Lecture 16 Self-dual formulations

- self-dual linear programs
- self-dual embedding
- interior-point method for self-dual embedding

Optimality and infeasibility

$$
\begin{array}{llll}
\operatorname{minimize} & c^{T} x & \text { maximize } & -b^{T} z \\
\text { subject to } & A x+s=b & \text { subject to } & A^{T} z+c=0 \\
& s \geq 0 & & z \geq 0
\end{array}
$$

- optimality: x, s, z are optimal if

$$
A x+s=b, \quad A^{T} z+c=0, \quad c^{T} x+b^{T} z=0, \quad s \geq 0, \quad z \geq 0
$$

- primal infeasibility: z certifies primal infeasibility if

$$
A^{T} z=0, \quad z \geq 0, \quad b^{T} z=-1
$$

- dual infeasibility: x certifies dual infeasibility if

$$
A x \leq 0, \quad c^{T} x=-1
$$

Initialization and infeasibility detection

barrier method (lecture 14)

- requires a phase I to find strictly feasible x
- fails if problem is not strictly dual feasible (central path does not exist)
infeasible primal-dual method (lecture 15)
- does not require feasible starting points
- fails if problem is not primal and dual feasible
self-dual formulations (this lecture): embed LP in larger LP such that
- larger LP is primal and dual feasible, with known feasible points
- from solution can extract optimal solutions or certificates of infeasibility

Outline

- self-dual linear programs
- self-dual embedding
- interior-point method for self-dual embedding

Self-dual linear program

primal problem (variables u, v, w)

$$
\begin{array}{ll}
\operatorname{minimize} & f^{T} u+g^{T} v \\
\text { subject to } & {\left[\begin{array}{c}
0 \\
w
\end{array}\right]=\left[\begin{array}{cc}
C & D \\
-D^{T} & E
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
f \\
g
\end{array}\right]} \\
& v \geq 0, \quad w \geq 0
\end{array}
$$

C and E are skew-symmetric: $C=-C^{T}, E=-E^{T}$
dual problem (variables $\tilde{u}, \tilde{v}, \tilde{w}$)

$$
\begin{array}{ll}
\operatorname{maximize} & -f^{T} \tilde{u}-g^{T} \tilde{v} \\
\text { subject to } & {\left[\begin{array}{c}
0 \\
\tilde{w}
\end{array}\right]=\left[\begin{array}{cc}
C & D \\
-D^{T} & E
\end{array}\right]\left[\begin{array}{c}
\tilde{u} \\
\tilde{v}
\end{array}\right]+\left[\begin{array}{c}
f \\
g
\end{array}\right]} \\
& \tilde{v} \geq 0, \quad \tilde{w} \geq 0
\end{array}
$$

derivation of dual:

- eliminate w and write primal problem as

$$
\begin{aligned}
\operatorname{minimize} & f^{T} u+g^{T} v \\
\text { subject to } & {\left[\begin{array}{cc}
-C & -D
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
u \\
v
\end{array}\right]=f } \\
& {\left[\begin{array}{cc}
D^{T} & -E \\
0 & -I
\end{array}\right]\left[\begin{array}{l}
g \\
0
\end{array}\right] }
\end{aligned}
$$

- apply dual from page 6-12 and use skew-symmetry

$$
\begin{aligned}
\operatorname{maximize} & -f^{T} \tilde{u}-g^{T} \tilde{v} \\
\text { subject to } & {\left[\begin{array}{c}
C \\
-D^{T}
\end{array}\right] \tilde{u}+\left[\begin{array}{cc}
D & 0 \\
E & -I
\end{array}\right]\left[\begin{array}{c}
\tilde{v} \\
\tilde{w}
\end{array}\right]+\left[\begin{array}{l}
f \\
g
\end{array}\right]=0 } \\
& \tilde{v} \geq 0, \quad \tilde{w} \geq 0
\end{aligned}
$$

Optimality condition

complementarity: feasible u, v, w are optimal if and only if

$$
v^{T} w=0
$$

proof

- if (u, v, w) is primal optimal, then $(\tilde{u}, \tilde{v}, \tilde{w})=(u, v, w)$ is dual optimal
- from optimality conditions for LPs on page 16-4:

$$
\tilde{w}^{T} v+\tilde{v}^{T} w=0
$$

for any primal optimal (u, v, w) and any dual optimal $(\tilde{u}, \tilde{v}, \tilde{w})$

