
L. Vandenberghe EE236A (Fall 2013-14)

Lecture 16

Self-dual formulations

• self-dual linear programs

• self-dual embedding

• interior-point method for self-dual embedding
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Optimality and infeasibility

minimize cTx
subject to Ax+ s = b

s ≥ 0

maximize −bTz
subject to ATz + c = 0

z ≥ 0

• optimality: x, s, z are optimal if

Ax+ s = b, ATz + c = 0, cTx+ bTz = 0, s ≥ 0, z ≥ 0

• primal infeasibility: z certifies primal infeasibility if

ATz = 0, z ≥ 0, bTz = −1

• dual infeasibility: x certifies dual infeasibility if

Ax ≤ 0, cTx = −1
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Initialization and infeasibility detection

barrier method (lecture 14)

• requires a phase I to find strictly feasible x

• fails if problem is not strictly dual feasible (central path does not exist)

infeasible primal-dual method (lecture 15)

• does not require feasible starting points

• fails if problem is not primal and dual feasible

self-dual formulations (this lecture): embed LP in larger LP such that

• larger LP is primal and dual feasible, with known feasible points

• from solution can extract optimal solutions or certificates of infeasibility
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Outline

• self-dual linear programs

• self-dual embedding

• interior-point method for self-dual embedding



Self-dual linear program

primal problem (variables u, v, w)

minimize fTu+ gTv

subject to

[

0
w

]

=

[

C D
−DT E

] [

u
v

]

+

[

f
g

]

v ≥ 0, w ≥ 0

C and E are skew-symmetric: C = −CT , E = −ET

dual problem (variables ũ, ṽ, w̃)

maximize −fT ũ− gT ṽ

subject to

[

0
w̃

]

=

[

C D
−DT E

] [

ũ
ṽ

]

+

[

f
g

]

ṽ ≥ 0, w̃ ≥ 0
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derivation of dual:

• eliminate w and write primal problem as

minimize fTu+ gTv

subject to
[

−C −D
]

[

u
v

]

= f
[

DT −E
0 −I

] [

u
v

]

≤

[

g
0

]

• apply dual from page 6–12 and use skew-symmetry

maximize −fT ũ− gT ṽ

subject to

[

C
−DT

]

ũ+

[

D 0
E −I

] [

ṽ
w̃

]

+

[

f
g

]

= 0

ṽ ≥ 0, w̃ ≥ 0
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Optimality condition

complementarity: feasible u, v, w are optimal if and only if

vTw = 0

proof

• if (u, v, w) is primal optimal, then (ũ, ṽ, w̃) = (u, v, w) is dual optimal

• from optimality conditions for LPs on page 16–4:

w̃Tv + ṽTw = 0

for any primal optimal (u, v, w) and any dual optimal (ũ, ṽ, w̃)
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Strict complementarity

if the self-dual LP is feasible, it has an optimal solution that satisfies

vTw = 0, v + w > 0

• the LPs on p.16–4 have strictly complementary solutions (ex.72), with

vi + w̃i > 0, wi + ṽi > 0 for all i

• at the optimum, we also have vTw = 0 and ṽT w̃ = 0 (page 16–6):

viwi = 0, ṽiw̃i = 0 for all i

• this leaves only two possible sign patterns for every i

vi wi ṽi w̃i

0 + 0 +
+ 0 + 0
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Outline

• self-dual linear programs

• self-dual embedding

• interior-point method for self-dual embedding



Basic self-dual embedding

minimize 0

subject to





0
s
κ



 =





0 AT c
−A 0 b
−cT −bT 0









x
z
τ





s ≥ 0, κ ≥ 0, z ≥ 0, τ ≥ 0

variables s, κ, x, z, τ

• a self-dual LP with a trivial solution (all variables zero)

• all feasible points are optimal and satisfy zTs+ τκ = 0

(to see this directly, take the inner product of each side with (x, z, τ))

