L. Vandenberghe EE236A (Fall 2013-14)

Lecture 15
Primal-dual interior-point method

e primal-dual central path equations

e infeasible primal-dual method
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Optimality conditions

primal and dual problem

minimize c¢l'x maximize —blz
subject to Az +s=05b subject to ATz +¢c¢=0
s>0 z >0

optimality conditions

0 0o Ar x c
HEENNIEEN
s > 0, z >0, soz=0

s o z is component-wise (Hadamard) vector product:

soz= (8121, 8229, - -, SmZm)

Primal-dual interior-point method
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Central path equations

e a continuous deformation of the optimality conditions
e solution z, z, s Is

r=x"(t), s=0b— Ax™(t), z = 2"(t)

e m + n linear, m nonlinear equations, and 2m simple inequalities

Primal-dual interior-point method
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Interpretation of barrier method

e write central path equations as

Ax + s =0b, Atz +c=0, zi—t—:O, 1=1,...,m
Si
e linearize around strictly feasible z, 2, s:
As; . 1 .
AAz+As=0, AT'Az=0, Az + ti = _Zi—i_t—” 1=1,...,m

e climinating As and Az gives an equation in Ax (with S = diag($)):
ATSTPAAT = —te — ATST11
this is exactly the centering Newton equation V?f;(2)Ax = —V f4(%)
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Primal-dual path-following methods

e use a different, symmetric linearization of central path

e update primal and dual variables x, z in each iteration

e update central path parameter t after every Newton step

e aggressive step sizes (e.g., 0.99 of maximum step to the boundary)
e allow infeasible iterates

e add second-order terms to linearization of central path

used in most interior-point solvers
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Basic primal-dual update

let §, &, Z be the current iterates (with § > 0, 2 > 0)

e compute steps As, Ax, Az by linearizing the central path equation

BREEHE S

around $, %, 2, where u = §12/m and o € [0, 1]

e make an update

that preserves positivity of s, 2
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Linearized central path equation

central path equation (without inequalities)

Ax + s =0, Atz 4+¢=0, soz=oul

A

linearization around z, S, 2

0 A T ][ Az] [ —(A2+5-b)
A0 0 Azr | = —(AT2 +¢)
S 0 Z || As | | opl—50Z2

where S = diag(s), Z = diag(2)

we assume § >0, 2> 0 butnot Az +S§=bor AT2+¢=0

Primal-dual interior-point method
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Path-following algorithm

choose starting points s, z, z with § > 0, 2 > 0
1. compute residuals and evaluate stopping criteria

ro=At+5-b  rq=ATi+c

terminate if r,, rq, and $T% are small

2. compute affine scaling direction: solve the linear equation

0 A I ] Az, —Tp
AT 0 0 Az, | = —7q
S 0 Z || Asy | | —50% |
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3. select barrier parameter: find

and take

ap, = max{a € |0,1] |35+ aAs, >0}
ag = max{a €[0,1] |2+ alAz, >0}

o <(§ + apAsa) T (2 + oszza)) ’

0 is an algorithm parameter (a typical value is § = 3)

4. compute search direction: solve the linear equation

0
AT
S

Primal-dual interior-point method

A T
0 0
0 Z |

[ Az
Ax

_As

o(512/m)1 — 5032
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5. update iterates: find maximum steps to the boundary

a, = max{a>0]5+ aAs >0}
ag = max{a>0]|zZ+ alAz >0}
and take
(z,5) = (2,8)+min{1,0.99q,}(Ax, As)
Z = Z+4+min{l1,0.99a4}Az

return to step 1
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Example stopping criteria
use tolerances €feas, €abs, €rel to limit primal, dual residuals and duality gap

primal and dual feasibility: check that iterates satisfy

|7p|| < €feas maxy1, [|bl]} and [|ra|| < €reas max{l, [|c[|}

duality gap: check that condition 1 or 2 is satisfied

1. small absolute duality gap: 572 < €4ps

2. small relative duality gap

§1'2 512
<€) or (=b'2>0 and

(¢’ <0 and < €rel)

—cT'z
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Interpretation of search directions

affine scaling direction (step 2)

o (As,, Ax,, Az,) solves linearized central path equation with 0 =0

e this is also the solution of the linearized optimality conditions

selection of barrier parameter (step 3)

e take o small if step in affine scaling direction gives a large gap reduction

e a heuristic, using an estimate of how good the affine scaling direction is

combined search direction (step 4)

e linear equation has same coefficient matrix as equation in step 2

e we can reuse the factorization; hence, extra cost is negligible
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Mehrotra correction

replace equation in step 4 by

0
AT
S

A T
0 0
0 Z

[ Az
Ax

_Aa:

o(512/m)1 — 802 — As,o0 Az,

e extra term As, o Az, is approximation of the second-order term in

(§+ As)o(2+ Az) =0opul

e adding the correction typically saves a few iterations

Primal-dual interior-point method
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Search equations

step 2 and step 4 involve equations of the form

0 A I | [ Az | b,
AT 0 0 Az | = | b,
S 0 Z || As | | bs |

e eliminating As = Z~ (b, — SAz) gives
577 AV[Az] [ b— 2z,
AT 0 Az | b,

e usually solved by eliminating Az = S™1ZAAx — S='Zb, + S~ 1b,

ATS 1 ZzAAx =b, + ATS ' Zbh, — AT S b,
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Cholesky factorization

definition: every symmetric positive definite B can be factored as
B=LL"

e Cholesky factor L is lower triangular with positive diagonal entries

e cost is n3/3 floating-point operations (flops) if B is dense
linear equation with positive definite coefficient
Bx =d

e factor B as B = LL' (n?/3)
e solve Ly = d by forward substitution (n? flops)

e solve L1z = y by backward substitution (n? flops)

Primal-dual interior-point method
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Sparse positive definite equation

algorithm

1. reorder rows and columns of B symmetrically to increase sparsity of L
(PBP') (Px) = Pd P a permutation matrix

2. symbolic factorization: find sparsity pattern of L (from pattern of B)
3. numerical factorization: PBP? = LL* (from values of entries of B)

4. use forward and backward substitution to solve LLT Px = Pd

complexity

e most expensive steps are 2 and 3
e only steps 3, 4 depend on numerical values of B

e only step 4 depends on right-hand side d
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Linear equations in interior-point method

the algorithm on page 15-8 requires two linear equations with coefficient
B=A"S"'ZA

e A is typically large and sparse
o S~1Z is positive diagonal, different at each iteration
e B is positive definite if rank(A) =n

e sparsity pattern of B is pattern of AT A (independent of S~12)

solution via sparse Cholesky factorization

e steps 1, 2 (reordering, symbolic factorization) are needed only once
e step 3 (numerical factorization) is needed once per iteration

e step 4 (forward/backward substitution) is repeated twice per iteration
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