Strict complementarity

if the self-dual LP is feasible, it has an optimal solution that satisfies

$$
v^{T} w=0, \quad v+w>0
$$

- the LPs on p.16-4 have strictly complementary solutions (ex.72), with

$$
v_{i}+\tilde{w}_{i}>0, \quad w_{i}+\tilde{v}_{i}>0 \quad \text { for all } i
$$

- at the optimum, we also have $v^{T} w=0$ and $\tilde{v}^{T} \tilde{w}=0$ (page 16-6):

$$
v_{i} w_{i}=0, \quad \tilde{v}_{i} \tilde{w}_{i}=0 \quad \text { for all } i
$$

- this leaves only two possible sign patterns for every i

v_{i}	w_{i}	\tilde{v}_{i}	\tilde{w}_{i}
0	+	0	+
+	0	+	0

Outline

- self-dual linear programs
- self-dual embedding
- interior-point method for self-dual embedding

Basic self-dual embedding

minimize 0

$$
\begin{aligned}
\text { subject to } & {\left[\begin{array}{c}
0 \\
s \\
\kappa
\end{array}\right]=\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z \\
\tau
\end{array}\right] } \\
& s \geq 0, \quad \kappa \geq 0, \quad z \geq 0, \quad \tau \geq 0
\end{aligned}
$$

variables s, κ, x, z, τ

- a self-dual LP with a trivial solution (all variables zero)
- all feasible points are optimal and satisfy $z^{T} s+\tau \kappa=0$ (to see this directly, take the inner product of each side with (x, z, τ))
- hence, problem cannot be strictly feasible

Classification of nonzero solution

let s, κ, x, z, τ be a strictly complementary solution:

$$
s^{T} z+\kappa \tau=0, \quad s+z>0, \quad \kappa+\tau>0
$$

we distinguish two cases, depending on the sign of κ and τ

- case $1(\tau>0$ and $\kappa=0)$: define

$$
\hat{s}=s / \tau, \quad \hat{x}=x / \tau, \quad \hat{z}=z / \tau
$$

$\hat{x}, \hat{s}, \hat{z}$ are primal, dual optimal for the original LPs and satisfy

$$
\begin{gathered}
{\left[\begin{array}{l}
0 \\
\hat{s}
\end{array}\right]=\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
\hat{x} \\
\hat{z}
\end{array}\right]+\left[\begin{array}{l}
c \\
b
\end{array}\right]} \\
\hat{s} \geq 0, \quad \hat{z} \geq 0, \quad \hat{s}^{T} \hat{z}=0
\end{gathered}
$$

- case $2(\tau=0, \kappa>0)$: this implies

$$
c^{T} x+b^{T} z<0
$$

so $c^{T} x<0$ or $b^{T} z<0$ or both

- if $b^{T} z<0$, then $\hat{z}=z /\left(-b^{T} z\right)$ is a certificate of primal infeasibility:

$$
A^{T} \hat{z}=0, \quad b^{T} \hat{z}=-1, \quad \hat{z} \geq 0
$$

- if $c^{T} x<0$, then $\hat{x}=x /\left(-c^{T} x\right)$ is a certificate of dual infeasibility:

$$
A \hat{x} \leq 0, \quad c^{T} \hat{x}=-1
$$

note: strict complementarity is only used to ensure $\kappa+\tau>0$

Extended self-dual embedding

minimize $\quad(m+1) \theta$
subject to $\left[\begin{array}{c}0 \\ s \\ \kappa \\ 0\end{array}\right]=\left[\begin{array}{cccc}0 & A^{T} & c & q_{x} \\ -A & 0 & b & q_{z} \\ -c^{T} & -b^{T} & 0 & q_{\tau} \\ -q_{x}^{T} & -q_{z}^{T} & -q_{\tau} & 0\end{array}\right]\left[\begin{array}{c}x \\ z \\ \tau \\ \theta\end{array}\right]+\left[\begin{array}{c}0 \\ 0 \\ 0 \\ m+1\end{array}\right]$

