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Linear and affine functions

linear function: a function f : R — R is linear if

flax + By) =af(x)+Bf(y)  Vr,yeR" a,B€R

property: f is linear if and only if f(z) = a’z for some a

affine function: a function f : R" — R is affine if
flax+ (1 —a)y) =af(z) + (1 —a)f(y) Vr,y € R",a € R

property: f is affine if and only if f(x) = a’x + b for some a, b
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Piecewise-linear function

f :R"™ = R is (convex) piecewise-linear if it can be expressed as

f(r) = max (a;-rx + b;)

1=1,....m

f is parameterized by m n-vectors a; and m scalars b;

f(x)

(the term piecewise-affine is more accurate but less common)
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Piecewise-linear minimization

minimize f(x) = max (aj = + b;)
i=1,...,m

e equivalent LP (with variables x and auxiliary scalar variable t)
minimize ¢
subject to alx +b; <t, i=1,...,m

to see equivalence, note that for fixed x the optimal t is t = f(x)

e LP in matrix notation: minimize ¢X'% subject to A% < b with

IR HEE
xr = , c= : A= : : :
t 1 T
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Minimizing a sum of piecewise-linear functions

minimize f(z) + g(r) = max (a4 b;) + max (¢} x + d;)

1=1,....m 1=1,...,p

e cost function is piecewise-linear: maximum of mp affine functions

f(x) +g(z) = max ((a; + ¢;) @+ (b + dj))

e equivalent LP with m + p inequalities
minimize t1 + to
subject to a?a:#—bigtl, 1=1,....m

C?Qﬁ—l—digtg, ’iZl,...,p

note that for fixed xz, optimal t1, t5 are t; = f(x), t2 = g(x)
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e equivalent LP in matrix notation

minimize
subject to
with
x| 0 ] )
=\t |, ¢c=11], A=

Piecewise-linear optimization
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Az <b

al -1 0
al  —1 0
0 -1
cg 0 -1
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/so-Norm (Cheybshev) approximation

minimize ||Az — b/«

with A e R™*", b R™

e /.,-norm (Chebyshev norm) of m-vector y is

IYlloo = max |y;| = max max{y; —yi;
1=1,....m 1=1,....m

e equivalent LP (with variables x and auxiliary scalar variable t)

minimize ¢
subject to —t1 < Ax—-b<tl

(for fixed z, optimal tis t = ||[Ax — b||o)
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e equivalent LP in matrix notation

Piecewise-linear optimization

minimize

subject to

0 g T
1 t
A -1 |
—A -1
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/1-Norm approximation
minimize ||Az — bl

e /1-norm of m-vector y is
Iyl =) Iyl = > max{ys, —y:}
i=1 i=1

e equivalent LP (with variable = and auxiliary vector variable u)

™m
minimize > wu;
i=1

subjectto —u < Ar—b<u

(for fixed x, optimal w is u; = [(Ax — b);|, i =1,...,m)
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e equivalent LP in matrix notation

2] [

. A -] x b
subject to iy _I][ulgl_b]

Piecewise-linear optimization 2-10



Comparison with least-squares solution
histograms of residuals Az — b, with randomly generated A € R*°°%%0 for

r)s = argmin ||Ax — b||, xp, = argmin ||Ax — b||;

1.5 1.0 —0.5 0.0 0.5 1.0 1.5

(A.CI?]S.— b)k

O s ~1.0 =05 0.0 05 T0 1.5

(Axh - b)kﬁ

¢1-norm distribution is wider with a high peak at zero
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Robust curve fitting

e fit affine function f(t) = o + 5t to m points (¢;, y;)

e an approximation problem Az = b with

U1
A= S : x:[a], b= 5

. il Ym

e dashed: minimize ||Az — b

f(t)

e solid: minimize ||Ax — b||1

/1-norm approximation is more
robust against outliers

~10 _5 ‘ 5 10
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Sparse signal recovery via /;-norm minimization

e & € R" is unknown signal, known to be very sparse

e we make linear measurements y = A% with A € R™*", m <n

estimation by /;-norm minimization: compute estimate by solving

minimize  ||x|1
subject to Ax =y

estimate is signal with smallest £1-norm, consistent with measurements

equivalent LP (variables x, u € R™)
minimize 17w

subjectto —u <z <u
Ax =y

Piecewise-linear optimization 2-13



Example

e exact signal & € R )

g 0 | i |
e 10 nonzero components -1 ‘

_2,
200 100 600 800 1000
k
: 100x 1

least-norm solutions (randomly generated A € R'%?*109%)

minimum #¢;-norm solution minimum ¢;-norm solution

2 2
i ] 1
a1 L e iy R S0 ‘ || I
1t g -1 ‘
-9 -2
0 200 400 . 600 800 1000 0 200 100 . 600 800

