## Lecture 3 Polyhedra

- linear algebra review
- minimal faces and extreme points


## Subspace

definition: a nonempty subset $S$ of $\mathbf{R}^{n}$ is a subspace if

$$
x, y \in S, \quad \alpha, \beta \in \mathbf{R} \quad \Longrightarrow \quad \alpha x+\beta y \in S
$$

- extends recursively to linear combinations of more than two vectors:

$$
x_{1}, \ldots, x_{k} \in S, \quad \alpha_{1}, \ldots, \alpha_{k} \in \mathbf{R} \quad \Longrightarrow \quad \alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k} \in S
$$

- all subspaces contain the origin
subspaces and matrices (with $A \in \mathbf{R}^{m \times n}$ )
- range: range $(A)=\left\{x \in \mathbf{R}^{m} \mid x=A y\right.$ for some $\left.y\right\}$ is a subspace of $\mathbf{R}^{m}$
- nullspace: nullspace $(A)=\left\{x \in \mathbf{R}^{n} \mid A x=0\right\}$ is a subspace of $\mathbf{R}^{n}$
conversely, every subspace can be expressed as a range or nullspace


## Linear independence

a nonempty set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent if

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}=0
$$

holds only for $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{k}=0$
properties: if $\left\{v_{1}, \ldots, v_{k}\right\}$ is a linearly independent set, then

- coefficients $\alpha_{k}$ in linear combinations $x=\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}$ are unique:

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}=\beta_{1} v_{1}+\beta_{2} v_{2}+\cdots+\beta_{k} v_{k}
$$

implies $\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \ldots, \alpha_{k}=\beta_{k}$

- none of the vectors $v_{i}$ is a linear combination of the other vectors


## Basis and dimension

$\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq S$ is a basis of a subspace $S$ if

- every $x \in S$ can be expressed as a linear combination of $v_{1}, \ldots, v_{k}$
- $\left\{v_{1}, \ldots, v_{k}\right\}$ is a linearly independent set
equivalently, every $x \in S$ can be expressed in exactly one way as

$$
x=\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}
$$

dimension: $\operatorname{dim} S$ is the number of vectors in a basis of $S$

- key fact from linear algebra: all bases of a subspace have the same size
- a linearly independent subset of $S$ can't have more than $\operatorname{dim} S$ elements
- if $S$ is a subspace in $\mathbf{R}^{n}$, then $0 \leq \operatorname{dim} S \leq n$


## Range, nullspace, and linear equations

consider a linear equation $A x=b$ with $A \in \mathbf{R}^{m \times n}$ (not necessarily square)
range of $A$ : determines existence of solutions

- equation is solvable for $b \in \operatorname{range}(A)$
- if range $(A)=\mathbf{R}^{m}$, there is at least one solution for every $b$
nullspace of $A$ : determines uniqueness of solutions
- if $\hat{x}$ is a solution, then the complete solution set is $\{\hat{x}+v \mid A v=0\}$
- if nullspace $(A)=\{0\}$, there is at most one solution for every $b$


## Matrix rank

the rank of a matrix $A$ is defined as

$$
\operatorname{rank}(A)=\operatorname{dim} \operatorname{range}(A)
$$

properties (assume $A$ is $m \times n$ )

- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$
- $\operatorname{rank}(A) \leq \min \{m, n\}$
if $\operatorname{rank}(A)=\min \{m, n\}$ the matrix is said to be full rank
- $\operatorname{dim} \operatorname{nullspace}(A)=n-\operatorname{rank}(A)$


## Left-invertible matrix

definition: $A$ is left-invertible if there exists an $X$ with

$$
X A=I
$$

$X$ is called a left inverse of $A$
equivalent properties (for an $m \times n$ matrix $A$ )

- $\operatorname{rank}(A)=n$
- nullspace $(A)=\{0\}$
- the columns of $A$ form a linearly independent set
- the linear equation $A x=b$ has at most one solution for every r.h.s. $b$
dimensions: if $A \in \mathbf{R}^{m \times n}$ is left-invertible, then $m \geq n$


## Right-invertible matrix

definition: $A$ is right-invertible if there exists a $Y$ with

$$
A Y=I
$$

$Y$ is called a right inverse of $A$
equivalent properties (for an $m \times n$ matrix $A$ )

