
L. Vandenberghe EE236A (Fall 2013-14)

Lecture 3
Polyhedra

• linear algebra review

• minimal faces and extreme points
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Subspace

definition: a nonempty subset S of Rn is a subspace if

x, y ∈ S, α, β ∈ R =⇒ αx+ βy ∈ S

• extends recursively to linear combinations of more than two vectors:

x1, . . . , xk ∈ S, α1, . . . , αk ∈ R =⇒ α1x1 + · · ·+ αkxk ∈ S

• all subspaces contain the origin

subspaces and matrices (with A ∈ Rm×n)

• range: range(A) = {x ∈ Rm | x = Ay for some y} is a subspace of Rm

• nullspace: nullspace(A) = {x ∈ Rn | Ax = 0} is a subspace of Rn

conversely, every subspace can be expressed as a range or nullspace
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Linear independence

a nonempty set of vectors {v1, v2, . . . , vk} is linearly independent if

α1v1 + α2v2 + · · ·+ αkvk = 0

holds only for α1 = α2 = · · · = αk = 0

properties: if {v1, . . . , vk} is a linearly independent set, then

• coefficients αk in linear combinations x = α1v1 + · · ·+ αkvk are unique:

α1v1 + α2v2 + · · ·+ αkvk = β1v1 + β2v2 + · · ·+ βkvk

implies α1 = β1, α2 = β2, . . . , αk = βk

• none of the vectors vi is a linear combination of the other vectors
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Basis and dimension

{v1, v2, . . . , vk} ⊆ S is a basis of a subspace S if

• every x ∈ S can be expressed as a linear combination of v1, . . . , vk

• {v1, . . . , vk} is a linearly independent set

equivalently, every x ∈ S can be expressed in exactly one way as

x = α1v1 + · · ·+ αkvk

dimension: dimS is the number of vectors in a basis of S

• key fact from linear algebra: all bases of a subspace have the same size

• a linearly independent subset of S can’t have more than dimS elements

• if S is a subspace in Rn, then 0 ≤ dimS ≤ n
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Range, nullspace, and linear equations

consider a linear equation Ax = b with A ∈ Rm×n (not necessarily square)

range of A: determines existence of solutions

• equation is solvable for b ∈ range(A)

• if range(A) = Rm, there is at least one solution for every b

nullspace of A: determines uniqueness of solutions

• if x̂ is a solution, then the complete solution set is {x̂+ v | Av = 0}

• if nullspace(A) = {0}, there is at most one solution for every b
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Matrix rank

the rank of a matrix A is defined as

rank(A) = dim range(A)

properties (assume A is m× n)

• rank(A) = rank(AT )

• rank(A) ≤ min{m,n}

if rank(A) = min{m,n} the matrix is said to be full rank

• dimnullspace(A) = n− rank(A)
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Left-invertible matrix

definition: A is left-invertible if there exists an X with

XA = I

X is called a left inverse of A

equivalent properties (for an m× n matrix A)

• rank(A) = n

• nullspace(A) = {0}

• the columns of A form a linearly independent set

• the linear equation Ax = b has at most one solution for every r.h.s. b

dimensions: if A ∈ Rm×n is left-invertible, then m ≥ n

Polyhedra 3–7



Right-invertible matrix

definition: A is right-invertible if there exists a Y with

AY = I

Y is called a right inverse of A

equivalent properties (for an m× n matrix A)

• rank(A) = m

• range(A) = Rm

• the rows of A form a linearly independent set

• the linear equation Ax = b has at least one solution for every r.h.s. b

dimensions: if A ∈ Rm×n is right-invertible, then m ≤ n
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Invertible matrix

definition: A is invertible (nonsingular) if it is left- and right-invertible

• A is necessarily square

• the linear equation Ax = b has exactly one solution for every r.h.s. b

inverse: if left and right inverses exist, they must be equal and unique

XA = I, AY = I =⇒ X = X(AY ) = (XA)Y = Y

we use the notation A−1 for the left/right inverse of an invertible matrix
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Affine set

definition: a subset S of Rn is affine if

x, y ∈ S, α+ β = 1 =⇒ αx+ βy ∈ S

• the line through any two distinct points x, y in S is in S

• extends recursively to affine combinations of more than two vectors

x1, . . . , xk ∈ S, α1+ · · ·+αk = 1 =⇒ α1x1+ · · ·+αkxk ∈ S

parallel subspace: a nonempty set S is affine if and only if the set

L = S − x̂,

with x̂ ∈ S, is a subspace

• the parallel subspace L is independent of the choice of x̂ ∈ S

• we define the dimension of S to be dimL
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Matrices and affine sets

linear equations: the solution set of a system of linear equations

S = {x | Ax = b}

is an affine set; moreover, all affine sets can be represented this way

range parametrization: a set defined as

S = {x | x = Ay + c for some y}

is affine; all nonempty affine sets can be represented this way
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Affine hull

definition

• the affine hull of a set C is the smallest affine set that contains C

• equivalently, the set of all affine combinations of points in C:

