Lecture 7 Duality II

- sensitivity analysis
- two-person zero-sum games
- circuit interpretation

Sensitivity analysis

purpose: extract from the solution of an LP information about the sensitivity of the solution with respect to changes in problem data

this lecture:

- sensitivity w.r.t. to changes in the right-hand side of the constraints
- we define $p^{\star}(u)$ as the optimal value of the modified LP (variables x)

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \leq b+u \end{array}$$

• we are interested in obtaining information about $p^{\star}(u)$ from primal, dual optimal solutions x^{\star} , z^{\star} at u = 0

Global inequality

dual of modified LP

$$\begin{array}{ll} \mbox{maximize} & -(b+u)^Tz\\ \mbox{subject to} & A^Tz+c=0\\ & z\geq 0 \end{array}$$

global lower bound: if z^* is (any) dual optimal solution for u = 0, then

$$p^{\star}(u) \geq -(b+u)^T z^{\star}$$
$$= p^{\star}(0) - u^T z^{\star}$$

- follows from weak duality and feasibility of z^{\star}
- inequality holds for all u (not necessarily small)

Example (one varying parameter)

sensitivity information from lower bound (assuming $d^T z^* > 0$):

- if t < 0 the optimal value increases (by a large amount of |t| is large)
- if t > 0 optimal value may increase or decrease
- if t is positive and small, optimal value certainly does not decrease much

Optimal value function

$$p^{\star}(u) = \min\{c^T x \mid Ax \le b + u\}$$

properties (we assume $p^{\star}(0)$ is finite)

- $p^{\star}(u) > -\infty$ everywhere (this follows from the global lower bound)
- the domain $\{u \mid p^{\star}(u) < +\infty\}$ is a polyhedron
- $p^{\star}(u)$ is piecewise-linear on its domain

(proof on next page)

proof. let P be the dual feasible set, K the recession cone of P:

$$P = \{ z \mid A^T z + c = 0, \ z \ge 0 \}, \qquad K = \{ w \mid A^T w = 0, \ w \ge 0 \}$$

• $p^{\star}(u) = +\infty$ (modified primal is infeasible) iff there exists a w such that

$$A^T w = 0, \qquad w \ge 0, \qquad b^T w + u^T w < 0$$

therefore $p^\star(u) < \infty$ if and only if

 $b^T w_k + u^T w_k \ge 0$ for all extreme rays w_k of K

this is a finite set of linear inequalities in u

• if $p^{\star}(u)$ is finite,

$$p^{\star}(u) = \max_{z \in P} \left(-b^T z - u^T z \right) = \max_{k=1,\dots,r} \left(-b^T z_k - u^T z_k \right)$$

where z_1, \ldots, z_r are the extreme points of P

Local sensitivity analysis

let x^{\star} be optimal for the unmodified problem, with active constraint set

$$J = \{i \mid a_i^T x^\star = b_i\}$$

assume x^* is a **nondegenerate extreme point**, *i.e.*,

- an extreme point: A_J has full column rank $(rank(A_J) = n)$
- nondegenerate: |J| = n (*n* active constraints)

then, for u in a neighborhood of the origin, $x^{\star}(u)$ and z^{\star} defined by

$$x^{\star}(u) = A_J^{-1}(b_J + u_J), \qquad z_J^{\star} = -A_J^{-T}c, \qquad z_i^{\star} = 0 \text{ (for } i \notin J),$$

are primal, dual optimal for the modified problem

note: $x^{\star}(u)$ is affine in u and z^{\star} is independent of u

proof

solution of original LP (u = 0)

- since A_J is square and nonsingular, we can express x^* as $x^* = A_J^{-1}b_J$
- complementary slackness determines optimal z^* uniquely:

$$z_i^{\star} = 0 \quad i \notin J, \qquad A_J^T z_J^{\star} + c = 0$$

solution of modified LP (for sufficiently small *u*)

- $x^{\star}(u)$ satisfies inequalities indexed by $J: A_J x^{\star}(u) = b_J + u_J$ (for all u)
- $x^{\star}(u)$ satisfies the other inequalities $(i \notin J)$ for sufficiently small u:

$$a_i^T x^{\star}(u) \le b_i + u_i \quad \Longleftrightarrow \quad a_i^T A_J^{-1} u_J - u_i \le b_i - a_i^T x^{\star}$$

and $b_i - a_i^T x^* > 0$

- z^* is dual feasible (for all u)
- $x^{\star}(u)$ and z^{\star} satisfy complementary slackness conditions

Derivative of optimal value function

under the assumptions of the local analysis (page 7-7),

$$p^{\star}(u) = c^{T}x^{\star}(u)$$
$$= c^{T}x^{\star} + c^{T}A_{J}^{-1}u_{J}$$
$$= p^{\star}(0) - z_{J}^{\star T}u_{J}$$

for u in a neighborhood of the origin

- optimal value function is affine in \boldsymbol{u} for small \boldsymbol{u}
- $-z_i^{\star}$ is derivative of $p^{\star}(u)$ with respect to u_i at u=0

Outline

- sensitivity analysis
- two-person zero-sum games
- circuit interpretation

Two-person zero-sum game (matrix game)

- player 1 chooses a number in $\{1, \ldots, m\}$ (one of m possible actions)
- player 2 chooses a number in $\{1, \ldots, n\}$ (*n* possible actions)
- players make their choices independently
- if P1 chooses i and P2 chooses j, then P1 pays A_{ij} to P2 (negative A_{ij} means P2 pays $-A_{ij}$ to P1)
- the $m \times n$ -matrix A is called the **payoff matrix**

