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Lecture 18
Integer linear programming

• a few basic facts

• branch-and-bound

18–1



Definitions

integer linear program (ILP)

minimize cTx

subject to Ax ≤ b

x ∈ Zn

c

mixed integer linear program: only some of the variables are integer

0-1 (Boolean) linear program: variables take values 0 or 1
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Example: facility location problem

• n potential facility locations, m clients

• ci: cost of opening a facility at location i

• dij: cost of serving client i from location j

Boolean LP formulation

minimize
n∑

j=1

cjyj +
m∑

i=1

n∑

j=1

dijxij

subject to
n∑

j=1

xij = 1, i = 1, . . . ,m

xij ≤ yj, i = 1, . . . ,m, j = 1, . . . , n

xij, yj ∈ {0, 1}

variables yj, xij:

yj = 1 location j is selected
yj = 0 otherwise

xij = 1 location j serves client i
xij = 0 otherwise
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Linear programming relaxation

relaxation: remove the constraints x ∈ Zn

• provides a lower bound on the optimal value of the integer LP

• if solution of relaxation is integer, then it solves the integer LP

c c

equivalent ILP formulations can have different LP relaxations
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Branch-and-bound algorithm

minimize cTx

subject to x ∈ P

where P is a finite set

general idea

• recursively partition P in smaller sets Pi and solve subproblems

minimize cTx

subject to x ∈ Pi

• use LP relaxations to discard subproblems that don’t lead to a solution
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Example

minimize −2x1 − 3x2

subject to (x1, x2) ∈ P

where

P = {x ∈ Z2

+ |
2

9
x1 +

1

4
x2 ≤ 1,

1

7
x1 +

1

3
x2 ≤ 1}

x1

x2 −c

optimal point: (2, 2)

Integer linear programming 18–6



tree of subproblems and results of LP relaxations

P0

P1 P2

P3 P4 P5 P6

P7 P8

P9 P10

P11 P12

x1 ≤ 2

x2 ≤ 2 x2 ≤ 1

x1 = 3

x2 = 0

x1 = 4

x1 ≥ 3

x2 ≥ 3 x2 ≥ 2

x1 ≥ 4

x2 = 1

x1 ≥ 5

x⋆ p⋆

P0 (2.17, 2.07) −10.56
P1 (2.00, 2.14) −10.43
P2 (3.00, 1.33) −10.00
P3 (2.00, 2.00) −10.00
P4 (0.00, 3.00) −9.00
P5 (3.38, 1.00) −9.75
P6 +∞
P7 (3.00, 1.00) −9.00
P8 (4.00, 0.44) −9.33
P9 (4.50, 0.00) −9.00
P10 +∞
P11 (4.00, 0.00) −8.00
P12 +∞
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conclusions from relaxed subproblems

• P2: minimize cTx subject to x ∈ P, x1 ≥ 3

optimal value of subproblem is greater than or equal to −10.00

• P3: minimize cTx subject to x ∈ P, x1 ≤ 2, x2 ≤ 2

solution of subproblem is x = (2, 2)

• P6: minimize cTx, subject to x ∈ P, x1 ≤ 3, x2 ≥ 2

subproblem is infeasible

after solving the relaxations for subproblems

P0, P1, P2, P3, P4

we can conclude that (2, 2) is the optimal solution of the integer LP
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