Lecture 18
 Integer linear programming

- a few basic facts
- branch-and-bound

Definitions

integer linear program (ILP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \leq b \\
& x \in \mathbf{Z}^{n}
\end{array}
$$

mixed integer linear program: only some of the variables are integer
0-1 (Boolean) linear program: variables take values 0 or 1

Example: facility location problem

- n potential facility locations, m clients
- c_{i} : cost of opening a facility at location i
- $d_{i j}$: cost of serving client i from location j

Boolean LP formulation

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{j=1}^{n} c_{j} y_{j}+\sum_{i=1}^{m} \sum_{j=1}^{n} d_{i j} x_{i j} \\
\text { subject to } & \sum_{j=1}^{n} x_{i j}=1, \quad i=1, \ldots, m \\
& x_{i j} \leq y_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n \\
& x_{i j}, y_{j} \in\{0,1\}
\end{array}
$$

variables $y_{j}, x_{i j}$:

$$
\begin{array}{llll}
y_{j}=1 & \text { location } j \text { is selected } & x_{i j}=1 & \text { location } j \text { serves client } i \\
y_{j}=0 & \text { otherwise } & x_{i j}=0 & \text { otherwise }
\end{array}
$$

Linear programming relaxation

relaxation: remove the constraints $x \in \mathbf{Z}^{n}$

- provides a lower bound on the optimal value of the integer LP
- if solution of relaxation is integer, then it solves the integer LP

equivalent ILP formulations can have different LP relaxations

Branch-and-bound algorithm

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x \in \mathcal{P}
\end{array}
$$

where \mathcal{P} is a finite set

general idea

- recursively partition \mathcal{P} in smaller sets \mathcal{P}_{i} and solve subproblems

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x \in \mathcal{P}_{i}
\end{array}
$$

- use LP relaxations to discard subproblems that don't lead to a solution

Example

$$
\begin{array}{ll}
\text { minimize } & -2 x_{1}-3 x_{2} \\
\text { subject to } & \left(x_{1}, x_{2}\right) \in \mathcal{P}
\end{array}
$$

where

$$
\mathcal{P}=\left\{x \in \mathbf{Z}_{+}^{2} \left\lvert\, \frac{2}{9} x_{1}+\frac{1}{4} x_{2} \leq 1\right., \quad \frac{1}{7} x_{1}+\frac{1}{3} x_{2} \leq 1\right\}
$$

optimal point: $(2,2)$

tree of subproblems and results of LP relaxations

	x^{\star}	p^{\star}
P_{0}	$(2.17,2.07)$	-10.56
P_{1}	$(2.00,2.14)$	-10.43
P_{2}	$(3.00,1.33)$	-10.00
P_{3}	$(2.00,2.00)$	-10.00
P_{4}	$(0.00,3.00)$	-9.00
P_{5}	$(3.38,1.00)$	-9.75
P_{6}		$+\infty$
P_{7}	$(3.00,1.00)$	-9.00
P_{8}	$(4.00,0.44)$	-9.33
P_{9}	$(4.50,0.00)$	-9.00
P_{10}		$+\infty$
P_{11}	$(4.00,0.00)$	-8.00
P_{12}		$+\infty$

conclusions from relaxed subproblems

- P_{2} : minimize $c^{T} x$ subject to $x \in \mathcal{P}, x_{1} \geq 3$ optimal value of subproblem is greater than or equal to -10.00
- P_{3} : minimize $c^{T} x$ subject to $x \in \mathcal{P}, x_{1} \leq 2, x_{2} \leq 2$ solution of subproblem is $x=(2,2)$
- P_{6} : minimize $c^{T} x$, subject to $x \in \mathcal{P}, x_{1} \leq 3, x_{2} \geq 2$ subproblem is infeasible
after solving the relaxations for subproblems

$$
P_{0}, \quad P_{1}, \quad P_{2}, \quad P_{3}, \quad P_{4}
$$

we can conclude that $(2,2)$ is the optimal solution of the integer LP