- $\operatorname{rank}(A)=m$
- $\operatorname{range}(A)=\mathbf{R}^{m}$
- the rows of $A$ form a linearly independent set
- the linear equation $A x=b$ has at least one solution for every r.h.s. $b$
dimensions: if $A \in \mathbf{R}^{m \times n}$ is right-invertible, then $m \leq n$


## Invertible matrix

definition: $A$ is invertible (nonsingular) if it is left- and right-invertible

- $A$ is necessarily square
- the linear equation $A x=b$ has exactly one solution for every r.h.s. $b$
inverse: if left and right inverses exist, they must be equal and unique

$$
X A=I, \quad A Y=I \quad \Longrightarrow \quad X=X(A Y)=(X A) Y=Y
$$

we use the notation $A^{-1}$ for the left/right inverse of an invertible matrix

## Affine set

definition: a subset $S$ of $\mathbf{R}^{n}$ is affine if

$$
x, y \in S, \quad \alpha+\beta=1 \quad \Longrightarrow \quad \alpha x+\beta y \in S
$$

- the line through any two distinct points $x, y$ in $S$ is in $S$
- extends recursively to affine combinations of more than two vectors

$$
x_{1}, \ldots, x_{k} \in S, \quad \alpha_{1}+\cdots+\alpha_{k}=1 \quad \Longrightarrow \quad \alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k} \in S
$$

parallel subspace: a nonempty set $S$ is affine if and only if the set

$$
L=S-\hat{x}
$$

with $\hat{x} \in S$, is a subspace

- the parallel subspace $L$ is independent of the choice of $\hat{x} \in S$
- we define the dimension of $S$ to be $\operatorname{dim} L$


## Matrices and affine sets

linear equations: the solution set of a system of linear equations

$$
S=\{x \mid A x=b\}
$$

is an affine set; moreover, all affine sets can be represented this way
range parametrization: a set defined as

$$
S=\{x \mid x=A y+c \text { for some } y\}
$$

is affine; all nonempty affine sets can be represented this way

## Affine hull

## definition

- the affine hull of a set $C$ is the smallest affine set that contains $C$
- equivalently, the set of all affine combinations of points in $C$ :

$$
\left\{\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k} \mid k \geq 1, v_{1}, \ldots, v_{k} \in C, \alpha_{1}+\cdots+\alpha_{k}=1\right\}
$$

notation: aff $C$
example: the affine hull of $C=\left\{(x, y, z) \in \mathbf{R}^{3} \mid x^{2}+y^{2}=1, z=1\right\}$ is

$$
\operatorname{aff} C=\left\{(x, y, z) \in \mathbf{R}^{3} \mid z=1\right\}
$$

## Affine independence

a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ in $\mathbf{R}^{n}$ is affinely independent if

$$
\operatorname{rank}\left(\left[\begin{array}{cccc}
v_{1} & v_{2} & \cdots & v_{k} \\
1 & 1 & \cdots & 1
\end{array}\right]\right)=k
$$

- the set $\left\{v_{2}-v_{1}, v_{3}-v_{1}, \ldots, v_{k}-v_{1}\right\}$ is linearly independent
- the affine hull of $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ has dimension $k-1$
- this implies $k \leq n+1$
example

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

## Outline

- linear algebra review
- minimal faces and extreme points


## Polyhedron

a polyhedron is the solution set of a finite number of linear inequalities

- definition can include linear equalities $(C x=d \Leftrightarrow C x \leq d,-C x \leq-d)$
- note 'finite': the solution of the infinite set of linear inequalities

$$
a^{T} x \leq 1 \quad \text { for all } a \text { with }\|a\|=1
$$

is the unit ball $\{x \mid\|x\| \leq 1\}$ and not a polyhedron
notation: in the remainder of the lecture we consider a polyhedron

$$
P=\{x \mid A x \leq b, C x=d\}
$$

- we assume $P$ is not empty
- $A$ is $m \times n$ with rows $a_{i}^{T}$


## Lineality space

the lineality space of $P$ is

$$
L=\text { nullspace }\left(\left[\begin{array}{l}
A \\
C
\end{array}\right]\right)
$$

if $x \in P$, then $x+v \in P$ for all $v \in L$ :

$$
A(x+v)=A x \leq b, \quad C(x+v)=C x=d \quad \forall v \in L
$$

pointed polyhedron

- a polyhedron with lineality space $\{0\}$ is called pointed
- a polyhedron is pointed if it does not contain an entire line