• hence, problem cannot be strictly feasible
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Classification of nonzero solution

let s, κ, x, z, τ be a strictly complementary solution:

sTz + κτ = 0, s+ z > 0, κ+ τ > 0

we distinguish two cases, depending on the sign of κ and τ

• case 1 (τ > 0 and κ = 0): define

ŝ = s/τ, x̂ = x/τ, ẑ = z/τ

x̂, ŝ, ẑ are primal, dual optimal for the original LPs and satisfy

[

0
ŝ

]

=

[

0 AT

−A 0

] [

x̂
ẑ

]

+

[

c
b

]

ŝ ≥ 0, ẑ ≥ 0, ŝT ẑ = 0
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• case 2 (τ = 0, κ > 0): this implies

cTx+ bTz < 0

so cTx < 0 or bTz < 0 or both

– if bTz < 0, then ẑ = z/(−bTz) is a certificate of primal infeasibility:

AT ẑ = 0, bT ẑ = −1, ẑ ≥ 0

– if cTx < 0, then x̂ = x/(−cTx) is a certificate of dual infeasibility:

Ax̂ ≤ 0, cT x̂ = −1

note: strict complementarity is only used to ensure κ+ τ > 0
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Extended self-dual embedding

minimize (m+ 1)θ

subject to









0
s
κ
0









=









0 AT c qx
−A 0 b qz
−cT −bT 0 qτ
−qTx −qTz −qτ 0

















x
z
τ
θ









+









0
0
0

m+ 1









s ≥ 0, κ ≥ 0, z ≥ 0, τ ≥ 0

• variables s, κ, x, z, τ , θ

• qx, qz, qτ are chosen so that the point

(s, κ, x, z, τ, θ) = (s0, 1, x0, z0, 1,
zT
0
s0 + 1

m+ 1
)

is feasible, for some given s0 > 0, x0, z0 > 0
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Properties of extended self-dual embedding

• problem is strictly feasible by construction

• if s, κ, x, z, τ, θ satisfy the equality constraint, then

θ =
sTz + κτ

m+ 1

(take inner product with (x, z, τ, θ) of each side of the equality)

• at optimum, sTz + κτ = 0 (from optimality conditions on page 16–6)

• at optimum, θ = 0 and problem reduces to basic embedding (p.16–8)

• classification of p.16–9 also applies to solutions of extended embedding
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Outline

• self-dual linear programs

• self-dual embedding

• interior-point method for self-dual embedding



Central path for extended embedding









0
s
κ
0









=









0 AT c qx
−A 0 b qz
−cT −bT 0 qτ
−qTx −qTz −qτ 0

















x
z
τ
θ









+









0
0
0

m+ 1









(s, κ, z, τ) ≥ 0, s ◦ z = µ1, κτ = µ

• inner product with (x, z, τ, θ) shows that on the central path

θ =
zTs+ κτ

m+ 1
= µ

• by construction (qx, qz, qτ on page 16–11), if s0 ◦ z0 = 1, the point

(s, κ, x, z, τ, θ) = (s0, 1, x0, z0, 1, (z
T

0
s0 + 1)/(m+ 1))

is on the central path with µ = (sT
0
z0 + 1)/(m+ 1) = 1
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Simplified central path equations





0
s
κ



 =





0 AT c
−A 0 b
−cT −bT 0









x
z
τ



+ µ





qx
qz
qτ





(s, κ, z, τ) ≥ 0, s ◦ z = µ1, κτ = µ

• we eliminated variable θ because θ = µ on the central path

• we removed the 4th equality, because it is implied by the first three

(this follows by taking inner product with (x, z, τ))

• can be viewed as a ‘shifted central path’ for basic embedding (p.16–8)
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Basic update

let ŝ, κ̂, x̂, ẑ, τ̂ be the current iterates (with ŝ > 0, κ̂ > 0, ẑ > 0, τ̂ > 0)

