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Lecture 1
Introduction

• course overview

– linear optimization
– examples
– history
– approximate syllabus

• basic definitions

– linear optimization in vector and matrix notation
– halfspaces and polyhedra
– geometrical interpretation
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Linear optimization

minimize
n
∑

j=1

cjxj

subject to
n
∑

j=1

aijxj ≤ bi, i = 1, . . . ,m

n
∑

j=1

dijxj = fi, i = 1, . . . , p

• n optimization variables: x1, . . . , xn (real scalars)

• problem data (parameters): the coefficients cj, aij, bi, dij, fi

•
∑

j cjxj is the cost function or objective function

• ∑

j aijxj ≤ bi and
∑

j dijxj = fi are inequality and equality constraints

called a linear optimization problem or linear program (LP)

Introduction 1–2



Importance

low complexity

• problems with several thousand variables, constraints routinely solved

• much larger problems (millions of variables) if problem data are sparse

• widely available software

• theoretical worst-case complexity is polynomial

wide applicability

• originally developed for applications in economics and management

• today, used in all areas of engineering, data analysis, finance, . . .

• a key tool in combinatorial optimization

extensive theory

no simple formula for solution but extensive, useful (duality) theory
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Example: open-loop control problem

single-input/single-output system (input u(t), output y(t) at time t)

y(t) = h0u(t) + h1u(t− 1) + h2u(t− 2) + h3u(t− 3) + · · ·

output tracking problem: minimize deviation from desired output ydes(t)

max
t=0,...,N

|y(t)− ydes(t)|

subject to input amplitude and slew rate constraints:

|u(t)| ≤ U, |u(t+ 1)− u(t)| ≤ S

variables: u(0), . . . , u(M) (with u(t) = 0 for t < 0, t > M)

solution: can be formulated as an LP, hence easily solved (more later)

Introduction 1–4



example

step response (s(t) = ht + · · ·+ h0) and desired output:

step response
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ydes(t)
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1

amplitude and slew rate constraint on u:

|u(t)| ≤ 1.1, |u(t)− u(t− 1)| ≤ 0.25
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optimal solution (computed via linear optimization)

input u(t)
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u(t) − u(t − 1)
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output and desired output
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Example: assignment problem

• match N people to N tasks

• each person is assigned to one task; each task assigned to one person

• cost of assigning person i to task j is aij

combinatorial formulation

minimize
N
∑

i,j=1

aijxij

subject to
N
∑

i=1

xij = 1, j = 1, . . . , N

N
∑

j=1

xij = 1, i = 1, . . . , N

xij ∈ {0, 1}, i, j = 1, . . . , N

• variable xij = 1 if person i is assigned to task j; xij = 0 otherwise

• N ! possible assignments, i.e., too many to enumerate
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linear optimization formulation

minimize
N
∑

i,j=1

aijxij

subject to
N
∑

i=1

xij = 1, j = 1, . . . , N

N
∑

j=1

xij = 1, i = 1, . . . , N

0 ≤ xij ≤ 1, i, j = 1, . . . , N

• we have relaxed the constraints xij ∈ {0, 1}

• it can be shown that at the optimum xij ∈ {0, 1} (see later)

• hence, can solve (this particular) combinatorial problem efficiently (via
linear optimization or specialized methods)
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Brief history

• 1940s (Dantzig, Kantorovich, Koopmans, von Neumann, . . . )

foundations, motivated by economics and logistics problems

• 1947 (Dantzig): simplex algorithm

• 1950s–60s: applications in other disciplines

• 1979 (Khachiyan): ellipsoid algorithm: more efficient (polynomial-time)
than simplex in worst case, much slower in practice

• 1984 (Karmarkar): projective (interior-point) algorithm:
polynomial-time worst-case complexity, and efficient in practice

• since 1984: variations of interior-point methods (improved complexity
or efficiency in practice), software for large-scale problems
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Tentative syllabus

• linear and piecewise-linear optimization

• polyhedral geometry

• duality

• applications

• algorithms: simplex algorithm, interior-point algorithms, decomposition

• applications in network and combinatorial optimization

• extensions: linear-fractional programming

• introduction to integer linear programming
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Vectors

vector of length n (or n-vector)

x =









x1

x2
...
xn









• we also use the notation x = (x1, x2, . . . , xn)

• xi is ith component or element (real unless specified otherwise)

• set of real n-vectors is denoted Rn

special vectors (with n determined from context)

• x = 0 (zero vector): xi = 0, i = 1, . . . , n

• x = 1 (vector of all ones): xi = 1, i = 1, . . . , n

• x = ei (ith basis or unit vector): xi = 1, xk = 0 for k 6= i
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Matrices

matrix of size m× n

A =









A11 A12 · · · A1n

A21 A22 · · · A2n
... ... ...

Am1 Am2 · · · Amn









• Aij (or aij) is the i, j element (or entry, coefficient)

• set of real m× n-matrices is denoted Rm×n

• vectors can be viewed as matrices with one column

special matrices (with size determined from context)

• X = 0 (zero matrix): Xij = 0 for i = 1, . . . ,m, j = 1, . . . , n

• X = I (identity matrix): m = n with Xii = 1, Xij = 0 for i 6= j
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Operations