## Examples

## not pointed

- a halfspace $\left\{x \mid a^{T} x \leq b\right\}(n \geq 2)$ : lineality space is $\left\{x \mid a^{T} x=0\right\}$
- a 'slab' $\left\{x \mid-1 \leq a^{T} x \leq 1\right\}(n \geq 2)$ : lineality space is $\left\{x \mid a^{T} x=0\right\}$
- $\{(x, y, z)||x| \leq 1,|y| \leq 1\}$ has lineality space $\{(0,0, z) \mid z \in \mathbf{R}\}$


## examples of pointed polyhedra

- probability simplex $\left\{x \in \mathbf{R}^{n} \mid \mathbf{1}^{T} x=1, x \geq 0\right\}$
- $\{(x, y, z)||x| \leq z,|y| \leq z\}$


## Face

definition: for $J \subseteq\{1,2, \ldots, m\}$, define

$$
F_{J}=\left\{x \in P \mid a_{i}^{T} x=b_{i} \text { for } i \in J\right\}
$$

if $F_{J}$ is nonempty, it is called a face of $P$

## properties

- $F_{J}$ is a nonempty polyhedron, defined by the inequalities and equalities

$$
a_{i}^{T} x \leq b_{i} \text { for } i \notin J, \quad a_{i}^{T} x=b_{i} \text { for } i \in J, \quad C x=d
$$

- faces of $F_{J}$ are also faces of $P$
- all faces have the same lineality space as $P$
- the number of faces is finite and at least one ( $P$ itself is a face: $P=F_{\emptyset}$ )


## Example

$$
\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \leq\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad x_{1}+x_{2}+x_{3}=1
$$



## Example

$$
\left[\begin{array}{rrr}
1 & -1 & 1 \\
1 & -1 & -1 \\
-1 & 1 & 1 \\
-1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \leq\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- solution set is a (non-pointed) polyhedron

$$
P=\left\{x \in \mathbf{R}^{3}| | x_{1}-x_{2}\left|+\left|x_{3}\right| \leq 1\right\}\right.
$$

- the lineality space is the line $L=\{(t, t, 0) \mid t \in \mathbf{R}\}$


## faces of $P$

- three-dimensional face: $F_{\emptyset}=P$
- two-dimensional faces:

$$
\begin{aligned}
& F_{\{1\}}=\left\{x \mid x_{1}-x_{2}+x_{3}=1, x_{1} \geq x_{2}, x_{3} \geq 0\right\} \\
& F_{\{2\}}=\left\{x \mid x_{1}-x_{2}-x_{3}=1, x_{1} \geq x_{2}, x_{3} \leq 0\right\} \\
& F_{\{3\}}=\left\{x \mid-x_{1}+x_{2}+x_{3}=1, x_{1} \leq x_{2}, x_{3} \geq 0\right\} \\
& F_{\{4\}}=\left\{x \mid-x_{1}+x_{2}-x_{3}=1, x_{1} \leq x_{2}, x_{3} \leq 0\right\}
\end{aligned}
$$

- one-dimensional faces:

$$
\begin{aligned}
& F_{\{1,2\}}=\left\{x \mid x_{1}-x_{2}=1, x_{3}=0\right\} \\
& F_{\{1,3\}}=\left\{x \mid x_{1}=x_{2}, x_{3}=1\right\} \\
& F_{\{2,4\}}=\left\{x \mid x_{1}=x_{2}, x_{3}=-1\right\} \\
& F_{\{3,4\}}=\left\{x \mid x_{1}-x_{2}=-1, x_{3}=0\right\}
\end{aligned}
$$

- $F_{J}$ is empty for all other $J$


## Minimal face

a face of $P$ is a minimal face if it does not contain another face of $P$

## examples

- polyhedron on page 3-18: the faces $F_{\{1,2\}}, F_{\{1,3\}}, F_{\{2,3\}}$
- polyhedron on page 3-19: the faces $F_{\{1,2\}}, F_{\{1,3\}}, F_{\{2,4\}}, F_{\{3,4\}}$