Mixed (randomized) strategies

players choose actions randomly according to some probability distribution

• P1 chooses randomly according to distribution x:

 $x_i =$ probability that P1 selects action i

• P2 chooses randomly according to distribution y:

 $y_j =$ probability that P2 selects action j

expected payoff (from P1 to P2), if they use mixed stragies x and y,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j A_{ij} = x^T A y$$

Optimal mixed strategies

denote by $P_k = \{p \in \mathbf{R}^k \mid p \ge 0, \mathbf{1}^T p = 1\}$ the probability simplex in \mathbf{R}^k

• player 1: optimal strategy x^{\star} is solution of the equivalent problems

minimize	$\max_{y \in P_n} x^T A y$	minimize	$\max_{j=1,\dots,n} (A^T x)_j$
subject to	$x \in P_m$	subject to	$x \in P_m$

• player 2: optimal strategy y^* is solution of

 $\begin{array}{ll} \text{maximize} & \min_{x \in P_m} x^T A y & \text{maximize} & \min_{i=1,\dots,m} (Ay)_i \\ \text{subject to} & y \in P_n & \text{subject to} & y \in P_n \end{array}$

optimal strategies x^{\star} , y^{\star} can be computed by linear optimization

Duality II

Exercise: minimax theorem

prove that

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$

some consequences

• if x^* and y^* are the optimal mixed strategies, then

$$\min_{x \in P_m} x^T A y^* = \max_{y \in P_n} x^{*T} A y$$

• if x^* and y^* are the optimal mixed strategies, then

$$x^T A y^* \ge x^{*T} A y^* \ge x^{*T} A y \qquad \forall x \in P_m, \ \forall y \in P_n$$

solution

• optimal strategy x^* is the solution of the LP (with variables x, t)

$$\begin{array}{ll} \mbox{minimize} & t\\ \mbox{subject to} & A^T x \leq t \mathbf{1} \\ & x \geq 0 \\ & \mathbf{1}^T x = 1 \end{array}$$

• optimal strategy y^* is the solution of the LP (with variables y, w)

$$\begin{array}{ll} \mbox{maximize} & w\\ \mbox{subject to} & Ay \geq w \mathbf{1} \\ & y \geq 0 \\ & \mathbf{1}^T y = 1 \end{array}$$

• the two LPs can be shown to be duals

Example

$$A = \begin{bmatrix} 4 & 2 & 0 & -3 \\ -2 & -4 & -3 & 3 \\ -2 & -3 & 4 & 1 \end{bmatrix}$$

• note that

$$\min_{i} \max_{j} A_{ij} = 3 > -2 = \max_{j} \min_{i} A_{ij}$$

• optimal mixed strategies

$$x^{\star} = (0.37, 0.33, 0.3), \qquad y^{\star} = (0.4, 0, 0.13, 0.47)$$

• expected payoff is
$$x^{\star T}Ay^{\star} = 0.2$$

Outline

- sensitivity analysis
- two-person zero-sum games
- circuit interpretation

Components

multiterminal transformer

$$\widehat{v} = A\widetilde{v}, \qquad \widetilde{\imath} = -A^T\widehat{\imath}$$

with $A \in \mathbf{R}^{m \times n}$

Example

circuit equations

• transformer:

$$\widehat{v} = Av, \quad \widetilde{i} = A^T i$$

• diodes and voltage souces:

$$\widehat{v} \le b, \quad i \ge 0, \quad i^T (b - \widehat{v}) = 0$$

• current sources: $\tilde{\imath} + c = 0$

these are the optimality conditions for the pair of primal and dual LPs

 $\begin{array}{lll} \mbox{minimize} & c^T v & \mbox{maximize} & -b^T i \\ \mbox{subject to} & Av \leq b & \mbox{subject to} & A^T i + c = 0, \ i \geq 0 \end{array}$

Variational description

two 'potential functions', **content** and **co-content** (in notation of p.7–16)

	content	co-content	
	(function of voltages)	(function of currents)	
current source	Iv	$\begin{array}{ccc} 0 & \text{if } i = I \\ -\infty & \text{otherwise} \end{array}$	
voltage source	$\begin{array}{ccc} 0 & \text{if } v = E \\ \infty & \text{otherwise} \end{array}$	-Ei	
diode	$\begin{array}{ll} 0 & \text{if } v \geq 0 \\ \infty & \text{otherwise} \end{array}$	$\begin{array}{ccc} 0 & \text{if } i \leq 0 \\ -\infty & \text{otherwise} \end{array}$	
transformer	$\begin{array}{ccc} 0 & \text{if } \widehat{v} = A \widetilde{v} \\ \infty & \text{otherwise} \end{array}$	$\begin{array}{ccc} 0 & \text{if } \widetilde{i} = -A^T \widehat{i} \\ -\infty & \text{otherwise} \end{array}$	

optimization problems

- primal: voltages minimize total content
- dual: currents maximize total co-content

Example

primal problem

$$\begin{array}{ll} \mbox{minimize} & c^T v \\ \mbox{subject to} & Av \leq b \\ & v \geq 0 \end{array}$$

equivalent circuit

dual problem

$$\begin{array}{ll} \mathsf{maximize} & -b^T i \\ \mathsf{subject to} & A^T i + c \geq 0 \\ & i \geq 0 \end{array}$$