subject to $A^{T} y \leq c$

- dual problems can be derived by converting primal to inequality form
- same duality results apply

Piecewise-linear minimization

$$
\operatorname{minimize} f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)
$$

LP formulation (variables x, t; optimal value is $\min _{x} f(x)$)

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & {\left[\begin{array}{ll}
A & \mathbf{- 1}
\end{array}\right]\left[\begin{array}{l}
x \\
t
\end{array}\right] \leq-b}
\end{array}
$$

dual LP (same optimal value)

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} z \\
\text { subject to } & A^{T} z=0 \\
& \mathbf{1}^{T} z=1 \\
& z \geq 0
\end{array}
$$

Interpretation

- for any $z \geq 0$ with $\sum_{i} z_{i}=1$,

$$
f(x)=\max _{i}\left(a_{i}^{T} x+b_{i}\right) \geq z^{T}(A x+b) \quad \text { for all } x
$$

- this provides a lower bound on the optimal value of the PWL problem

$$
\begin{aligned}
\min _{x} f(x) & \geq \min _{x} z^{T}(A x+b) \\
& = \begin{cases}b^{T} z & \text { if } A^{T} z=0 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

- the dual problem is to find the best lower bound of this type
- strong duality tells us that the best lower bound is tight

ℓ_{∞}-Norm approximation

$$
\operatorname{minimize}\|A x-b\|_{\infty}
$$

LP formulation

$$
\left.\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to }
\end{array} \begin{array}{rr}
A & -\mathbf{1} \\
-A & -\mathbf{1}
\end{array}\right]\left[\begin{array}{l}
x \\
t
\end{array}\right] \leq\left[\begin{array}{r}
b \\
-b
\end{array}\right]
$$

dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & -b^{T} u+b^{T} v \\
\text { subject to } & A^{T} u-A^{T} v=0 \\
& \mathbf{1}^{T} u+\mathbf{1}^{T} v=1 \tag{1}\\
& u \geq 0, v \geq 0
\end{array}
$$

simpler equivalent dual

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} z \\
\text { subject to } & A^{T} z=0, \quad\|z\|_{1} \leq 1 \tag{2}
\end{array}
$$

proof of equivalence of the dual problems (assume A is $m \times n$)

- if u, v are feasible in (1), then $z=v-u$ is feasible in (2):

$$
\|z\|_{1}=\sum_{i=1}^{m}\left|v_{i}-u_{i}\right| \leq \mathbf{1}^{T} v+\mathbf{1}^{T} u=1
$$

moreover the objective values are equal: $b^{T} z=b^{T}(v-u)$

- if z is feasible in (2), define vectors u, v by

$$
u_{i}=\max \left\{z_{i}, 0\right\}+\alpha, \quad v_{i}=\max \left\{-z_{i}, 0\right\}+\alpha, \quad i=1, \ldots, m
$$

with $\alpha=\left(1-\|z\|_{1}\right) /(2 m)$
these vectors are feasible in (1) with objective value $b^{T}(v-u)=b^{T} z$

Interpretation

- lemma: $u^{T} v \leq\|u\|_{1}\|v\|_{\infty}$ holds for all u, v
- therefore, for any z with $\|z\|_{1} \leq 1$,

$$
\|A x-b\|_{\infty} \geq z^{T}(A x-b)
$$

- this provides a bound on the optimal value of the ℓ_{∞}-norm problem

$$
\begin{aligned}
\min _{x}\|A x-b\|_{\infty} & \geq \min _{x} z^{T}(A x-b) \\
& = \begin{cases}-b^{T} z & \text { if } A^{T} z=0 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

- the dual problem is to find the best lower bound of this type
- strong duality tells us the best lower bound is tight

Outline

- dual of an LP in inequality form
- variants and examples
- complementary slackness

Optimality conditions

primal and dual LP

$$
\begin{array}{llll}
\operatorname{minimize} & c^{T} x & \text { maximize } & -b^{T} z-d^{T} y \\
\text { subject to } & A x \leq b & \text { subject to } & A^{T} z+C^{T} y+c=0 \\
& C x=d & & z \geq 0
\end{array}
$$

optimality conditions: x and (y, z) are primal, dual optimal if and only if

- x is primal feasible: $A x \leq b$ and $C x=d$
- y, z are dual feasible: $A^{T} z+C^{T} y+c=0$ and $z \geq 0$
- the duality gap is zero: $c^{T} x=-b^{T} z-d^{T} y$