• determine ∆s, ∆κ, ∆x, ∆s, ∆τ by linearizing central path equations





0
s
κ



 =





0 AT c
−A 0 b
−cT −bT 0









x
z
τ



+ σµ̂





qx
qz
qτ





s ◦ z = σµ̂1, κτ = σµ̂

where µ̂ = (ŝT ẑ + κ̂τ̂)/(m+ 1) and σ ∈ [0, 1]

• make an update

(ŝ, κ̂, x̂, ẑ, τ̂) := (ŝ, κ̂, x̂, ẑ, τ̂) + α (∆s,∆κ,∆x,∆z,∆τ)

that preserves positivity of ŝ, κ̂, ẑ, τ̂
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Linearized central path equations

a set of 2m+ n+ 2 equations in variables ∆s, ∆κ, ∆x, ∆z, ∆τ :





0
∆s
∆κ



−





0 AT c
−A 0 b
−cT −bT 0









∆x
∆z
∆τ



 = σµ̂





qx
qz
qτ



−





rx
rz
rτ



 (1)

ŝ ◦∆z + ẑ ◦∆s = σµ̂1− ŝ ◦ ẑ (2)

κ̂∆τ + τ̂∆κ = σµ̂− κ̂τ̂ (3)

where

r =





0
ŝ
κ̂



−





0 AT c
−A 0 b
−cT −bT 0









x̂
ẑ
τ̂





note: r = µ̂q for (ŝ, κ̂, x̂, ẑ, τ̂) = (s0, 1, x0, z0, 1) (by definition of q)
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Properties of search direction

• from equations (2) and (3) and definition of µ̂:

ŝT∆z + ẑT∆s+ κ̂∆τ + τ̂∆κ

m+ 1
= −(1− σ)µ̂

• if r = µ̂q, primal and dual steps are orthogonal

∆sT∆z +∆κ∆τ = 0

(proof on next page)

• hence, gap depends linearly on stepsize

(ŝ+ α∆s)T (ẑ + α∆z) + (κ̂+ α∆κ)(τ̂ + α∆τ)

m+ 1
= (1− α(1− σ))µ̂
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proof of orthogonality

• if r = µ̂q, we can combine (1) and the definition of r to write





0
∆s+ (1− σ)ŝ
∆κ+ (1− σ)κ̂



 =





0 AT c
−A 0 b
−cT −bT 0









∆x+ (1− σ)x̂
∆z + (1− σ)ẑ
∆τ + (1− σ)τ̂





• the matrix on the right-hand side is skew-symmetric:

0 =





∆x+ (1− σ)x̂
∆z + (1− σ)ẑ
∆τ + (1− σ)τ̂





T 



0
∆s+ (1− σ)ŝ
∆κ+ (1− σ)κ̂





= ∆sT∆z +∆κ∆τ + (1− σ)(ŝT∆z + ẑT∆s+ κ̂∆τ + τ̂∆κ)

+ (1− σ)2(ŝT ẑ + κ̂τ̂)

= ∆sT∆z +∆κ∆τ

last step follows from first property on page 16–17 and definition of µ̂
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Gap and residual after update

notation: gap and residual as a function of steplength α

µ̂(α) =
(ŝ+ α∆s)T (ẑ + α∆z) + (κ̂+ α∆κ)(τ̂ + α∆τ)

m+ 1

r(α) =





0
ŝ+ α∆s
κ̂+ α∆κ



−





0 AT c
−A 0 b
−cT −bT 0









x̂+ α∆x
ẑ + α∆z
τ̂ + α∆τ





properties: if r = µ̂q, then residual and gap decrease at the same rate

µ̂(α) = (1− α(1− σ))µ̂, r(α) = µ̂(α)q

• first identity was already noted on page 16–17

• 2nd identity follows from definition of r and search directions (p.16–16)

