Lecture 7 Duality II

- sensitivity analysis
- two-person zero-sum games
- circuit interpretation

Sensitivity analysis

purpose: extract from the solution of an LP information about the sensitivity of the solution with respect to changes in problem data

this lecture:

- sensitivity w.r.t. to changes in the right-hand side of the constraints
- we define $p^{\star}(u)$ as the optimal value of the modified LP (variables x)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \leq b+u
\end{array}
$$

- we are interested in obtaining information about $p^{\star}(u)$ from primal, dual optimal solutions x^{\star}, z^{\star} at $u=0$

Global inequality

dual of modified LP

$$
\begin{array}{ll}
\operatorname{maximize} & -(b+u)^{T} z \\
\text { subject to } & A^{T} z+c=0 \\
& z \geq 0
\end{array}
$$

global lower bound: if z^{\star} is (any) dual optimal solution for $u=0$, then

$$
\begin{aligned}
p^{\star}(u) & \geq-(b+u)^{T} z^{\star} \\
& =p^{\star}(0)-u^{T} z^{\star}
\end{aligned}
$$

- follows from weak duality and feasibility of z^{\star}
- inequality holds for all u (not necessarily small)

Example (one varying parameter)

take $u=t d$ with d fixed:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \leq b+t d
\end{array}
$$

$p^{\star}(t d)$ is optimal value as a function of t

sensitivity information from lower bound (assuming $d^{T} z^{\star}>0$):

- if $t<0$ the optimal value increases (by a large amount of $|t|$ is large)
- if $t>0$ optimal value may increase or decrease
- if t is positive and small, optimal value certainly does not decrease much

Optimal value function

$$
p^{\star}(u)=\min \left\{c^{T} x \mid A x \leq b+u\right\}
$$

properties (we assume $p^{\star}(0)$ is finite)

- $p^{\star}(u)>-\infty$ everywhere (this follows from the global lower bound)
- the domain $\left\{u \mid p^{\star}(u)<+\infty\right\}$ is a polyhedron
- $p^{\star}(u)$ is piecewise-linear on its domain
(proof on next page)
proof. let P be the dual feasible set, K the recession cone of P :

$$
P=\left\{z \mid A^{T} z+c=0, z \geq 0\right\}, \quad K=\left\{w \mid A^{T} w=0, w \geq 0\right\}
$$

- $p^{\star}(u)=+\infty$ (modified primal is infeasible) iff there exists a w such that

$$
A^{T} w=0, \quad w \geq 0, \quad b^{T} w+u^{T} w<0
$$

therefore $p^{\star}(u)<\infty$ if and only if

$$
b^{T} w_{k}+u^{T} w_{k} \geq 0 \quad \text { for all extreme rays } w_{k} \text { of } K
$$

this is a finite set of linear inequalities in u

- if $p^{\star}(u)$ is finite,

$$
p^{\star}(u)=\max _{z \in P}\left(-b^{T} z-u^{T} z\right)=\max _{k=1, \ldots, r}\left(-b^{T} z_{k}-u^{T} z_{k}\right)
$$

where z_{1}, \ldots, z_{r} are the extreme points of P

Local sensitivity analysis

let x^{\star} be optimal for the unmodified problem, with active constraint set

$$
J=\left\{i \mid a_{i}^{T} x^{\star}=b_{i}\right\}
$$

assume x^{\star} is a nondegenerate extreme point, i.e.,

- an extreme point: A_{J} has full column rank $\left(\operatorname{rank}\left(A_{J}\right)=n\right)$
- nondegenerate: $|J|=n$ (n active constraints)
then, for u in a neighborhood of the origin, $x^{\star}(u)$ and z^{\star} defined by

$$
x^{\star}(u)=A_{J}^{-1}\left(b_{J}+u_{J}\right), \quad z_{J}^{\star}=-A_{J}^{-T} c, \quad z_{i}^{\star}=0 \quad(\text { for } i \notin J),
$$

are primal, dual optimal for the modified problem
note: $x^{\star}(u)$ is affine in u and z^{\star} is independent of u
proof
solution of original LP $(u=0)$