$$
s \geq 0, \quad \kappa \geq 0, \quad z \geq 0, \quad \tau \geq 0
$$

- variables $s, \kappa, x, z, \tau, \theta$
- q_{x}, q_{z}, q_{τ} are chosen so that the point

$$
(s, \kappa, x, z, \tau, \theta)=\left(s_{0}, 1, x_{0}, z_{0}, 1, \frac{z_{0}^{T} s_{0}+1}{m+1}\right)
$$

is feasible, for some given $s_{0}>0, x_{0}, z_{0}>0$

Properties of extended self-dual embedding

- problem is strictly feasible by construction
- if $s, \kappa, x, z, \tau, \theta$ satisfy the equality constraint, then

$$
\theta=\frac{s^{T} z+\kappa \tau}{m+1}
$$

(take inner product with (x, z, τ, θ) of each side of the equality)

- at optimum, $s^{T} z+\kappa \tau=0$ (from optimality conditions on page 16-6)
- at optimum, $\theta=0$ and problem reduces to basic embedding (p.16-8)
- classification of p.16-9 also applies to solutions of extended embedding

Outline

- self-dual linear programs
- self-dual embedding
- interior-point method for self-dual embedding

Central path for extended embedding

$$
\begin{gathered}
{\left[\begin{array}{c}
0 \\
s \\
\kappa \\
0
\end{array}\right]=\left[\begin{array}{cccc}
0 & A^{T} & c & q_{x} \\
-A & 0 & b & q_{z} \\
-c^{T} & -b^{T} & 0 & q_{\tau} \\
-q_{x}^{T} & -q_{z}^{T} & -q_{\tau} & 0
\end{array}\right]\left[\begin{array}{c}
x \\
z \\
\tau \\
\theta
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
m+1
\end{array}\right]} \\
(s, \kappa, z, \tau) \geq 0, \quad s \circ z=\mu \mathbf{1}, \quad \kappa \tau=\mu
\end{gathered}
$$

- inner product with (x, z, τ, θ) shows that on the central path

$$
\theta=\frac{z^{T} s+\kappa \tau}{m+1}=\mu
$$

- by construction $\left(q_{x}, q_{z}, q_{\tau}\right.$ on page $\left.16-11\right)$, if $s_{0} \circ z_{0}=1$, the point

$$
(s, \kappa, x, z, \tau, \theta)=\left(s_{0}, 1, x_{0}, z_{0}, 1,\left(z_{0}^{T} s_{0}+1\right) /(m+1)\right)
$$

is on the central path with $\mu=\left(s_{0}^{T} z_{0}+1\right) /(m+1)=1$

Simplified central path equations

$$
\begin{aligned}
& {\left[\begin{array}{c}
0 \\
s \\
\kappa
\end{array}\right]=\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z \\
\tau
\end{array}\right]+\mu\left[\begin{array}{l}
q_{x} \\
q_{z} \\
q_{\tau}
\end{array}\right]} \\
& (s, \kappa, z, \tau) \geq 0, \quad s \circ z=\mu \mathbf{1}, \quad \kappa \tau=\mu
\end{aligned}
$$

- we eliminated variable θ because $\theta=\mu$ on the central path
- we removed the 4th equality, because it is implied by the first three (this follows by taking inner product with (x, z, τ))
- can be viewed as a 'shifted central path' for basic embedding (p.16-8)

Basic update

let $\hat{s}, \hat{\kappa}, \hat{x}, \hat{z}, \hat{\tau}$ be the current iterates (with $\hat{s}>0, \hat{\kappa}>0, \hat{z}>0, \hat{\tau}>0$)

- determine $\Delta s, \Delta \kappa, \Delta x, \Delta s, \Delta \tau$ by linearizing central path equations

$$
\begin{gathered}
{\left[\begin{array}{c}
0 \\
s \\
\kappa
\end{array}\right]=\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z \\
\tau
\end{array}\right]+\sigma \hat{\mu}\left[\begin{array}{l}
q_{x} \\
q_{z} \\
q_{\tau}
\end{array}\right]} \\
\\
s \circ z=\sigma \hat{\mu} \mathbf{1}, \quad \kappa \tau=\sigma \hat{\mu}
\end{gathered}
$$

where $\hat{\mu}=\left(\hat{s}^{T} \hat{z}+\hat{\kappa} \hat{\tau}\right) /(m+1)$ and $\sigma \in[0,1]$