/1-norm estimate is exact
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Exact recovery

when are the following problems equivalent?

minimize  card(z) minimize ||z
subject to Az =y subject to Az =y

e card(x) is cardinality (number of nonzero components) of x

e depends on A and cardinality of sparsest solution of Az =y

we say A allows exact recovery of k-sparse vectors if

T = argmin ||z||; when y = Az and card(z) < k
Azx=y

e here, argmin ||z||; denotes the unique minimizer

e a property of (the nullspace) of the ‘measurement matrix’ A
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‘Nullspace condition’ for exact recovery

necessary and sufficient condition for exact recovery of k-sparse vectors!
(1) (k)| < 1
2] 4+ 4 |2V < §||z||1 Vz € nullspace(A) \ {0}
here, z(*) denotes component z; in order of decreasing magnitude
2] > 23] > ... > |2

e a bound on how ‘concentrated’ nonzero vectors in nullspace(A) can be
e implies kK < n/2
e difficult to verify for general A

e holds with high probability for certain distributions of random A

IFeuer & Nemirovski (IEEE Trans. IT, 2003) and several other papers on compressed sensing.
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Proof of nullspace condition

notation

e x hassupport I C{1,2,....,n}ifz;=0fori &I
e |I| is number of elements in

e Pr is projection matrix on n-vectors with support I: Py is diagonal with

(1 jer
(Pr)ij = { 0 otherwise

e A satisfies the nullspace condition if
1
| Przlly < Szl
for all nonzero z in nullspace(A) and for all support sets I with |I| < k
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sufficiency: suppose A satisfies the nullspace condition

e let T be k-sparse with support I (i.e., with P;& = Z); define y = Az
e consider any feasible x (i.e., satisfying Az = y), different from z

e define z = x — Z; this is a nonzero vector in nullspace(A)

lzlls = [l + 2]
> ||+ 2z — Przlli — || Prz|
= D lakl+ > lzl = 1Pzl
kel kgl
= |2l + Izl = 2[[Przl]x
> |zl

(line 2 is the triangle inequality; the last line is the nullspace condition)

therefore & = argmin 4,._, |z||1
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necessity: suppose A does not satisfy the nullspace condition

e for some nonzero z € nullspace(A) and support set I with |I| < k,

1
| Przlls = 5 Izl

e define a k-sparse vector £ = —P;z and y = Az

e the vector x = & + z satisfies Ax = y and has /;-norm

| — Prz + z|)1
|z]]1 = [ Prz||1
2| Prz|l1 — || Przll

(EaIF

VAN

[Ealk

therefore  is not the unique £1-minimizer
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Linear classification

e given a set of points {vy,...,vyx} with binary labels s; € {—1,1}

e find hyperplane that strictly separates the two classes

alvi+b>0 ifs; =1
atv,+b<0 ifs;=—1

homogeneous in a, b, hence equivalent to the linear inequalities (in a, b)

si(afv;+b)>1, i=1,...,N
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Approximate linear separation of non-separable sets

N
minimize Z max{0,1 — s;(a’v; + b)}
i=1

e penalty 1 — s;(alv; + b) for misclassifying point v;
e can be interpreted as a heuristic for minimizing #misclassified points

e a piecewise-linear minimization problem with variables a, b
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equivalent LP (variables a € R”, b € R, v € RY)

N
minimize ) u;
i=1

subject to 1— sivla+b) <wu; i=1,...,N

’LLZZO, ’Lzl,,N
in matrix notation:
— O —_ T — -
minimize 0
- 1 — - —
i —slfUlT —s1 —1 0 0
—SQUQT —so 0 -1 0 a
: : : : b
T
. —syvy —sny 0 0 —1 U1
subject to 0 0 10 0 s
0 0 0o -1 0 :
: s : : 5 UN
i 0 0 0 0 —1
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Modeling software

modeling tools simplify the formulation of LPs (and other problems)

e accept optimization problem in standard notation (max, || - ||1, - . .)
e recognize problems that can be converted to LPs

e express the problem in the input format required by a specific LP solver

examples of modeling packages

e AMPL, GAMS
e CVX, YALMIP (MATLAB)
e CVXPY, Pyomo, CVXOPT (Python)
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CVX example

minimize  ||Ax — bl
subjectto 0<z: <1, k=1,....n

MATLAB code

CVX_begin
variable x(n);
minimize( norm(A*x - b, 1) )

subject to
x >= 0
x <=1
cvx_end

e between cvx_begin and cvx_end, x is a CVX variable

e after execution, x is MATLAB variable with optimal solution
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