Lecture 1
 Introduction

- course overview
- linear optimization
- examples
- history
- approximate syllabus
- basic definitions
- linear optimization in vector and matrix notation
- halfspaces and polyhedra
- geometrical interpretation

Linear optimization

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1, \ldots, m \\
& \sum_{j=1}^{n} d_{i j} x_{j}=f_{i}, \quad i=1, \ldots, p
\end{array}
$$

- n optimization variables: x_{1}, \ldots, x_{n} (real scalars)
- problem data (parameters): the coefficients $c_{j}, a_{i j}, b_{i}, d_{i j}, f_{i}$
- $\sum_{j} c_{j} x_{j}$ is the cost function or objective function
- $\sum_{j} a_{i j} x_{j} \leq b_{i}$ and $\sum_{j} d_{i j} x_{j}=f_{i}$ are inequality and equality constraints
called a linear optimization problem or linear program (LP)

Importance

low complexity

- problems with several thousand variables, constraints routinely solved
- much larger problems (millions of variables) if problem data are sparse
- widely available software
- theoretical worst-case complexity is polynomial wide applicability
- originally developed for applications in economics and management
- today, used in all areas of engineering, data analysis, finance, . . .
- a key tool in combinatorial optimization
extensive theory
no simple formula for solution but extensive, useful (duality) theory

Example: open-loop control problem

single-input/single-output system (input $u(t)$, output $y(t)$ at time t)

$$
y(t)=h_{0} u(t)+h_{1} u(t-1)+h_{2} u(t-2)+h_{3} u(t-3)+\cdots
$$

output tracking problem: minimize deviation from desired output $y_{\text {des }}(t)$

$$
\max _{t=0, \ldots, N}\left|y(t)-y_{\mathrm{des}}(t)\right|
$$

subject to input amplitude and slew rate constraints:

$$
|u(t)| \leq U, \quad|u(t+1)-u(t)| \leq S
$$

variables: $u(0), \ldots, u(M)($ with $u(t)=0$ for $t<0, t>M)$
solution: can be formulated as an LP, hence easily solved (more later)

example

step response $\left(s(t)=h_{t}+\cdots+h_{0}\right)$ and desired output:

amplitude and slew rate constraint on u :

$$
|u(t)| \leq 1.1, \quad|u(t)-u(t-1)| \leq 0.25
$$

optimal solution (computed via linear optimization)

Example: assignment problem

- match N people to N tasks
- each person is assigned to one task; each task assigned to one person
- cost of assigning person i to task j is $a_{i j}$

combinatorial formulation

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i, j=1}^{N} a_{i j} x_{i j} \\
\text { subject to } & \sum_{i=1}^{N} x_{i j}=1, \quad j=1, \ldots, N \\
& \sum_{j=1}^{N} x_{i j}=1, \quad i=1, \ldots, N \\
& x_{i j} \in\{0,1\}, \quad i, j=1, \ldots, N
\end{aligned}
$$

- variable $x_{i j}=1$ if person i is assigned to task $j ; x_{i j}=0$ otherwise
- N ! possible assignments, i.e., too many to enumerate

linear optimization formulation

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i, j=1}^{N} a_{i j} x_{i j} \\
\text { subject to } & \sum_{i=1}^{N} x_{i j}=1, \quad j=1, \ldots, N \\
& \sum_{j=1}^{N} x_{i j}=1, \quad i=1, \ldots, N \\
& 0 \leq x_{i j} \leq 1, \quad i, j=1, \ldots, N
\end{array}
$$

- we have relaxed the constraints $x_{i j} \in\{0,1\}$
- it can be shown that at the optimum $x_{i j} \in\{0,1\}$ (see later)
- hence, can solve (this particular) combinatorial problem efficiently (via linear optimization or specialized methods)

