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Lecture 10
FIR filter design

• linear phase filter design

• magnitude filter design

• equalizer design
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Finite impulse response (FIR) filter

y(t) =

n−1
∑

τ=0

hτu(t− τ)

• u : Z → R is input signal; y : Z → R is output signal

• hi ∈ R are filter coefficients; n is filter order or length

frequency response: a function H : R → C defined as

H(ω) = h0 + h1e
−jω + · · ·+ hn−1e

−j(n−1)ω (with j =
√
−1)

=

n−1
∑

t=0

ht cos tω − j

n−1
∑

t=0

ht sin tω

periodic and conjugate symmetric; we only need to consider ω ∈ [0, π]

design problem: choose hi so that H satisfies/optimizes specifications
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Example: lowpass FIR filter

impulse response (order n = 21)
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frequency response: magnitude |H(ω)| and phase 6 H(ω)
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Linear-phase filters

suppose n = 2N + 1 is odd and impulse response is symmetric about hN :

ht = hn−1−t, t = 0, . . . , n− 1

frequency response

H(ω) = h0 + h1e
−jω + · · ·+ hn−1e

−j(n−1)ω

= e−jNω (2h0 cosNω + 2h1 cos(N−1)ω + · · ·+ hN)

= e−jNωG(ω)

• term e−jNω represents N -sample delay

• G(ω) is real-valued and |H(ω)| = |G(ω)|
• ‘linear phase’: 6 H(ω) is linear except for jumps of ±π
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Lowpass filter specifications

ω

δ1

1/δ1

δ2

ωp ωs π

• maximum passband ripple (±20 log10 δ1 in dB):

1/δ1 ≤ |H(ω)| ≤ δ1 for ω ∈ [0, ωp]

• minimum stopband attenuation (−20 log10 δ2 in dB):

|H(ω)| ≤ δ2 for ω ∈ [ωs, π]
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Linear-phase lowpass filter design

• sample the frequency axis: ωk = kπ/K, k = 0, . . . ,K − 1

• assume without loss of generality that G(0) > 0, so ripple spec. is

1/δ1 ≤ G(ωk) ≤ δ1

maximum stopband attenuation (for given passband ripple δ1)

minimize δ2
subject to 1/δ1 ≤ G(ωk) ≤ δ1 for ωk ∈ [0, ωp]

−δ2 ≤ G(ωk) ≤ δ2 for ωk ∈ [ωs, π]

• a linear program in variables hi, δ2

• known and used since 1960’s

• can add other constraints, e.g., |hi| ≤ α
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Example

• linear-phase filter of order n = 31

• passband [0, 0.12π]; stopband [0.24π, π]

• maximum ripple δ1 = 1.059 (±0.5dB)
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Variations

minimize passband ripple (variables δ1, h)

minimize δ1
subject to 1/δ1 ≤ G(ωk) ≤ δ1 for ωk ∈ [0, ωp]

−δ2 ≤ G(ωk) ≤ δ2 for ωk ∈ [ωs, π]

minimize transition bandwidth (variables ωs, h)

minimize ωs

subject to 1/δ1 ≤ G(ωk) ≤ δ1 for ωk ∈ [0, ωp]
−δ2 ≤ G(ωk) ≤ δ2 for ωk ∈ [ωs, π]

minimize filter order (variables N , h)

minimize N
subject to 1/δ1 ≤ G(ωk) ≤ δ1 for ωk ∈ [0, ωp]

−δ2 ≤ G(ωk) ≤ δ2 for ωk ∈ [ωs, π]

not LPs, but can be solved by bisection/LP feasibility problems
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Outline

• linear phase filter design

• magnitude filter design

• equalizer design



Filter magnitude specifications

magnitude specification: a constraint

L(ω) ≤ |H(ω)| ≤ U(ω) ∀ω

L,U : R → R+ are given and

H(ω) =

n−1
∑

t=0

ht cos tω − j

n−1
∑

t=0

ht sin tω

• arises in many applications, e.g., audio, spectrum shaping

• not equivalent to linear inequalities in hi (linear inequalities can not
express the lower bound on absolute value)

