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Lecture 7
Duality II

• sensitivity analysis

• two-person zero-sum games

• circuit interpretation
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Sensitivity analysis

purpose: extract from the solution of an LP information about the
sensitivity of the solution with respect to changes in problem data

this lecture:

• sensitivity w.r.t. to changes in the right-hand side of the constraints

• we define p⋆(u) as the optimal value of the modified LP (variables x)

minimize cTx

subject to Ax ≤ b+ u

• we are interested in obtaining information about p⋆(u) from primal,
dual optimal solutions x⋆, z⋆ at u = 0
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Global inequality

dual of modified LP

maximize −(b+ u)Tz
subject to ATz + c = 0

z ≥ 0

global lower bound: if z⋆ is (any) dual optimal solution for u = 0, then

p⋆(u) ≥ −(b+ u)Tz⋆

= p⋆(0)− uTz⋆

• follows from weak duality and feasibility of z⋆

• inequality holds for all u (not necessarily small)
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Example (one varying parameter)

take u = td with d fixed:

minimize cTx

subject to Ax ≤ b+ td

p⋆(td) is optimal value as a function of t t

p⋆(td)

p⋆(0) − tdTz⋆

sensitivity information from lower bound (assuming dTz⋆ > 0):

• if t < 0 the optimal value increases (by a large amount of |t| is large)

• if t > 0 optimal value may increase or decrease

• if t is positive and small, optimal value certainly does not decrease much
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Optimal value function

p⋆(u) = min{cTx | Ax ≤ b+ u}

properties (we assume p⋆(0) is finite)

• p⋆(u) > −∞ everywhere (this follows from the global lower bound)

• the domain {u | p⋆(u) < +∞} is a polyhedron

• p⋆(u) is piecewise-linear on its domain

(proof on next page)
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proof. let P be the dual feasible set, K the recession cone of P :

P = {z | ATz + c = 0, z ≥ 0}, K = {w | ATw = 0, w ≥ 0}

• p⋆(u) = +∞ (modified primal is infeasible) iff there exists a w such that

ATw = 0, w ≥ 0, bTw + uTw < 0

therefore p⋆(u) < ∞ if and only if

bTwk + uTwk ≥ 0 for all extreme rays wk of K

this is a finite set of linear inequalities in u

• if p⋆(u) is finite,

p⋆(u) = max
z∈P

(−bTz − uTz) = max
k=1,...,r

(−bTzk − uTzk)

where z1, . . . , zr are the extreme points of P
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Local sensitivity analysis

let x⋆ be optimal for the unmodified problem, with active constraint set

J = {i | aTi x
⋆ = bi}

assume x⋆ is a nondegenerate extreme point, i.e.,

• an extreme point: AJ has full column rank (rank(AJ) = n)

• nondegenerate: |J | = n (n active constraints)

then, for u in a neighborhood of the origin, x⋆(u) and z⋆ defined by

x⋆(u) = A−1
J (bJ + uJ), z⋆J = −A−T

J c, z⋆i = 0 (for i 6∈ J),

are primal, dual optimal for the modified problem

note: x⋆(u) is affine in u and z⋆ is independent of u
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proof

solution of original LP (u = 0)

• since AJ is square and nonsingular, we can express x⋆ as x⋆ = A−1
J bJ

• complementary slackness determines optimal z⋆ uniquely:

z⋆i = 0 i 6∈ J, AT
J z

⋆
J + c = 0

solution of modified LP (for sufficiently small u)

• x⋆(u) satisfies inequalities indexed by J : AJx
⋆(u) = bJ + uJ (for all u)

• x⋆(u) satisfies the other inequalities (i 6∈ J) for sufficiently small u:

aTi x
⋆(u) ≤ bi + ui ⇐⇒ aTi A

−1
J uJ − ui ≤ bi − aTi x

⋆

and bi − aTi x
⋆ > 0

• z⋆ is dual feasible (for all u)

• x⋆(u) and z⋆ satisfy complementary slackness conditions
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Derivative of optimal value function

under the assumptions of the local analysis (page 7–7),

p⋆(u) = cTx⋆(u)

= cTx⋆ + cTA−1
J uJ

= p⋆(0)− z⋆J
T
uJ

for u in a neighborhood of the origin

• optimal value function is affine in u for small u

• −z⋆i is derivative of p⋆(u) with respect to ui at u = 0
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Two-person zero-sum game (matrix game)

• player 1 chooses a number in {1, . . . ,m} (one of m possible actions)