## property

- a face is minimal if and only if it is an affine set (see next page)
- all minimal faces are translates of the lineality space of $P$ (since all faces have the same lineality space)
proof: let $F_{J}$ be the face defined by

$$
a_{i}^{T} x \leq b_{i} \text { for } i \notin J, \quad a_{i}^{T} x=b_{i} \text { for } i \in J, \quad C x=d
$$

partition the inequalities $a_{i}^{T} x \leq b_{i}(i \notin J)$ in three groups:

1. $i \in J_{1}$ if $a_{i}^{T} x=b_{i}$ for all $x$ in $F_{J}$
2. $i \in J_{2}$ if $a_{i}^{T} x<b_{i}$ for all $x$ in $F_{J}$
3. $i \in J_{3}$ if there exist points $\hat{x}, \tilde{x} \in F_{j}$ with $a_{i}^{T} \hat{x}<b_{i}$ and $a_{i}^{T} \tilde{x}=b_{i}$

- inequalities in $J_{2}$ are redundant (can be omitted without changing $F_{J}$ )
- if $J_{3}$ is not empty and $j \in J_{3}$, then $F_{J \cup\{j\}}$ is a proper face of $F_{J}$ :
- $F_{J \cup\{j\}}$ is not empty because it contains $\tilde{x}$
- $F_{J \cup\{j\}}$ is not equal to $F_{J}$ because it does not contain $\hat{x}$
therefore, if $F_{J}$ is a minimal face then $J_{3}=\emptyset$ and $F_{J}$ is the solution set of

$$
a_{i}^{T} x=b_{i} \text { for } i \in J_{1} \cup J, \quad C x=d
$$

## Extreme points

extreme point (vertex): a minimal face of a pointed polyhedron
rank test: given $\hat{x} \in P$, is $\hat{x}$ an extreme point?

- let $J(\hat{x})=\left\{i_{1}, \ldots, i_{k}\right\}$ be the indices of the active constraints at $\hat{x}$ :

$$
a_{i}^{T} \hat{x}=b_{i} \text { for } i \in J(\hat{x}), \quad a_{i}^{T} \hat{x}<b_{i} \text { for } i \notin J(\hat{x})
$$

- $\hat{x}$ is an extreme point if

$$
\operatorname{rank}\left(\left[\begin{array}{c}
A_{J(\hat{x})} \\
C
\end{array}\right]\right)=n \quad \text { where } A_{J(\hat{x})}=\left[\begin{array}{c}
a_{i_{1}}^{T} \\
\vdots \\
a_{i_{k}}^{T}
\end{array}\right]
$$

$A_{J(\hat{x})}$ is the submatrix of $A$ with rows indexed by $J(\hat{x})$
proof: the face $F_{J(\hat{x})}$ is defined as the set of points $x$ that satisfy

$$
\begin{equation*}
a_{i}^{T} x=b_{i} \text { for } i \in J(\hat{x}), \quad a_{i}^{T} x \leq b_{i} \text { for } i \notin J(\hat{x}), \quad C x=d \tag{1}
\end{equation*}
$$

$x=\hat{x}$ satisfies (1) by definition of $J(\hat{x})$

- if the rank condition is satisfied, $x=\hat{x}$ is the only point that satisfies (1) therefore $F_{J(\hat{x})}$ is a minimal face $\left(\operatorname{dim} F_{J(\hat{x})}=0\right)$
- if the rank condition does not hold, then there exists a $v \neq 0$ with

$$
a_{i}^{T} v=0 \text { for } i \in J(\hat{x}), \quad C v=0
$$

this implies that $x=\hat{x} \pm t v$ satisfies (1) for small positive and negative $t$ therefore the face $F_{J(\hat{x})}$ is not minimal $\left(\operatorname{dim} F_{J(\hat{x})}>0\right)$

## Example

$$
\left[\begin{array}{rr}
-1 & 0 \\
2 & 1 \\
0 & -1 \\
1 & 2
\end{array}\right] x \leq\left[\begin{array}{l}
0 \\
3 \\
0 \\
3
\end{array}\right]
$$