- since A_{J} is square and nonsingular, we can express x^{\star} as $x^{\star}=A_{J}^{-1} b_{J}$
- complementary slackness determines optimal z^{\star} uniquely:

$$
z_{i}^{\star}=0 \quad i \notin J, \quad A_{J}^{T} z_{J}^{\star}+c=0
$$

solution of modified LP (for sufficiently small u)

- $x^{\star}(u)$ satisfies inequalities indexed by $J: A_{J} x^{\star}(u)=b_{J}+u_{J}$ (for all u)
- $x^{\star}(u)$ satisfies the other inequalities $(i \notin J)$ for sufficiently small u :

$$
a_{i}^{T} x^{\star}(u) \leq b_{i}+u_{i} \quad \Longleftrightarrow \quad a_{i}^{T} A_{J}^{-1} u_{J}-u_{i} \leq b_{i}-a_{i}^{T} x^{\star}
$$

and $b_{i}-a_{i}^{T} x^{\star}>0$

- z^{\star} is dual feasible (for all u)
- $x^{\star}(u)$ and z^{\star} satisfy complementary slackness conditions

Derivative of optimal value function

under the assumptions of the local analysis (page 7-7),

$$
\begin{aligned}
p^{\star}(u) & =c^{T} x^{\star}(u) \\
& =c^{T} x^{\star}+c^{T} A_{J}^{-1} u_{J} \\
& =p^{\star}(0)-z_{J}^{\star} u_{J}
\end{aligned}
$$

for u in a neighborhood of the origin

- optimal value function is affine in u for small u
- $-z_{i}^{\star}$ is derivative of $p^{\star}(u)$ with respect to u_{i} at $u=0$

Outline

- sensitivity analysis
- two-person zero-sum games
- circuit interpretation

Two-person zero-sum game (matrix game)

- player 1 chooses a number in $\{1, \ldots, m\}$ (one of m possible actions)
- player 2 chooses a number in $\{1, \ldots, n\}$ (n possible actions)
- players make their choices independently
- if P1 chooses i and P2 chooses j, then P1 pays $A_{i j}$ to P2 (negative $A_{i j}$ means P2 pays $-A_{i j}$ to P 1)
- the $m \times n$-matrix A is called the payoff matrix

Mixed (randomized) strategies

players choose actions randomly according to some probability distribution

- P1 chooses randomly according to distribution x :

$$
x_{i}=\text { probability that P1 selects action } i
$$

- P2 chooses randomly according to distribution y :

$$
y_{j}=\text { probability that } \mathrm{P} 2 \text { selects action } j
$$

expected payoff (from P1 to P 2), if they use mixed stragies x and y,

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i} y_{j} A_{i j}=x^{T} A y
$$

Optimal mixed strategies

denote by $P_{k}=\left\{p \in \mathbf{R}^{k} \mid p \geq 0, \mathbf{1}^{T} p=1\right\}$ the probability simplex in \mathbf{R}^{k}

- player 1: optimal strategy x^{\star} is solution of the equivalent problems

$$
\begin{array}{lll}
\operatorname{minimize} & \max _{y \in P_{n}} x^{T} A y & \text { minimize } \\
\text { subject to } & x \in P_{m} & \text { subject to } \\
j \in 1, \ldots, n \\
x \in P_{m}
\end{array}
$$

- player 2: optimal strategy y^{\star} is solution of

$$
\begin{array}{lll}
\text { maximize } & \min _{x \in P_{m}} x^{T} A y & \text { maximize } \\
\text { subject to } & y \in P_{n} & \text { subject to } \\
i=1, \ldots, m \\
y \in P_{n}
\end{array}
$$

optimal strategies x^{\star}, y^{\star} can be computed by linear optimization

Exercise: minimax theorem

prove that

$$
\max _{y \in P_{n}} \min _{x \in P_{m}} x^{T} A y=\min _{x \in P_{m}} \max _{y \in P_{n}} x^{T} A y
$$

some consequences

- if x^{\star} and y^{\star} are the optimal mixed strategies, then

$$
\min _{x \in P_{m}} x^{T} A y^{\star}=\max _{y \in P_{n}} x^{\star T} A y
$$

- if x^{\star} and y^{\star} are the optimal mixed strategies, then

$$
x^{T} A y^{\star} \geq x^{\star T} A y^{\star} \geq x^{\star T} A y \quad \forall x \in P_{m}, \forall y \in P_{n}
$$

solution

- optimal strategy x^{\star} is the solution of the LP (with variables x, t)