- make an update

$$
(\hat{s}, \hat{\kappa}, \hat{x}, \hat{z}, \hat{\tau}):=(\hat{s}, \hat{\kappa}, \hat{x}, \hat{z}, \hat{\tau})+\alpha(\Delta s, \Delta \kappa, \Delta x, \Delta z, \Delta \tau)
$$

that preserves positivity of $\hat{s}, \hat{\kappa}, \hat{z}, \hat{\tau}$

Linearized central path equations

a set of $2 m+n+2$ equations in variables $\Delta s, \Delta \kappa, \Delta x, \Delta z, \Delta \tau$:

$$
\begin{gather*}
{\left[\begin{array}{c}
0 \\
\Delta s \\
\Delta \kappa
\end{array}\right]-\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta z \\
\Delta \tau
\end{array}\right]=\sigma \hat{\mu}\left[\begin{array}{l}
q_{x} \\
q_{z} \\
q_{\tau}
\end{array}\right]-\left[\begin{array}{l}
r_{x} \\
r_{z} \\
r_{\tau}
\end{array}\right]} \tag{1}\\
\hat{s} \circ \Delta z+\hat{z} \circ \Delta s=\sigma \hat{\mu} \mathbf{1}-\hat{s} \circ \hat{z} \tag{2}\\
\hat{\kappa} \Delta \tau+\hat{\tau} \Delta \kappa=\sigma \hat{\mu}-\hat{\kappa} \hat{\tau} \tag{3}
\end{gather*}
$$

where

$$
r=\left[\begin{array}{l}
0 \\
\hat{s} \\
\hat{\kappa}
\end{array}\right]-\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\hat{x} \\
\hat{z} \\
\hat{\tau}
\end{array}\right]
$$

note: $r=\hat{\mu} q$ for $(\hat{s}, \hat{\kappa}, \hat{x}, \hat{z}, \hat{\tau})=\left(s_{0}, 1, x_{0}, z_{0}, 1\right)$ (by definition of q)

Properties of search direction

- from equations (2) and (3) and definition of $\hat{\mu}$:

$$
\frac{\hat{s}^{T} \Delta z+\hat{z}^{T} \Delta s+\hat{\kappa} \Delta \tau+\hat{\tau} \Delta \kappa}{m+1}=-(1-\sigma) \hat{\mu}
$$

- if $r=\hat{\mu} q$, primal and dual steps are orthogonal

$$
\Delta s^{T} \Delta z+\Delta \kappa \Delta \tau=0
$$

(proof on next page)

- hence, gap depends linearly on stepsize

$$
\frac{(\hat{s}+\alpha \Delta s)^{T}(\hat{z}+\alpha \Delta z)+(\hat{\kappa}+\alpha \Delta \kappa)(\hat{\tau}+\alpha \Delta \tau)}{m+1}=(1-\alpha(1-\sigma)) \hat{\mu}
$$

proof of orthogonality

- if $r=\hat{\mu} q$, we can combine (1) and the definition of r to write

$$
\left[\begin{array}{c}
0 \\
\Delta s+(1-\sigma) \hat{s} \\
\Delta \kappa+(1-\sigma) \hat{\kappa}
\end{array}\right]=\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x+(1-\sigma) \hat{x} \\
\Delta z+(1-\sigma) \hat{z} \\
\Delta \tau+(1-\sigma) \hat{\tau}
\end{array}\right]
$$

- the matrix on the right-hand side is skew-symmetric:

$$
\begin{aligned}
0= & {\left[\begin{array}{c}
\Delta x+(1-\sigma) \hat{x} \\
\Delta z+(1-\sigma) \hat{z} \\
\Delta \tau+(1-\sigma) \hat{\tau}
\end{array}\right]^{T}\left[\begin{array}{c}
0 \\
\Delta s+(1-\sigma) \hat{s} \\
\Delta \kappa+(1-\sigma) \hat{\kappa}
\end{array}\right] } \\
= & \Delta s^{T} \Delta z+\Delta \kappa \Delta \tau+(1-\sigma)\left(\hat{s}^{T} \Delta z+\hat{z}^{T} \Delta s+\hat{\kappa} \Delta \tau+\hat{\tau} \Delta \kappa\right) \\
& +(1-\sigma)^{2}\left(\hat{s}^{T} \hat{z}+\hat{\kappa} \hat{\tau}\right) \\
= & \Delta s^{T} \Delta z+\Delta \kappa \Delta \tau
\end{aligned}
$$

last step follows from first property on page 16-17 and definition of $\hat{\mu}$