Brief history

- 1940s (Dantzig, Kantorovich, Koopmans, von Neumann, . . .) foundations, motivated by economics and logistics problems
- 1947 (Dantzig): simplex algorithm
- 1950s-60s: applications in other disciplines
- 1979 (Khachiyan): ellipsoid algorithm: more efficient (polynomial-time) than simplex in worst case, much slower in practice
- 1984 (Karmarkar): projective (interior-point) algorithm: polynomial-time worst-case complexity, and efficient in practice
- since 1984: variations of interior-point methods (improved complexity or efficiency in practice), software for large-scale problems

Tentative syllabus

- linear and piecewise-linear optimization
- polyhedral geometry
- duality
- applications
- algorithms: simplex algorithm, interior-point algorithms, decomposition
- applications in network and combinatorial optimization
- extensions: linear-fractional programming
- introduction to integer linear programming

Vectors

vector of length n (or n-vector)

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

- we also use the notation $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- x_{i} is i th component or element (real unless specified otherwise)
- set of real n-vectors is denoted \mathbf{R}^{n}
special vectors (with n determined from context)
- $x=0$ (zero vector): $x_{i}=0, i=1, \ldots, n$
- $x=1$ (vector of all ones): $x_{i}=1, i=1, \ldots, n$
- $x=e_{i}\left(i\right.$ th basis or unit vector) $: x_{i}=1, x_{k}=0$ for $k \neq i$

Matrices

matrix of size $m \times n$

$$
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & & \vdots \\
A_{m 1} & A_{m 2} & \cdots & A_{m n}
\end{array}\right]
$$

- $A_{i j}\left(\right.$ or $\left.a_{i j}\right)$ is the i, j element (or entry, coefficient)
- set of real $m \times n$-matrices is denoted $\mathbf{R}^{m \times n}$
- vectors can be viewed as matrices with one column
special matrices (with size determined from context)
- $X=0$ (zero matrix): $X_{i j}=0$ for $i=1, \ldots, m, j=1, \ldots, n$
- $X=I$ (identity matrix): $m=n$ with $X_{i i}=1, X_{i j}=0$ for $i \neq j$

Operations

- matrix transpose A^{T}
- scalar multiplication αA
- addition $A+B$ and subtraction $A-B$ of matrices of the same size
- product $y=A x$ of a matrix with a vector of compatible length
- product $C=A B$ of matrices of compatible size
- inner product of n-vectors:

$$
x^{T} y=x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

LP in inner-product notation

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1, \ldots, m \\
& \sum_{j=1}^{n} d_{i j} x_{j}=f_{i}, \quad i=1, \ldots, p
\end{array}
$$

inner-product notation

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m \\
& d_{i}^{T} x=f_{i}, \quad i=1, \ldots, p
\end{array}
$$

c, a_{i}, d_{i} are n-vectors:

$$
c=\left(c_{1}, \ldots, c_{n}\right), \quad a_{i}=\left(a_{i 1}, \ldots, a_{i n}\right), \quad d_{i}=\left(d_{i 1}, \ldots, d_{i n}\right)
$$

LP in matrix notation

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1, \ldots, m \\
& \sum_{j=1}^{n} d_{i j} x_{j}=f_{i}, \quad i=1, \ldots, p
\end{array}
$$

matrix notation

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \leq b \\
& D x=f
\end{array}
$$

- A is $m \times n$-matrix with elements $a_{i j}$, rows a_{i}^{T}
- D is $p \times n$-matrix with elements $d_{i j}$, rows d_{i}^{T}
- inequality is component-wise vector inequality

Terminology

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \leq b \\
& D x=f
\end{array}
$$

- x is feasible if it satisfies the constraints $A x \leq b$ and $D x=f$
- feasible set is set of all feasible points
- x^{\star} is optimal if it is feasible and $c^{T} x^{\star} \leq c^{T} x$ for all feasible x
- the optimal value of the LP is $p^{\star}=c^{T} x^{\star}$
- unbounded problem: $c^{T} x$ unbounded below on feasible set ($p^{\star}=-\infty$)
- infeasible probem: feasible set is empty ($p^{\star}=+\infty$)