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & A^{T} x \leq t \mathbf{1} \\
& x \geq 0 \\
& \mathbf{1}^{T} x=1
\end{array}
$$

- optimal strategy y^{\star} is the solution of the LP (with variables y, w)

$$
\begin{array}{ll}
\operatorname{maximize} & w \\
\text { subject to } & A y \geq w \mathbf{1} \\
& y \geq 0 \\
& \mathbf{1}^{T} y=1
\end{array}
$$

- the two LPs can be shown to be duals

Example

$$
A=\left[\begin{array}{rrrr}
4 & 2 & 0 & -3 \\
-2 & -4 & -3 & 3 \\
-2 & -3 & 4 & 1
\end{array}\right]
$$

- note that

$$
\min _{i} \max _{j} A_{i j}=3>-2=\max _{j} \min _{i} A_{i j}
$$

- optimal mixed strategies

$$
x^{\star}=(0.37,0.33,0.3), \quad y^{\star}=(0.4,0,0.13,0.47)
$$

- expected payoff is $x^{\star T} A y^{\star}=0.2$

Outline

- sensitivity analysis
- two-person zero-sum games
- circuit interpretation

Components

voltage source

$v=E$
current source

$i=I$
ideal diode

$v \geq 0, \quad i \leq 0, \quad v i=0$
multiterminal transformer

$$
\widehat{v}=A \widetilde{v}, \quad \widetilde{\imath}=-A^{T} \widehat{\imath}
$$

with $A \in \mathbf{R}^{m \times n}$

Example

circuit equations

- transformer:

$$
\widehat{v}=A v, \quad \widetilde{\imath}=A^{T} i
$$

- diodes and voltage souces:

$$
\widehat{v} \leq b, \quad i \geq 0, \quad i^{T}(b-\widehat{v})=0
$$

- current sources: $\widetilde{\imath}+c=0$
these are the optimality conditions for the pair of primal and dual LPs

minimize	$c^{T} v$	maximize $-b^{T} i$
subject to	$A v \leq b$	subject to $\quad A^{T} i+c=0, \quad i \geq 0$

Variational description

two 'potential functions', content and co-content (in notation of p.7-16)

	content (function of voltages)	co-content (function of currents)
current source	Iv	$\begin{array}{cl} \hline 0 & \text { if } i=I \\ -\infty & \text { otherwise } \end{array}$
voltage source	$\begin{array}{cl} \hline 0 & \text { if } v=E \\ \infty & \text { otherwise } \end{array}$	-Ei
diode	$\begin{array}{ll} 0 & \text { if } v \geq 0 \\ \infty & \text { otherwise } \end{array}$	$\begin{array}{cl} 0 & \text { if } i \leq 0 \\ -\infty & \text { otherwise } \end{array}$
transformer	$\begin{array}{cl} \hline 0 & \text { if } \widehat{v}=A \widetilde{v} \\ \infty & \text { otherwise } \end{array}$	$\begin{array}{cl} 0 & \text { if } \widetilde{i}=-A^{T} \widehat{\imath} \\ -\infty & \text { otherwise } \end{array}$

optimization problems

- primal: voltages minimize total content
- dual: currents maximize total co-content

Example

primal problem

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} v \\
\text { subject to } & A v \leq b \\
& v \geq 0
\end{array}
$$

equivalent circuit

dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & -b^{T} i \\
\text { subject to } & A^{T} i+c \geq 0 \\
& i \geq 0
\end{array}
$$