{α1v1 + · · ·+ αkvk | k ≥ 1, v1, . . . , vk ∈ C, α1 + · · ·+ αk = 1}

notation: aff C

example: the affine hull of C = {(x, y, z) ∈ R3 | x2 + y2 = 1, z = 1} is

aff C = {(x, y, z) ∈ R3 | z = 1}
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Affine independence

a set of vectors {v1, v2, . . . , vk} in Rn is affinely independent if

rank(

[

v1 v2 · · · vk
1 1 · · · 1

]

) = k

• the set {v2 − v1, v3 − v1, . . . , vk − v1} is linearly independent

• the affine hull of {v1, v2, . . . , vk} has dimension k − 1

• this implies k ≤ n+ 1

example

{





1
0
0



 ,





0
1
0



 ,





1
1
0



 ,





1
1
1



}
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Polyhedron

a polyhedron is the solution set of a finite number of linear inequalities

• definition can include linear equalities (Cx = d ⇔ Cx ≤ d,−Cx ≤ −d)

• note ‘finite’: the solution of the infinite set of linear inequalities

aTx ≤ 1 for all a with ‖a‖ = 1

is the unit ball {x | ‖x‖ ≤ 1} and not a polyhedron

notation: in the remainder of the lecture we consider a polyhedron

P = {x | Ax ≤ b, Cx = d}

• we assume P is not empty

• A is m× n with rows aTi
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Lineality space

the lineality space of P is

L = nullspace(

[

A

C

]

)

if x ∈ P , then x+ v ∈ P for all v ∈ L:

A(x+ v) = Ax ≤ b, C(x+ v) = Cx = d ∀v ∈ L

pointed polyhedron

• a polyhedron with lineality space {0} is called pointed

• a polyhedron is pointed if it does not contain an entire line
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Examples

not pointed

• a halfspace {x | aTx ≤ b} (n ≥ 2): lineality space is {x | aTx = 0}

• a ‘slab’ {x | −1 ≤ aTx ≤ 1} (n ≥ 2): lineality space is {x | aTx = 0}

• {(x, y, z) | |x| ≤ 1, |y| ≤ 1} has lineality space {(0, 0, z) | z ∈ R}

examples of pointed polyhedra

• probability simplex {x ∈ Rn | 1Tx = 1, x ≥ 0}

• {(x, y, z) | |x| ≤ z, |y| ≤ z}
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Face

definition: for J ⊆ {1, 2, . . . ,m}, define

FJ = {x ∈ P | aTi x = bi for i ∈ J}

if FJ is nonempty, it is called a face of P

properties

• FJ is a nonempty polyhedron, defined by the inequalities and equalities

aTi x ≤ bi for i 6∈ J, aTi x = bi for i ∈ J, Cx = d

• faces of FJ are also faces of P

• all faces have the same lineality space as P

• the number of faces is finite and at least one (P itself is a face: P = F∅)
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Example





−1 0 0
0 −1 0
0 0 −1









x1

x2

x3



 ≤





0
0
0



 , x1 + x2 + x3 = 1

x1

x2

x3

F∅

F{1}

F{3}

F{2}

F{2,3}

F{1,3}

F{1,2}

Polyhedra 3–18



Example









1 −1 1
1 −1 −1

−1 1 1
−1 1 −1













x1

x2

x3



 ≤









1
1
1
1









• solution set is a (non-pointed) polyhedron

P = {x ∈ R3 | |x1 − x2|+ |x3| ≤ 1}

• the lineality space is the line L = {(t, t, 0) | t ∈ R}
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faces of P

• three-dimensional face: F∅ = P

• two-dimensional faces:

F{1} = {x | x1 − x2 + x3 = 1, x1 ≥ x2, x3 ≥ 0}

F{2} = {x | x1 − x2 − x3 = 1, x1 ≥ x2, x3 ≤ 0}

F{3} = {x | −x1 + x2 + x3 = 1, x1 ≤ x2, x3 ≥ 0}

F{4} = {x | −x1 + x2 − x3 = 1, x1 ≤ x2, x3 ≤ 0}

• one-dimensional faces:

F{1,2} = {x | x1 − x2 = 1, x3 = 0}

F{1,3} = {x | x1 = x2, x3 = 1}

F{2,4} = {x | x1 = x2, x3 = −1}

F{3,4} = {x | x1 − x2 = −1, x3 = 0}

• FJ is empty for all other J
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Minimal face

a face of P is a minimal face if it does not contain another face of P

examples

• polyhedron on page 3–18: the faces F{1,2}, F{1,3}, F{2,3}

• polyhedron on page 3–19: the faces F{1,2}, F{1,3}, F{2,4}, F{3,4}

property

• a face is minimal if and only if it is an affine set (see next page)