• matrix transpose AT

• scalar multiplication αA

• addition A+B and subtraction A−B of matrices of the same size

• product y = Ax of a matrix with a vector of compatible length

• product C = AB of matrices of compatible size

• inner product of n-vectors:

xTy = x1y1 + · · ·+ xnyn
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LP in inner-product notation

minimize
n
∑

j=1

cjxj

subject to
n
∑

j=1

aijxj ≤ bi, i = 1, . . . ,m

n
∑

j=1

dijxj = fi, i = 1, . . . , p

inner-product notation

minimize cTx

subject to aTi x ≤ bi, i = 1, . . . ,m

dTi x = fi, i = 1, . . . , p

c, ai, di are n-vectors:

c = (c1, . . . , cn), ai = (ai1, . . . , ain), di = (di1, . . . , din)
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LP in matrix notation

minimize
n
∑

j=1

cjxj

subject to
n
∑

j=1

aijxj ≤ bi, i = 1, . . . ,m

n
∑

j=1

dijxj = fi, i = 1, . . . , p

matrix notation
minimize cTx
subject to Ax ≤ b

Dx = f

• A is m× n-matrix with elements aij, rows a
T
i

• D is p× n-matrix with elements dij, rows d
T
i

• inequality is component-wise vector inequality
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Terminology

minimize cTx
subject to Ax ≤ b

Dx = f

• x is feasible if it satisfies the constraints Ax ≤ b and Dx = f

• feasible set is set of all feasible points

• x⋆ is optimal if it is feasible and cTx⋆ ≤ cTx for all feasible x

• the optimal value of the LP is p⋆ = cTx⋆

• unbounded problem: cTx unbounded below on feasible set (p⋆ = −∞)

• infeasible probem: feasible set is empty (p⋆ = +∞)
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Vector norms

Euclidean norm

‖x‖ =
√

x2
1 + x2

2 + · · ·+ x2
n =

√
xTx

ℓ1-norm and ℓ∞-norm

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|
‖x‖∞ = max{|x1|, |x2|, . . . , |xn|}

properties (satisfied by any norm f(x))

• f(αx) = |α|f(x) (homogeneity)

• f(x+ y) ≤ f(x) + f(y) (triangle inequality)

• f(x) ≥ 0 (nonnegativity); f(x) = 0 if only if x = 0 (definiteness)
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Cauchy-Schwarz inequality

−‖x‖‖y‖ ≤ xTy ≤ ‖x‖‖y‖

• holds for all vectors x, y of the same size

• xTy = ‖x‖‖y‖ iff x and y are aligned (nonnegative multiples)

• xTy = −‖x‖‖y‖ iff x and y are opposed (nonpositive multiples)

• implies many useful inequalities as special cases, for example,

−
√
n ‖x‖ ≤

n
∑

i=1

xi ≤
√
n ‖x‖
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Angle between vectors

the angle θ = 6 (x, y) between nonzero vectors x and y is defined as

θ = arccos
xTy

‖x‖‖y‖ (i.e., xTy = ‖x‖‖y‖ cos θ)

• we normalize θ so that 0 ≤ θ ≤ π

• relation between sign of inner product and angle

xTy > 0 θ < π
2 (vectors make an acute angle)

xTy = 0 θ = π
2 (orthogonal vectors)

xTy < 0 θ > π
2 (vectors make an obtuse angle)
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Projection

projection of x on the line defined by nonzero y: the vector t̂y with

t̂ = argmin
t

‖x− ty‖

expression for t̂:

t̂ =
xTy

‖y‖2 =
‖x‖ cos θ

‖y‖

0

x

y

t̂y =
(

xTy
yTy

)

y
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Hyperplanes and halfspaces

hyperplane

solution set of one linear equation with nonzero coefficient vector a

aTx = b

halfspace

solution set of one linear inequality with nonzero coefficient vector a

aTx ≤ b

a is the normal vector
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Geometrical interpretation

G = {x | aTx = b} H = {x | aTx ≤ b}
a

u = (b/‖a‖2)a

x

x − u

0

G

a

x
u

x − u H

• the vector u = (b/‖a‖2)a satisfies aTu = b

• x is in hyperplane G if aT (x− u) = 0 (x− u is orthogonal to a)

• x is in halfspace H if aT (x− u) ≤ 0 (angle 6 (x− u, a) ≥ π/2)
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Example

a = (2, 1)

x1

x2

aTx = −5

aTx = 10

aTx = 5

aTx = 0

a = (2, 1)

x1

x2

aTx ≤ 3

Introduction 1–23



Polyhedron

solution set of a finite number of linear inequalities

aT1 x ≤ b1, aT2 x ≤ b2, . . . , aTmx ≤ bm

a1 a2

a3

a4

a5

• intersection of a finite number of halfspaces

• in matrix notation: Ax ≤ b if A is a matrix with rows aTi

• can include equalities: Fx = g is equivalent to Fx ≤ g, −Fx ≤ −g
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Example

x1 + x2 ≥ 1, −2x1 + x2 ≤ 2, x1 ≥ 0, x2 ≥ 0

x1

x2

x1 + x2 = 1

−2x1 + x2 = 2
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Example

0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2, 0 ≤ x3 ≤ 2, x1 + x2 + x3 ≤ 5

x1

x2

x3

(2, 0, 0)

(2, 0, 2)

(0, 0, 2) (0, 2, 2)

(0, 2, 0)

(2, 2, 0)

(2, 2, 1)

(2, 1, 2)

(1, 2, 2)
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Geometrical interpretation of LP

minimize cTx
subject to Ax ≤ b

Ax ≤ b
optimal solution

−c

dashed lines (hyperplanes) are level sets cTx = α for different α

Introduction 1–27



Example

minimize −x1 − x2

subject to 2x1 + x2 ≤ 3
x1 + 4x2 ≤ 5
x1 ≥ 0, x2 ≥ 0

x1

x2

−x1 − x2 = 0

−x1 − x2 = −1

−x1 − x2 = −2

−x1 − x2 = −3

−x1 − x2 = −4

−x1 − x2 = −5

optimal solution is (1, 1)
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