L. Vandenberghe EE236A (Fall 2013-14)

Lecture 3
Polyhedra

e linear algebra review

e minimal faces and extreme points



Subspace

definition: a nonempty subset S of R" is a subspace if
x,ye S, o BeER — ar + By € S
e extends recursively to linear combinations of more than two vectors:
X1,..., L €S, aq,...,ar €R — ax1+ -+ agrp €5
e all subspaces contain the origin

subspaces and matrices (with A € R™*"™)

e range: range(A) = {x € R" | x = Ay for some y} is a subspace of R™

e nullspace: nullspace(A) = {x € R" | Ax = 0} is a subspace of R"

conversely, every subspace can be expressed as a range or nullspace
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Linear independence

a nonempty set of vectors {v1,vo,...,vx} is linearly independent if
a1U1 + v + - - - + apvr = 0
holds only foray = as =---=a; =0
properties: if {v1,...,vx} is a linearly independent set, then
e coefficients a, in linear combinations * = ayv; + - - - + v are unique:
Q1U1 + Qv + -+ - + Qv = P1u1 + Pavg + - -+ PRk
implies a1 = (81, ag = Po, ..., ap = Py

e none of the vectors v; is a linear combination of the other vectors
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Basis and dimension

{v1,v9,..., v} C S is a basis of a subspace S if
e every x € S can be expressed as a linear combination of vy, . .., vg
e {vy,...,v,} is a linearly independent set

equivalently, every x € S can be expressed in exactly one way as

T = Q101 + -+ QpUg

dimension: dim S is the number of vectors in a basis of S

e key fact from linear algebra: all bases of a subspace have the same size
e a linearly independent subset of S can’t have more than dim S elements

e if S is a subspace in R", then 0 < dimS <n
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Range, nullspace, and linear equations

consider a linear equation Az = b with A € R™”*™ (not necessarily square)

range of A: determines existence of solutions

e equation is solvable for b € range(A)

e if range(A) = R™, there is at least one solution for every b

nullspace of A: determines uniqueness of solutions

e if Z is a solution, then the complete solution set is {Z + v | Av = 0}

e if nullspace(A) = {0}, there is at most one solution for every b
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Matrix rank

the rank of a matrix A is defined as

rank(A) = dimrange(A)

properties (assume A is m X n)
e rank(A) = rank(AT)

e rank(A) < min{m,n}

if rank(A) = min{m, n} the matrix is said to be full rank

e dimnullspace(A) = n — rank(A)
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Left-invertible matrix

definition: A is left-invertible if there exists an X with
XA=1
X is called a left inverse of A

equivalent properties (for an m x n matrix A)

e rank(A) =n

e nullspace(A) = {0}

e the columns of A form a linearly independent set

e the linear equation Az = b has at most one solution for every r.h.s. b

dimensions: if A € R™*" is left-invertible, then m > n
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Right-invertible matrix

definition: A is right-invertible if there exists a Y with
AY =1
Y is called a right inverse of A

equivalent properties (for an m x n matrix A)
o rank(A) =m

e range(A4) = R™

e the rows of A form a linearly independent set

e the linear equation Az = b has at least one solution for every r.h.s. b

dimensions: if A € R™*" is right-invertible, then m < n
g
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Invertible matrix

definition: A is invertible (nonsingular) if it is left- and right-invertible

e A is necessarily square

e the linear equation Ax = b has exactly one solution for every r.h.s. b

inverse: if left and right inverses exist, they must be equal and unique
XA=1, AY =1 — X=X(AY)=(XA)Y =Y

we use the notation A1 for the left/right inverse of an invertible matrix
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Affine set

definition: a subset S of R" is affine if
r,ye S, a+p=1 — ar + py € S

e the line through any two distinct points x, y in S isin S

e extends recursively to affine combinations of more than two vectors

T1,..., 0k €85, oa1+---+ap=1 — a1r1+ - t+apxg €5

parallel subspace: a nonempty set S is affine if and only if the set
L=5-z,

with £ € S, is a subspace

e the parallel subspace L is independent of the choice of £ € S

e we define the dimension of S to be dim L
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Matrices and affine sets

linear equations: the solution set of a system of linear equations
S={x| Ax = b}

is an affine set; moreover, all affine sets can be represented this way

range parametrization: a set defined as

S ={x |z = Ay + c for some y}

is affine; all nonempty affine sets can be represented this way
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Affine hull

definition

e the affine hull of a set C is the smallest affine set that contains C

e equivalently, the set of all affine combinations of points in C"