Gap and residual after update

notation: gap and residual as a function of steplength α

$$
\begin{aligned}
\hat{\mu}(\alpha) & =\frac{(\hat{s}+\alpha \Delta s)^{T}(\hat{z}+\alpha \Delta z)+(\hat{\kappa}+\alpha \Delta \kappa)(\hat{\tau}+\alpha \Delta \tau)}{m+1} \\
r(\alpha) & =\left[\begin{array}{c}
0 \\
\hat{s}+\alpha \Delta s \\
\hat{\kappa}+\alpha \Delta \kappa
\end{array}\right]-\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\hat{x}+\alpha \Delta x \\
\hat{z}+\alpha \Delta z \\
\hat{\tau}+\alpha \Delta \tau
\end{array}\right]
\end{aligned}
$$

properties: if $r=\hat{\mu} q$, then residual and gap decrease at the same rate

$$
\hat{\mu}(\alpha)=(1-\alpha(1-\sigma)) \hat{\mu}, \quad r(\alpha)=\hat{\mu}(\alpha) q
$$

- first identity was already noted on page 16-17
- 2nd identity follows from definition of r and search directions (p.16-16)
- hence, update preserves relation $r=\hat{\mu} q$

Path-following algorithm

choose starting points $\hat{s}, \hat{x}, \hat{z}$, with $\hat{s}>0, \hat{z}>0$; set $\hat{\kappa}:=1, \hat{\tau}:=1$

1. compute residuals and gap

$$
\begin{aligned}
r & =\left[\begin{array}{c}
0 \\
\hat{s} \\
\hat{\kappa}
\end{array}\right]-\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\hat{x} \\
\hat{z} \\
\hat{\tau}
\end{array}\right] \\
\hat{\mu} & =\frac{\hat{s}^{T} \hat{z}+\hat{\kappa} \hat{\tau}}{m+1}
\end{aligned}
$$

2. evaluate stopping criteria: terminate if

- $\hat{x} / \hat{\tau}$ and $\hat{z} / \hat{\tau}$ are approximately optimal
- or \hat{z} is an approximate certificate of primal infeasibility
- or \hat{x} is an approximate certificate of dual infeasibility

3. compute affine scaling direction: solve the linear equation

$$
\begin{aligned}
{\left[\begin{array}{c}
0 \\
\Delta s_{\mathrm{a}} \\
\Delta \kappa_{\mathrm{a}}
\end{array}\right]-\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x_{\mathrm{a}} \\
\Delta z_{\mathrm{a}} \\
\Delta \tau_{\mathrm{a}}
\end{array}\right] } & =-r \\
\hat{s} \circ \Delta z_{\mathrm{a}}+\hat{z} \circ \Delta s_{\mathrm{a}} & =-\hat{s} \circ \hat{z} \\
\hat{\kappa} \Delta \tau_{\mathrm{a}}+\hat{\tau} \Delta \kappa_{\mathrm{a}} & =-\hat{\kappa} \hat{\tau}
\end{aligned}
$$

4. select barrier parameter: find

$$
\bar{\alpha}=\max \left\{\alpha \in[0,1] \mid(\hat{s}, \hat{\kappa}, \hat{z}, \hat{\tau})+\alpha\left(\Delta s_{\mathrm{a}}, \Delta \kappa_{\mathrm{a}}, \Delta z_{\mathrm{a}}, \Delta \tau_{\mathrm{a}}\right) \geq 0\right\}
$$

and take

$$
\sigma:=(1-\bar{\alpha})^{\delta}
$$

δ is an algorithm parameter (a typical value is $\delta=3$)
5. compute search direction: solve the linear equation

$$
\begin{aligned}
{\left[\begin{array}{c}
0 \\
\Delta s \\
\Delta \kappa
\end{array}\right]-\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta z \\
\Delta \tau
\end{array}\right] } & =-(1-\sigma) r \\
\hat{s} \circ \Delta z+\hat{z} \circ \Delta s & =\sigma \hat{\mu} \mathbf{1}-\hat{s} \circ \hat{z} \\
\hat{\kappa} \Delta \tau+\hat{\tau} \Delta \kappa & =\sigma \hat{\mu}-\hat{\kappa} \hat{\tau}
\end{aligned}
$$