- $\hat{x}=(1,1)$ is in $P$ :

$$
\left[\begin{array}{rr}
-1 & 0 \\
2 & 1 \\
0 & -1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
3 \\
-1 \\
3
\end{array}\right] \leq\left[\begin{array}{l}
0 \\
3 \\
0 \\
3
\end{array}\right]
$$

- the active constraints at $\hat{x}$ are $J(\hat{x})=\{2,4\}$
- the matrix $A_{J(\hat{x})}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ had rank 2, so $\hat{x}$ is an extreme point


## Example

the polyhedron on page 3-18 has three extreme points

- $\hat{x}=(1,0,0)$ :

$$
J(\hat{x})=\{2,3\}, \quad \operatorname{rank}\left(\left[\begin{array}{c}
A_{J(\hat{x})} \\
C
\end{array}\right]\right)=\operatorname{rank}\left(\left[\begin{array}{rrr}
0 & -1 & 0 \\
0 & 0 & -1 \\
1 & 1 & 1
\end{array}\right]\right)=3
$$

- $\hat{x}=(0,1,0)$ :

$$
J(\hat{x})=\{1,3\}, \quad \operatorname{rank}\left(\left[\begin{array}{c}
A_{J(\hat{x})} \\
C
\end{array}\right]\right)=\operatorname{rank}\left(\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 0 & -1 \\
1 & 1 & 1
\end{array}\right]\right)=3
$$

- $\hat{x}=(0,0,1)$ :

$$
J(\hat{x})=\{1,2\}, \quad \operatorname{rank}\left(\left[\begin{array}{c}
A_{J(\hat{x})} \\
C
\end{array}\right]\right)=\operatorname{rank}\left(\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
1 & 1 & 1
\end{array}\right]\right)=3
$$

## Exercise: polyhedron in standard form

consider a nonempty polyhedron $P$ defined by

$$
x \geq 0, \quad C x=d
$$

note that $P$ is pointed (regardless of values of $C, d$ )

- show that $\hat{x}$ is an extreme point if $\hat{x} \in P$ and

$$
\operatorname{rank}\left(\left[\begin{array}{llll}
c_{i_{1}} & c_{i_{2}} & \cdots & c_{i_{k}}
\end{array}\right]\right)=k
$$

where $c_{j}$ is column $j$ of $C$ and $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}=\left\{i \mid \hat{x}_{i}>0\right\}$

- show that an extreme point $\hat{x}$ has at most $\operatorname{rank}(C)$ nonzero elements
solution: without loss of generality, assume $\left\{i_{1}, \ldots, i_{k}\right\}=\{1, \ldots, k\}$
- apply rank test to

$$
\begin{array}{r}
{\left[\begin{array}{c}
-I \\
C
\end{array}\right]=\left[\begin{array}{cc}
-I_{k} & 0 \\
0 & -I_{n-k} \\
D & E
\end{array}\right],} \\
\text { with } D=\left[\begin{array}{lll}
c_{1} & \cdots & c_{k}
\end{array}\right] \text { and } E=\left[\begin{array}{lll}
c_{k+1} & \cdots & c_{n}
\end{array}\right]
\end{array}
$$

- inequalities $k+1, \ldots, n$ are active at $\hat{x}$
- $\hat{x}$ is an extreme point if the submatrix of active constraints has rank $n$ :

$$
\operatorname{rank}\left(\left[\begin{array}{cc}
0 & -I_{n-k} \\
D & E
\end{array}\right]\right)=n-k+\operatorname{rank}(D)=n
$$

i.e., $\operatorname{rank}(D)=k$

## Exercise: Birkhoff's theorem

doubly stochastic matrix: an $n \times n$ matrix $X$ is doubly stochastic if

$$
X_{i j} \geq 0, \quad i, j=1, \ldots, n, \quad X \mathbf{1}=1, \quad X^{T} \mathbf{1}=1
$$

- a nonnegative matrix with column and row sums equal to one
- set of doubly stochastic matrices form is a pointed polyhedron in $\mathbf{R}^{n \times n}$
question: show that the extreme points are the permutation matrices
(a permutation matrix is a doubly stochastic matrix with elements 0 or 1 )