{1+ -+ agvp | k>1, vy,...,0. €C, a1+ -+ a =1}

notation: aff ('

example: the affine hull of C = {(z,9,2) e R® |22+ 32 =1,2=1}is

aft O = {(z,y,2) e R’ | 2 =1}
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Affine independence

a set of vectors {vy,vs,...,vx} in R" is affinely independent if
(1 V9 “ e Vi -
rank( L1 )=k
e the set {vy — vy,v3 —v1,...,v5 — v1} is linearly independent
e the affine hull of {v1,va,...,vx} has dimension k — 1

e this implies £ <n+1

example R
1 0 1 1

{f1tof{, 1|, 1],]1]}

0l (O] [O] | 1]
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e linear algebra review

e minimal faces and extreme points



Polyhedron

a polyhedron is the solution set of a finite number of linear inequalities

e definition can include linear equalities (Cx =d < Cx < d,—Cx < —d)

e note ‘finite’: the solution of the infinite set of linear inequalities
a’xz <1 forall a with ||a]| =1
is the unit ball {x | ||| < 1} and not a polyhedron

notation: in the remainder of the lecture we consider a polyhedron

P=A{x|Az <b, Cx =d}

e we assume P is not empty

T

o Aism X n with rows a;

Polyhedra 3-14



Lineality space
the lineality space of P is

L = nullspace([ é ])

if x € P, then x +v &€ P for all v € L:

Al +v)=Ax<b, Cx+v)=Cr=d VYvel

pointed polyhedron

e a polyhedron with lineality space {0} is called pointed

e a polyhedron is pointed if it does not contain an entire line
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Examples

not pointed
e a halfspace {x | alz < b} (n > 2): lineality space is {z | alx = 0}
e a'slab' {z | -1 <alzx <1} (n>2): lineality space is {z | a’z = 0}

o {(x,y,2) | |x| <1,|y| <1} has lineality space {(0,0,z2) | z € R}

examples of pointed polyhedra
e probability simplex {z € R" | 112 = 1,2 > 0}

o Uz,y,2) | |z < 2y < 2}
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Face

definition: for J C {1,2,...,m}, define
Fij={xcPlalx=0b; foric J}

if 7 is nonempty, it is called a face of P

properties

e F';is a nonempty polyhedron, defined by the inequalities and equalities

a,L-Tbez- fore & J, alx=0b;, forieJ, Cxr=d

7

e faces of F'; are also faces of P
e all faces have the same lineality space as P

e the number of faces is finite and at least one (P itself is a face: P = Fjp)
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Example

—1 0 0 1 0
0 -1 0 9 S 0 ) 331—|—£E2—|—333:1
0 0 —1 ] | 3 _ 0

Polyhedra 3-18



Example

-1 1] 1
1 -1 -1 1 1
1 1 1 T2 | S
-1 1 -1 L

e solution set is a (non-pointed) polyhedron

P:{ZIJER3||ZE1—ZC2‘—|—‘1’3|§1}

e the lineality space is the line L = {(¢,¢,0) | t € R}
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faces of P

e three-dimensional face:

e two-dimensional faces:

Iy
oy
sy
£y

e one-dimensional faces:

1,23
£71,3)
2,4y
13,4y

Fy=P

Ty —xo+x3 =1, 1 > 22, T3 > 0}
1 — 2o —x3 =1, 21 > x2, v3 <0}
—561—|—$2—|—333:1, $1§$2, 513320}

—x1+ 2o —x3=1, v1 <9, x3 <0}

= {z|x1—22=1, 3 =0}
= x|z =29, x3=1}

= {z|x1 =29, x3=—1}

— {ZC $1—332:—1,5133:O}

e F';is empty for all other J
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Minimal face

a face of P is a minimal face if it does not contain another face of P

examples

e polyhedron on page 3-18: the faces Fyq o1, Fy1 31, Fla3)
e polyhedron on page 3-19: the faces Fyq o1, Fy1 3y, Fioay, Fi3.a4

property

e a face is minimal if and only if it is an affine set (see next page)
e all minimal faces are translates of the lineality space of P