• hence, update preserves relation r = µ̂q
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Path-following algorithm

choose starting points ŝ, x̂, ẑ, with ŝ > 0, ẑ > 0; set κ̂ := 1, τ̂ := 1

1. compute residuals and gap

r =





0
ŝ
κ̂



−





0 AT c
−A 0 b
−cT −bT 0









x̂
ẑ
τ̂





µ̂ =
ŝT ẑ + κ̂τ̂

m+ 1

2. evaluate stopping criteria: terminate if

• x̂/τ̂ and ẑ/τ̂ are approximately optimal
• or ẑ is an approximate certificate of primal infeasibility
• or x̂ is an approximate certificate of dual infeasibility
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3. compute affine scaling direction: solve the linear equation





0
∆sa
∆κa



−





0 AT c
−A 0 b
−cT −bT 0









∆xa

∆za
∆τa



 = −r

ŝ ◦∆za + ẑ ◦∆sa = −ŝ ◦ ẑ

κ̂∆τa + τ̂∆κa = −κ̂τ̂

4. select barrier parameter: find

ᾱ = max {α ∈ [0, 1] | (ŝ, κ̂, ẑ, τ̂) + α(∆sa,∆κa,∆za,∆τa) ≥ 0}

and take
σ := (1− ᾱ)δ

δ is an algorithm parameter (a typical value is δ = 3)
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5. compute search direction: solve the linear equation





0
∆s
∆κ



−





0 AT c
−A 0 b
−cT −bT 0









∆x
∆z
∆τ



 = −(1− σ)r

ŝ ◦∆z + ẑ ◦∆s = σµ̂1− ŝ ◦ ẑ

κ̂∆τ + τ̂∆κ = σµ̂− κ̂τ̂

6. update iterates: find maximum step to the boundary

ᾱ = max {α ∈ [0, 1] | (ŝ, κ̂, ẑ, τ̂) + α(∆s,∆κ,∆z,∆τ) ≥ 0}

and make an update with stepsize α = min{1, 0.99ᾱ}:

(ŝ, κ̂, x̂, ẑ, τ̂) := (ŝ, κ̂, x̂, ẑ, τ̂) + α (∆s,∆κ,∆x,∆z,∆τ)

return to step 1
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Discussion

• the vector q is not used, but defined implicitly via r = µ̂q

• step 3: the linearized central path equation (page 16–16) with σ = 0

• step 4: same heuristic as on p.15–9, but simplified using p.16–17

σ =

(

(ŝ+ ᾱ∆sa)
T (ẑ + ᾱ∆za) + (κ̂+ ᾱ∆κa)(τ̂ + ᾱ∆τa)

ŝT ẑ + κ̂τ̂

)δ

=

(

(1− ᾱ)µ̂

µ̂

)δ

• step 5: the linearized central path equation (page 16–16), with r = µ̂q
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Mehrotra correction

replace equation in step 5 with





0
∆s
∆κ



−





0 AT c
−A 0 b
−cT −bT 0









∆x
∆z
∆τ



 = −(1− σ)r

ŝ ◦∆z + ẑ ◦∆s = σµ̂1− ŝ ◦ ẑ −∆sa ◦∆za

κ̂∆τ + τ̂∆κ = σµ̂− κ̂τ̂ −∆κa∆τa

• motivation for extra terms is the same as in lecture 15 (page 15–13)

• the important identity

ŝT∆z + ẑT∆s+ κ̂∆τ + τ̂∆κ

m+ 1
= −(1− σ)µ̂

(see page 16–17) still holds because ∆sT
a
∆za +∆κa∆τa = 0
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Linear algebra complexity

• essentially the same as for the method on page 15–8

• eliminating ∆τ , ∆κ in steps 3 and 5 requires solution of an extra system

[

0 AT

A −SZ−1

] [

∆x̃
∆z̃

]

=

[

c
b

]

with S = diag(ŝ), Z = diag(ẑ)

• this increases the number of linear equations solved per iteration to 3
(from 2 equations in the method on page 15–8)
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