Lecture 18 Integer linear programming

- a few basic facts
- branch-and-bound

Definitions

integer linear program (ILP)

mixed integer linear program: only some of the variables are integer **0-1 (Boolean) linear program:** variables take values 0 or 1

Example: facility location problem

- n potential facility locations, m clients
- c_i : cost of opening a facility at location i
- d_{ij} : cost of serving client *i* from location *j*

Boolean LP formulation

minimize
$$\sum_{\substack{j=1\\n}}^{n} c_j y_j + \sum_{i=1}^{m} \sum_{\substack{j=1\\j=1}}^{n} d_{ij} x_{ij}$$
subject to
$$\sum_{\substack{j=1\\j=1}}^{n} x_{ij} = 1, \quad i = 1, \dots, m$$
$$x_{ij} \le y_j, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$
$$x_{ij}, y_j \in \{0, 1\}$$

variables y_j , x_{ij} :

$$y_j = 1$$
 location j is selected $x_{ij} = 1$ location j serves client i
 $y_j = 0$ otherwise $x_{ij} = 0$ otherwise

Linear programming relaxation

relaxation: remove the constraints $x \in \mathbf{Z}^n$

- provides a lower bound on the optimal value of the integer LP
- if solution of relaxation is integer, then it solves the integer LP

equivalent ILP formulations can have different LP relaxations

Branch-and-bound algorithm

 $\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & x \in \mathcal{P} \end{array}$

where \mathcal{P} is a finite set

general idea

• recursively partition \mathcal{P} in smaller sets \mathcal{P}_i and solve subproblems

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & x \in \mathcal{P}_i \end{array}$

• use LP relaxations to discard subproblems that don't lead to a solution

Example

minimize $-2x_1 - 3x_2$ subject to $(x_1, x_2) \in \mathcal{P}$

where

tree of subproblems and results of LP relaxations

conclusions from relaxed subproblems

- P_2 : minimize $c^T x$ subject to $x \in \mathcal{P}$, $x_1 \ge 3$ optimal value of subproblem is greater than or equal to -10.00
- P_3 : minimize $c^T x$ subject to $x \in \mathcal{P}$, $x_1 \leq 2$, $x_2 \leq 2$ solution of subproblem is x = (2, 2)
- P_6 : minimize $c^T x$, subject to $x \in \mathcal{P}$, $x_1 \leq 3$, $x_2 \geq 2$ subproblem is infeasible

after solving the relaxations for subproblems

$$P_0, \quad P_1, \quad P_2, \quad P_3, \quad P_4$$

we can conclude that (2,2) is the optimal solution of the integer LP