
L. Vandenberghe EE236A (Fall 2013-14)

Lecture 15
Primal-dual interior-point method

• primal-dual central path equations

• infeasible primal-dual method
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Optimality conditions

primal and dual problem

minimize cTx
subject to Ax+ s = b

s ≥ 0

maximize −bTz
subject to ATz + c = 0

z ≥ 0

optimality conditions

[

0
s

]

=

[

0 AT

−A 0

] [

x
z

]

+

[

c
b

]

s ≥ 0, z ≥ 0, s ◦ z = 0

s ◦ z is component-wise (Hadamard) vector product:

s ◦ z = (s1z1, s2z2, . . . , smzm)
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Central path equations

[

0
s

]

=

[

0 AT

−A 0

] [

x
z

]

+

[

c
b

]

s ≥ 0, z ≥ 0, s ◦ z =
1

t
1

• a continuous deformation of the optimality conditions

• solution x, z, s is

x = x⋆(t), s = b−Ax⋆(t), z = z⋆(t)

• m+ n linear, m nonlinear equations, and 2m simple inequalities
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Interpretation of barrier method

• write central path equations as

Ax+ s = b, ATz + c = 0, zi −
1

tsi
= 0, i = 1, . . . ,m

• linearize around strictly feasible x̂, ẑ, ŝ:

A∆x+∆s = 0, AT∆z = 0, ∆zi+
∆si
tŝ2

i

= −ẑi+
1

tŝi
, i = 1, . . . ,m

• eliminating ∆s and ∆z gives an equation in ∆x (with S = diag(ŝ)):

ATS−2A∆x = −tc−ATS−11

this is exactly the centering Newton equation ∇2ft(x̂)∆x = −∇ft(x̂)
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Primal-dual path-following methods

• use a different, symmetric linearization of central path

• update primal and dual variables x, z in each iteration

• update central path parameter t after every Newton step

• aggressive step sizes (e.g., 0.99 of maximum step to the boundary)

• allow infeasible iterates

• add second-order terms to linearization of central path

used in most interior-point solvers
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Basic primal-dual update

let ŝ, x̂, ẑ be the current iterates (with ŝ > 0, ẑ > 0)

• compute steps ∆s, ∆x, ∆z by linearizing the central path equation

[

0
s

]

=

[

0 AT

−A 0

] [

x
z

]

+

[

c
b

]

, s ◦ z = σµ1

around ŝ, x̂, ẑ, where µ = ŝT ẑ/m and σ ∈ [0, 1]

• make an update

(x̂, ŝ) := (x̂, ŝ) + αp(∆x,∆s), ẑ := ẑ + αd∆z

that preserves positivity of ŝ, ẑ
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Linearized central path equation

central path equation (without inequalities)

Ax+ s = b, ATz + c = 0, s ◦ z = σµ1

linearization around x̂, ŝ, ẑ





0 A I
AT 0 0
S 0 Z









∆z
∆x
∆s



 =





−(Ax̂+ ŝ− b)
−(AT ẑ + c)
σµ1− ŝ ◦ ẑ





where S = diag(ŝ), Z = diag(ẑ)

we assume ŝ > 0, ẑ > 0, but not Ax̂+ ŝ = b or AT ẑ + c = 0
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Path-following algorithm

choose starting points ŝ, x̂, ẑ with ŝ > 0, ẑ > 0

1. compute residuals and evaluate stopping criteria

rp = Ax̂+ ŝ− b, rd = AT ẑ + c

terminate if rp, rd, and ŝT ẑ are small

2. compute affine scaling direction: solve the linear equation





0 A I
AT 0 0
S 0 Z









∆za
∆xa

∆sa



 =





−rp
−rd

−ŝ ◦ ẑ
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3. select barrier parameter: find

αp = max{α ∈ [0, 1] | ŝ+ α∆sa ≥ 0}

αd = max{α ∈ [0, 1] | ẑ + α∆za ≥ 0}

and take

σ =

(

(ŝ+ αp∆sa)
T (ẑ + αd∆za)

ŝT ẑ

)δ

δ is an algorithm parameter (a typical value is δ = 3)