• player 2 chooses a number in {1, . . . , n} (n possible actions)

• players make their choices independently

• if P1 chooses i and P2 chooses j, then P1 pays Aij to P2

(negative Aij means P2 pays −Aij to P1)

• the m× n-matrix A is called the payoff matrix
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Mixed (randomized) strategies

players choose actions randomly according to some probability distribution

• P1 chooses randomly according to distribution x:

xi = probability that P1 selects action i

• P2 chooses randomly according to distribution y:

yj = probability that P2 selects action j

expected payoff (from P1 to P2), if they use mixed stragies x and y,

m∑

i=1

n∑

j=1

xiyjAij = xTAy
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Optimal mixed strategies

denote by Pk = {p ∈ Rk | p ≥ 0,1Tp = 1} the probability simplex in Rk

• player 1: optimal strategy x⋆ is solution of the equivalent problems

minimize max
y∈Pn

xTAy

subject to x ∈ Pm

minimize max
j=1,...,n

(ATx)j

subject to x ∈ Pm

• player 2: optimal strategy y⋆ is solution of

maximize min
x∈Pm

xTAy

subject to y ∈ Pn

maximize min
i=1,...,m

(Ay)i

subject to y ∈ Pn

optimal strategies x⋆, y⋆ can be computed by linear optimization
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Exercise: minimax theorem

prove that
max
y∈Pn

min
x∈Pm

xTAy = min
x∈Pm

max
y∈Pn

xTAy

some consequences

• if x⋆ and y⋆ are the optimal mixed strategies, then

min
x∈Pm

xTAy⋆ = max
y∈Pn

x⋆TAy

• if x⋆ and y⋆ are the optimal mixed strategies, then

xTAy⋆ ≥ x⋆TAy⋆ ≥ x⋆TAy ∀x ∈ Pm, ∀y ∈ Pn
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solution

• optimal strategy x⋆ is the solution of the LP (with variables x, t)

minimize t

subject to ATx ≤ t1

x ≥ 0
1
Tx = 1

• optimal strategy y⋆ is the solution of the LP (with variables y, w)

maximize w

subject to Ay ≥ w1

y ≥ 0
1
Ty = 1

• the two LPs can be shown to be duals
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Example

A =




4 2 0 −3
−2 −4 −3 3
−2 −3 4 1




• note that
min
i

max
j

Aij = 3 > −2 = max
j

min
i

Aij

• optimal mixed strategies

x⋆ = (0.37, 0.33, 0.3), y⋆ = (0.4, 0, 0.13, 0.47)

• expected payoff is x⋆TAy⋆ = 0.2
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Components

voltage source current source ideal diode

E

i

v I

i

v

i

v

v = E i = I v ≥ 0, i ≤ 0, vi = 0

multiterminal transformer

v̂ = Aṽ, ı̃ = −AT ı̂

with A ∈ Rm×n

ṽ1

ṽn

v̂1

v̂m

ı̃1

ı̃1

ı̃n

ı̃n

ı̂1

ı̂1

ı̂m

ı̂m

A
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Example

b1

bm

v1

vn

v̂1

v̂m

A

i1

im

ı̃1

ı̃n

c1

cn

circuit equations

• transformer:

v̂ = Av, ı̃ = AT i

• diodes and voltage souces:

v̂ ≤ b, i ≥ 0, iT (b− v̂) = 0

• current sources: ı̃+ c = 0

these are the optimality conditions for the pair of primal and dual LPs

minimize cTv

subject to Av ≤ b

maximize −bT i

subject to AT i+ c = 0, i ≥ 0
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Variational description

two ‘potential functions’, content and co-content (in notation of p.7–16)

content co-content
(function of voltages) (function of currents)

current source Iv
0 if i = I

−∞ otherwise

voltage source
0 if v = E

∞ otherwise
−Ei

diode
0 if v ≥ 0
∞ otherwise

0 if i ≤ 0
−∞ otherwise

transformer
0 if v̂ = Aṽ

∞ otherwise
0 if ĩ = −AT ı̂

−∞ otherwise

optimization problems

• primal: voltages minimize total content

• dual: currents maximize total co-content
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Example

primal problem
minimize cTv

subject to Av ≤ b

v ≥ 0

equivalent circuit

b1

bm

v1

vn

v̂1

v̂m

A

i1

im

c1

cn

dual problem
maximize −bT i

subject to AT i+ c ≥ 0
i ≥ 0
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