• can change variables and convert to set of linear inequalities
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Autocorrelation coefficients

definition: autocorrelation coefficients of h = (h0, . . . , hn−1) ∈ Rn

rt =

n−1−t
∑

τ=0

hτhτ+t (with hk = 0 for k < 0 or k ≥ n)

rt = r−t and rt = 0 for |t| ≥ n; hence suffices to specify r = (r0, . . . , rn−1)

Fourier transform of autocorrelation coefficients:

R(ω) =
∑

τ

e−jωτrτ = r0 +

n−1
∑

t=1

2rt cosωt = |H(ω)|2

magnitude specifications are linear inequalities in coefficients rt:

L(ω)2 ≤ R(ω) ≤ U(ω)2 for ω ∈ [0, π]
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Spectral factorization

when is r ∈ Rn the vector of autocorrelation coefficients of some h ∈ Rn?

spectral factorization theorem: if and only if R(ω) ≥ 0 for all ω

• condition is an infinite set of linear inequalities in r

• many algorithms for spectral factorization (find h s.t. R(ω) = |H(ω)|2)

consequence: to cast magnitude design problem as an LP,

• use r = (r0, . . . , rn−1) as variable instead of h = (h0, . . . , hn−1)

• add spectral factorization condition as constraint: R(ω) ≥ 0 for all ω

• discretize the frequency axis

• optimize over r and use spectral factorization to recover h
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Magnitude lowpass filter design

maximum stopband attenuation design (with variables r)

minimize γ2
subject to 1/γ1 ≤ R(ω) ≤ γ1 for ω ∈ [0, ωp]

R(ω) ≤ γ2 for ω ∈ [ωs, π]
R(ω) ≥ 0 for ω ∈ [0, π]

(γi corresponds to δ2i in original problem)

discretization: impose constraints at finite set of frequencies ωk

minimize γ2
subject to 1/γ1 ≤ R(ωk) ≤ γ1 for ωk ∈ [0, ωp]

R(ωk) ≤ γ2 for ωk ∈ [ωs, π]
R(ωk) ≥ 0 for ωk ∈ [0, π]

this is a linear program in r, γ2
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Outline

• linear phase filter design

• magnitude filter design
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Equalizer design

h(t)g(t)

(time-domain) equalization

• given g (unequalized impulse response), gdes (desired impulse response)

• design FIR equalizer h so that convolution g̃ = h ∗ g approximates gdes

example

• gdes is pure delay D: gdes(t) =

{

1 t = D
0 t 6= D

• find equalizer h by solving

minimize max
t 6=D

|g̃(t)|
subject to g̃(D) = 1

this can be cast as an LP in the coefficients hi
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Example

unequalized system (10th order FIR)

• impulse response
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time-domain equalization (30th order FIR, D = 10)

minimize max
t 6=10

|g̃(t)|

• equalized system impulse response
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Magnitude equalizer design

H(ω) G(ω)

problem

• given system frequency response G : [0, π] → C

• design FIR equalizer H so that |G(ω)H(ω)| ≈ 1:

minimize max
ω∈[0,π]

∣

∣ |G(ω)H(ω)|2 − 1
∣

∣

LP formulation: use autocorrelation coefficients as variables

minimize α
subject to

∣

∣ |G(ω)|2R(ω)− 1
∣

∣ ≤ α for ω ∈ [0, π]

R(ω) ≥ 0 for ω ∈ [0, π]

after discretizing the frequency axis, we obtain an LP in r and α
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Multi-system magnitude equalization

problem

• we are given M frequency responses Gk : [0, π] → C

• design FIR equalizer H so that |Gk(ω)H(ω)| ≈ constant:

minimize max
k=1,...,M

max
ω∈[0,π]

∣

∣ |Gk(ω)H(ω)|2 − γk
∣

∣

subject to γk ≥ 1, k = 1, . . . ,M

LP formulation: use autocorrelation coefficients as variables

minimize α
subject to

∣

∣ |Gk(ω)|2R(ω)− γk
∣

∣ ≤ α for ω ∈ [0, π], k = 1, . . . ,M

R(ω) ≥ 0 for ω ∈ [0, π]
γk ≥ 1, k = 1, . . . ,M

after discretizing the frequency axis, we obtain an LP in γk, r, α
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Example

• M = 2 systems, equalizer of order n = 25

• unequalized and equalized frequency responses
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