• all minimal faces are translates of the lineality space of P

(since all faces have the same lineality space)
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proof: let FJ be the face defined by

aTi x ≤ bi for i 6∈ J, aTi x = bi for i ∈ J, Cx = d

partition the inequalities aTi x ≤ bi (i 6∈ J) in three groups:

1. i ∈ J1 if aTi x = bi for all x in FJ

2. i ∈ J2 if aTi x < bi for all x in FJ

3. i ∈ J3 if there exist points x̂, x̃ ∈ Fj with aTi x̂ < bi and aTi x̃ = bi

• inequalities in J2 are redundant (can be omitted without changing FJ)

• if J3 is not empty and j ∈ J3, then FJ∪{j} is a proper face of FJ :

– FJ∪{j} is not empty because it contains x̃
– FJ∪{j} is not equal to FJ because it does not contain x̂

therefore, if FJ is a minimal face then J3 = ∅ and FJ is the solution set of

aTi x = bi for i ∈ J1 ∪ J, Cx = d
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Extreme points

extreme point (vertex): a minimal face of a pointed polyhedron

rank test: given x̂ ∈ P , is x̂ an extreme point?

• let J(x̂) = {i1, . . . , ik} be the indices of the active constraints at x̂:

aTi x̂ = bi for i ∈ J(x̂), aTi x̂ < bi for i 6∈ J(x̂)

• x̂ is an extreme point if

rank(

[

AJ(x̂)

C

]

) = n where AJ(x̂) =





aTi1...
aTik





AJ(x̂) is the submatrix of A with rows indexed by J(x̂)
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proof: the face FJ(x̂) is defined as the set of points x that satisfy

aTi x = bi for i ∈ J(x̂), aTi x ≤ bi for i 6∈ J(x̂), Cx = d (1)

x = x̂ satisfies (1) by definition of J(x̂)

• if the rank condition is satisfied, x = x̂ is the only point that satisfies (1)

therefore FJ(x̂) is a minimal face (dimFJ(x̂) = 0)

• if the rank condition does not hold, then there exists a v 6= 0 with

aTi v = 0 for i ∈ J(x̂), Cv = 0

this implies that x = x̂± tv satisfies (1) for small positive and negative t

therefore the face FJ(x̂) is not minimal (dimFJ(x̂) > 0)
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Example









−1 0
2 1
0 −1
1 2









x ≤









0
3
0
3









• x̂ = (1, 1) is in P :









−1 0
2 1
0 −1
1 2









[

1
1

]

=









−1
3

−1
3









≤









0
3
0
3









• the active constraints at x̂ are J(x̂) = {2, 4}

• the matrix AJ(x̂) =

[

2 1
1 2

]

had rank 2, so x̂ is an extreme point
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Example

the polyhedron on page 3–18 has three extreme points

• x̂ = (1, 0, 0):

J(x̂) = {2, 3}, rank(

[

AJ(x̂)

C

]

) = rank(





0 −1 0
0 0 −1
1 1 1



) = 3

• x̂ = (0, 1, 0):

J(x̂) = {1, 3}, rank(

[

AJ(x̂)

C

]

) = rank(





−1 0 0
0 0 −1
1 1 1



) = 3

• x̂ = (0, 0, 1):

J(x̂) = {1, 2}, rank(

[

AJ(x̂)

C

]

) = rank(





−1 0 0
0 −1 0
1 1 1



) = 3
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Exercise: polyhedron in standard form

consider a nonempty polyhedron P defined by

x ≥ 0, Cx = d

note that P is pointed (regardless of values of C, d)

• show that x̂ is an extreme point if x̂ ∈ P and

rank(
[

ci1 ci2 · · · cik
]

) = k

where cj is column j of C and {i1, i2, . . . , ik} = {i | x̂i > 0}

• show that an extreme point x̂ has at most rank(C) nonzero elements
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solution: without loss of generality, assume {i1, . . . , ik} = {1, . . . , k}

• apply rank test to

[

−I

C

]

=





−Ik 0
0 −In−k

D E



 ,

with D =
[

c1 · · · ck
]

and E =
[

ck+1 · · · cn
]

• inequalities k + 1, . . . , n are active at x̂

• x̂ is an extreme point if the submatrix of active constraints has rank n:

rank(

[

0 −In−k

D E

]

) = n− k + rank(D) = n

i.e., rank(D) = k
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Exercise: Birkhoff’s theorem

doubly stochastic matrix: an n× n matrix X is doubly stochastic if

Xij ≥ 0, i, j = 1, . . . , n, X1 = 1, XT
1 = 1

• a nonnegative matrix with column and row sums equal to one

• set of doubly stochastic matrices form is a pointed polyhedron in Rn×n

question: show that the extreme points are the permutation matrices

(a permutation matrix is a doubly stochastic matrix with elements 0 or 1)
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