6. update iterates: find maximum step to the boundary

$$
\bar{\alpha}=\max \{\alpha \in[0,1] \mid(\hat{s}, \hat{\kappa}, \hat{z}, \hat{\tau})+\alpha(\Delta s, \Delta \kappa, \Delta z, \Delta \tau) \geq 0\}
$$

and make an update with stepsize $\alpha=\min \{1,0.99 \bar{\alpha}\}$:

$$
(\hat{s}, \hat{\kappa}, \hat{x}, \hat{z}, \hat{\tau}):=(\hat{s}, \hat{\kappa}, \hat{x}, \hat{z}, \hat{\tau})+\alpha(\Delta s, \Delta \kappa, \Delta x, \Delta z, \Delta \tau)
$$

return to step 1

Discussion

- the vector q is not used, but defined implicitly via $r=\hat{\mu} q$
- step 3: the linearized central path equation (page 16-16) with $\sigma=0$
- step 4: same heuristic as on p.15-9, but simplified using p.16-17

$$
\begin{aligned}
\sigma & =\left(\frac{\left(\hat{s}+\bar{\alpha} \Delta s_{\mathrm{a}}\right)^{T}\left(\hat{z}+\bar{\alpha} \Delta z_{\mathrm{a}}\right)+\left(\hat{\kappa}+\bar{\alpha} \Delta \kappa_{\mathrm{a}}\right)\left(\hat{\tau}+\bar{\alpha} \Delta \tau_{\mathrm{a}}\right)}{\hat{s}^{T} \hat{z}+\hat{\kappa} \hat{\tau}}\right)^{\delta} \\
& =\left(\frac{(1-\bar{\alpha}) \hat{\mu}}{\hat{\mu}}\right)^{\delta}
\end{aligned}
$$

- step 5: the linearized central path equation (page $16-16$), with $r=\hat{\mu} q$

Mehrotra correction

replace equation in step 5 with

$$
\begin{aligned}
& {\left[\begin{array}{c}
0 \\
\Delta s \\
\Delta \kappa
\end{array}\right]-\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta z \\
\Delta \tau
\end{array}\right]=-(1-\sigma) r} \\
& \hat{s} \circ \Delta z+\hat{z} \circ \Delta s
\end{aligned}=\sigma \hat{\mu} 1-\hat{s} \circ \hat{z}-\Delta s_{\mathrm{a}} \circ \Delta z_{\mathrm{a}} .
$$

- motivation for extra terms is the same as in lecture 15 (page 15-13)
- the important identity

$$
\frac{\hat{s}^{T} \Delta z+\hat{z}^{T} \Delta s+\hat{\kappa} \Delta \tau+\hat{\tau} \Delta \kappa}{m+1}=-(1-\sigma) \hat{\mu}
$$

(see page 16-17) still holds because $\Delta s_{\mathrm{a}}^{T} \Delta z_{\mathrm{a}}+\Delta \kappa_{\mathrm{a}} \Delta \tau_{\mathrm{a}}=0$

Linear algebra complexity

- essentially the same as for the method on page 15-8
- eliminating $\Delta \tau, \Delta \kappa$ in steps 3 and 5 requires solution of an extra system

$$
\left[\begin{array}{cc}
0 & A^{T} \\
A & -S Z^{-1}
\end{array}\right]\left[\begin{array}{c}
\Delta \tilde{x} \\
\Delta \tilde{z}
\end{array}\right]=\left[\begin{array}{l}
c \\
b
\end{array}\right]
$$

with $S=\operatorname{diag}(\hat{s}), Z=\operatorname{diag}(\hat{z})$

- this increases the number of linear equations solved per iteration to 3 (from 2 equations in the method on page 15-8)