4. compute search direction: solve the linear equation





0 A I
AT 0 0
S 0 Z









∆z
∆x
∆s



 =





−rp
−rd

σ(ŝT ẑ/m)1− ŝ ◦ ẑ
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5. update iterates: find maximum steps to the boundary

αp = max{α ≥ 0 | ŝ+ α∆s ≥ 0}

αd = max{α ≥ 0 | ẑ + α∆z ≥ 0}

and take

(x̂, ŝ) := (x̂, ŝ) + min{1, 0.99αp}(∆x,∆s)

ẑ := ẑ +min{1, 0.99αd}∆z

return to step 1
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Example stopping criteria

use tolerances ǫfeas, ǫabs, ǫrel to limit primal, dual residuals and duality gap

primal and dual feasibility: check that iterates satisfy

‖rp‖ ≤ ǫfeasmax{1, ‖b‖} and ‖rd‖ ≤ ǫfeasmax{1, ‖c‖}

duality gap: check that condition 1 or 2 is satisfied

1. small absolute duality gap: ŝT ẑ ≤ ǫabs

2. small relative duality gap

(cT x̂ < 0 and
ŝT ẑ

−cT x̂
≤ ǫrel) or (−bT ẑ > 0 and

ŝT ẑ

−bT ẑ
≤ ǫrel)
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Interpretation of search directions

affine scaling direction (step 2)

• (∆sa,∆xa,∆za) solves linearized central path equation with σ = 0

• this is also the solution of the linearized optimality conditions

selection of barrier parameter (step 3)

• take σ small if step in affine scaling direction gives a large gap reduction

• a heuristic, using an estimate of how good the affine scaling direction is

combined search direction (step 4)

• linear equation has same coefficient matrix as equation in step 2

• we can reuse the factorization; hence, extra cost is negligible
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Mehrotra correction

replace equation in step 4 by





0 A I
AT 0 0
S 0 Z









∆z
∆x
∆x



 =





−rp
−rd

σ(ŝT ẑ/m)1− ŝ ◦ ẑ −∆sa ◦∆za





• extra term ∆sa ◦∆za is approximation of the second-order term in

(ŝ+∆s) ◦ (ẑ +∆z) = σµ1

• adding the correction typically saves a few iterations
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Search equations

step 2 and step 4 involve equations of the form





0 A I
AT 0 0
S 0 Z









∆z
∆x
∆s



 =





bz
bx
bs





• eliminating ∆s = Z−1(bs − S∆z) gives

[

−SZ−1 A
AT 0

] [

∆z
∆x

]

=

[

bz − Z−1bs
bx

]

• usually solved by eliminating ∆z = S−1ZA∆x− S−1Zbz + S−1bs

ATS−1ZA∆x = bx +ATS−1Zbz −ATS−1bs
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Cholesky factorization

definition: every symmetric positive definite B can be factored as

B = LLT

• Cholesky factor L is lower triangular with positive diagonal entries

• cost is n3/3 floating-point operations (flops) if B is dense

linear equation with positive definite coefficient

Bx = d

• factor B as B = LLT (n3/3)

• solve Ly = d by forward substitution (n2 flops)

• solve LTx = y by backward substitution (n2 flops)
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Sparse positive definite equation

algorithm

1. reorder rows and columns of B symmetrically to increase sparsity of L

(PBPT ) (Px) = Pd P a permutation matrix

2. symbolic factorization: find sparsity pattern of L (from pattern of B)

3. numerical factorization: PBPT = LLT (from values of entries of B)

4. use forward and backward substitution to solve LLTPx = Pd

complexity

• most expensive steps are 2 and 3

• only steps 3, 4 depend on numerical values of B

• only step 4 depends on right-hand side d
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Linear equations in interior-point method

the algorithm on page 15–8 requires two linear equations with coefficient

B = ATS−1ZA

• A is typically large and sparse

• S−1Z is positive diagonal, different at each iteration

• B is positive definite if rank(A) = n

• sparsity pattern of B is pattern of ATA (independent of S−1Z)

solution via sparse Cholesky factorization

• steps 1, 2 (reordering, symbolic factorization) are needed only once

• step 3 (numerical factorization) is needed once per iteration

• step 4 (forward/backward substitution) is repeated twice per iteration
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