(since all faces have the same lineality space)
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proof: let F'; be the face defined by
aix <b; forid J, alx=b; foric J, Cr=d

partition the inequalities al z < b; (i & J) in three groups:

1. 1€ J; ifa;rx:biforallxinFJ
2. i € Jyif al x < b; for all z in F

3. i € J3 If there exist points Z,z € F; with al'® < b; and al'z = b;

e inequalities in Js are redundant (can be omitted without changing Fy)
e if J3is not empty and j € J3, then Fjy;y is a proper face of F:

— Fjugjy Is not empty because it contains ¥
— Fjuyg;1 1s not equal to Fy because it does not contain &

therefore, if F'; is a minimal face then J3 = () and F; is the solution set of

a;x=0b; forie J UJ, Cr=d
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Extreme points

extreme point (vertex): a minimal face of a pointed polyhedron

rank test: given £ € P, is  an extreme point?

o let J(z) = {i1,...,ix} be the indices of the active constraints at z:

a; & = b; for i € J(&), a;i & < b; fori & J(&)

e I is an extreme point if

- T
A i1
rank([ A‘é(,@ ]) =n where A;;) = :
T
| @iy,

A j(z) is the submatrix of A with rows indexed by J(%)

Polyhedra 3-23



proof: the face I';(;) is defined as the set of points x that satisfy
a; x =b; foric J(2), a; v < b; forid J(2), Cx=d (1)
xr = T satisfies (1) by definition of J(z)

e if the rank condition is satisfied, x = & is the only point that satisfies (1)
therefore F'y(; is a minimal face (dim F;(;) = 0)

e if the rank condition does not hold, then there exists a v % 0 with

a;v =0 foric J(&), Cv=0

)

this implies that « = & 4 tw satisfies (1) for small positive and negative ¢

therefore the face Iy ;) is not minimal (dim F;(z) > 0)
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e £ =(1,1)isin P:

e the active constraints at = are J(z) = {2,4}

e the matrix Aj;) = [

Polyhedra
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1
|

] had rank 2, so  is an extreme point

INA

w O W O
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Example

the polyhedron on page 3-18 has three extreme points

e 7 =(1,0,0):
A (0 -1 0]
J(&) = {2,3}, rank([ 'gx)]):rank( 0 0 —-1])=3
1 1 1
e & =(0,1,0):
A -1 0 0]
J(&) ={1,3}, rank([ ‘é(,x>]):rank( 00 —1|[)=3
11 1
e £ =1(0,0,1):
A -1 0 0
J(z) ={1,2}, rank([ ‘é(,x)]):rank( 0 -1 0 |)=3
1 11
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Exercise: polyhedron in standard form

consider a nonempty polyhedron P defined by
x > 0, Cr=d

note that P is pointed (regardless of values of C, d)

e show that z is an extreme point if £ € P and
rank(| ¢, ¢y, - ¢, |)=k

where ¢; is column j of C' and {iy,%2,...,9k} = {7 | Z; > 0}

e show that an extreme point Z has at most rank(C') nonzero elements
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solution: without loss of generality, assume {i1,...,ix} ={1,...,k}

e apply rank test to

R
C — O —dn—k 9
L D E —
WithD:[Cl ck}andE:[ckH cn]
e inequalities k +1, ..., n are active at =

e 1 is an extreme point if the submatrix of active constraints has rank n:

0 _In—kz

rank ( [ D 5

]) =n—k+rank(D) =n
i.e., rank(D) = k
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Exercise: Birkhoff’s theorem

doubly stochastic matrix: an n x n matrix X is doubly stochastic if
X;; >0, i,j=1,...,n, X1=1, X1 =1

e a nonnegative matrix with column and row sums equal to one

e set of doubly stochastic matrices form is a pointed polyhedron in R™"*"

question: show that the extreme points are the permutation matrices

(a permutation matrix is a doubly stochastic matrix with elements 0 or 1)
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