Vector norms

Euclidean norm

$$
\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}=\sqrt{x^{T} x}
$$

ℓ_{1}-norm and ℓ_{∞}-norm

$$
\begin{aligned}
\|x\|_{1} & =\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| \\
\|x\|_{\infty} & =\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}
\end{aligned}
$$

properties (satisfied by any norm $f(x)$)

- $f(\alpha x)=|\alpha| f(x)$ (homogeneity)
- $f(x+y) \leq f(x)+f(y)$ (triangle inequality)
- $f(x) \geq 0$ (nonnegativity); $f(x)=0$ if only if $x=0$ (definiteness)

Cauchy-Schwarz inequality

$$
-\|x\|\|y\| \leq x^{T} y \leq\|x\|\|y\|
$$

- holds for all vectors x, y of the same size
- $x^{T} y=\|x\|\|y\|$ iff x and y are aligned (nonnegative multiples)
- $x^{T} y=-\|x\|\|y\|$ iff x and y are opposed (nonpositive multiples)
- implies many useful inequalities as special cases, for example,

$$
-\sqrt{n}\|x\| \leq \sum_{i=1}^{n} x_{i} \leq \sqrt{n}\|x\|
$$

Angle between vectors

the angle $\theta=\angle(x, y)$ between nonzero vectors x and y is defined as

$$
\left.\theta=\arccos \frac{x^{T} y}{\|x\|\|y\|} \quad \text { (i.e., } x^{T} y=\|x\|\|y\| \cos \theta\right)
$$

- we normalize θ so that $0 \leq \theta \leq \pi$
- relation between sign of inner product and angle

$$
\begin{array}{l|ll}
x^{T} y>0 & \theta<\frac{\pi}{2} & \text { (vectors make an acute angle) } \\
x^{T} y=0 & \theta=\frac{\pi}{2} & \text { (orthogonal vectors) } \\
x^{T} y<0 & \theta>\frac{\pi}{2} & \text { (vectors make an obtuse angle) }
\end{array}
$$

Projection

projection of x on the line defined by nonzero y : the vector $\hat{t} y$ with

$$
\hat{t}=\underset{t}{\operatorname{argmin}}\|x-t y\|
$$

expression for \hat{t} :

Hyperplanes and halfspaces

hyperplane

solution set of one linear equation with nonzero coefficient vector a

$$
a^{T} x=b
$$

halfspace

solution set of one linear inequality with nonzero coefficient vector a

$$
a^{T} x \leq b
$$

a is the normal vector

Geometrical interpretation

$$
G=\left\{x \mid a^{T} x=b\right\}
$$

$$
H=\left\{x \mid a^{T} x \leq b\right\}
$$

- the vector $u=\left(b /\|a\|^{2}\right) a$ satisfies $a^{T} u=b$
- x is in hyperplane G if $a^{T}(x-u)=0(x-u$ is orthogonal to $a)$
- x is in halfspace H if $a^{T}(x-u) \leq 0$ (angle $\angle(x-u, a) \geq \pi / 2$)

Example

Polyhedron

solution set of a finite number of linear inequalities

$$
a_{1}^{T} x \leq b_{1}, \quad a_{2}^{T} x \leq b_{2}, \quad \ldots, \quad a_{m}^{T} x \leq b_{m}
$$

- intersection of a finite number of halfspaces
- in matrix notation: $A x \leq b$ if A is a matrix with rows a_{i}^{T}
- can include equalities: $F x=g$ is equivalent to $F x \leq g,-F x \leq-g$

Example

$$
x_{1}+x_{2} \geq 1, \quad-2 x_{1}+x_{2} \leq 2, \quad x_{1} \geq 0, \quad x_{2} \geq 0
$$

Example

$$
0 \leq x_{1} \leq 2, \quad 0 \leq x_{2} \leq 2, \quad 0 \leq x_{3} \leq 2, \quad x_{1}+x_{2}+x_{3} \leq 5
$$

Geometrical interpretation of LP

minimize $\quad c^{T} x$
subject to $A x \leq b$

dashed lines (hyperplanes) are level sets $c^{T} x=\alpha$ for different α

Example

optimal solution is $(1,1)$