Complementary slackness

assume A is $m \times n$ with rows a_{i}^{T}

- the duality gap at primal feasible x, dual feasible y, z can be written as

$$
\begin{aligned}
c^{T} x+b^{T} z+d^{T} y & =(b-A x)^{T} z+(d-C x)^{T} y \\
& =(b-A x)^{T} z \\
& =\sum_{i=1}^{m} z_{i}\left(b_{i}-a_{i}^{T} x\right)
\end{aligned}
$$

- primal, dual feasible x, y, z are optimal if and only if

$$
z_{i}\left(b_{i}-a_{i}^{T} x\right)=0, \quad i=1, \ldots, m
$$

i.e., at optimum, $b-A x$ and z have a complementary sparsity pattern:

$$
z_{i}>0 \Longrightarrow a_{i}^{T} x=b_{i}, \quad a_{i}^{T} x<b_{i} \Longrightarrow z_{i}=0
$$

Geometric interpretation

example in \mathbf{R}^{2}

- two active constraints at optimum: $a_{1}^{T} x^{\star}=b_{1}, a_{2}^{T} x^{\star}=b_{2}$
- optimal dual solution satisfies

$$
A^{T} z+c=0, \quad z \geq 0, \quad z_{i}=0 \text { for } i \notin\{1,2\}
$$

in other words, $-c=a_{1} z_{1}+a_{2} z_{2}$ with $z_{1} \geq 0, z_{2} \geq 0$

- geometric interpretation: $-c$ lies in the cone generated by a_{1} and a_{2}

Example

$$
\begin{array}{ll}
\operatorname{minimize} & -4 x_{1}-5 x_{2} \\
\text { subject to } & {\left[\begin{array}{rr}
-1 & 0 \\
2 & 1 \\
0 & -1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \leq\left[\begin{array}{l}
0 \\
3 \\
0 \\
3
\end{array}\right]}
\end{array}
$$

show that $x=(1,1)$ is optimal

- second and fourth constraints are active at $(1,1)$
- therefore any dual optimal z must be of the form $z=\left(0, z_{2}, 0, z_{4}\right)$ with

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
z_{2} \\
z_{4}
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right], \quad z_{2} \geq 0, \quad z_{4} \geq 0
$$

$z=(0,1,0,2)$ satisfies these conditions
dual feasible z with correct sparsity pattern proves that x is optimal

Optimal set

primal and dual LP $\left(A\right.$ is $m \times n$ with rows $\left.a_{i}^{T}\right)$

$$
\begin{array}{llll}
\operatorname{minimize} & c^{T} x & \text { maximize } & -b^{T} z-d^{T} y \\
\text { subject to } & A x \leq b & \text { subject to } & A^{T} z+C^{T} y+c=0 \\
& C x=d & & z \geq 0
\end{array}
$$

assume the optimal value is finite

- let $\left(y^{\star}, z^{\star}\right)$ be any dual optimal solution and define $J=\left\{i \mid z_{i}^{\star}>0\right\}$
- x is optimal iff it is feasible and complementary slackness with z^{\star} holds:

$$
a_{i}^{T} x=b_{i} \quad \text { for } i \in J, \quad a_{i}^{T} x \leq b_{i} \quad \text { for } i \notin J, \quad C x=d
$$

conclusion: optimal set is a face of the polyhedron $\{x \mid A x \leq b, C x=d\}$

Strict complementarity

- primal and dual optimal solutions are not necessarily unique
- any combination of primal and dual optimal points must satisfy

$$
z_{i}\left(b_{i}-a_{i}^{T} x\right)=0, \quad i=1, \ldots, m
$$

in other words, for all i,
$a_{i}^{T} x<b_{i}, z_{i}=0 \quad$ or $\quad a_{i}^{T} x=b_{i}, z_{i}>0 \quad$ or $\quad a_{i}^{T} x=b_{i}, z_{i}=0$

- primal and dual optimal points are strictly complementary if for all i

$$
a_{i}^{T} x<b_{i}, \quad z_{i}=0 \quad \text { or } \quad a_{i}^{T} x=b_{i}, \quad z_{i}>0
$$

it can be shown that strictly complementary solutions exist for any LP with a finite optimal value (exercise 72)

