Lecture 2 Piecewise-linear optimization

- piecewise-linear minimization
- ℓ_{1} - and ℓ_{∞}-norm approximation
- examples
- modeling software

Linear and affine functions

linear function: a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is linear if

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y) \quad \forall x, y \in \mathbf{R}^{n}, \alpha, \beta \in \mathbf{R}
$$

property: f is linear if and only if $f(x)=a^{T} x$ for some a
affine function: a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is affine if

$$
f(\alpha x+(1-\alpha) y)=\alpha f(x)+(1-\alpha) f(y) \quad \forall x, y \in \mathbf{R}^{n}, \alpha \in \mathbf{R}
$$

property: f is affine if and only if $f(x)=a^{T} x+b$ for some a, b

Piecewise-linear function

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is (convex) piecewise-linear if it can be expressed as

$$
f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)
$$

f is parameterized by $m n$-vectors a_{i} and m scalars b_{i}

(the term piecewise-affine is more accurate but less common)

Piecewise-linear minimization

$$
\operatorname{minimize} \quad f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)
$$

- equivalent LP (with variables x and auxiliary scalar variable t)

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & a_{i}^{T} x+b_{i} \leq t, \quad i=1, \ldots, m
\end{array}
$$

to see equivalence, note that for fixed x the optimal t is $t=f(x)$

- LP in matrix notation: minimize $\tilde{c}^{T} \tilde{x}$ subject to $\tilde{A} \tilde{x} \leq \tilde{b}$ with

$$
\tilde{x}=\left[\begin{array}{c}
x \\
t
\end{array}\right], \quad \tilde{c}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \tilde{A}=\left[\begin{array}{cc}
a_{1}^{T} & -1 \\
\vdots & \vdots \\
a_{m}^{T} & -1
\end{array}\right], \quad \tilde{b}=\left[\begin{array}{c}
-b_{1} \\
\vdots \\
-b_{m}
\end{array}\right]
$$

Minimizing a sum of piecewise-linear functions

$$
\operatorname{minimize} f(x)+g(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)+\max _{i=1, \ldots, p}\left(c_{i}^{T} x+d_{i}\right)
$$

- cost function is piecewise-linear: maximum of $m p$ affine functions

$$
f(x)+g(x)=\max _{\substack{i=1, \ldots, m \\ j=1, \ldots, p}}\left(\left(a_{i}+c_{j}\right)^{T} x+\left(b_{i}+d_{j}\right)\right)
$$

- equivalent LP with $m+p$ inequalities

$$
\begin{array}{ll}
\operatorname{minimize} & t_{1}+t_{2} \\
\text { subject to } & a_{i}^{T} x+b_{i} \leq t_{1}, \quad i=1, \ldots, m \\
& c_{i}^{T} x+d_{i} \leq t_{2}, \quad i=1, \ldots, p
\end{array}
$$

note that for fixed x, optimal t_{1}, t_{2} are $t_{1}=f(x), t_{2}=g(x)$

- equivalent LP in matrix notation

$$
\begin{array}{ll}
\operatorname{minimize} & \tilde{c}^{T} \tilde{x} \\
\text { subject to } & \tilde{A} \tilde{x} \leq \tilde{b}
\end{array}
$$

with

$$
\tilde{x}=\left[\begin{array}{c}
x \\
t_{1} \\
t_{2}
\end{array}\right], \quad \tilde{c}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad \tilde{A}=\left[\begin{array}{ccc}
a_{1}^{T} & -1 & 0 \\
\vdots & \vdots & \vdots \\
a_{m}^{T} & -1 & 0 \\
c_{1}^{T} & 0 & -1 \\
\vdots & \vdots & \vdots \\
c_{p}^{T} & 0 & -1
\end{array}\right], \quad \tilde{b}=\left[\begin{array}{c}
-b_{1} \\
\vdots \\
-b_{m} \\
-d_{1} \\
\vdots \\
-d_{p}
\end{array}\right]
$$

ℓ_{∞}-Norm (Cheybshev) approximation

$$
\operatorname{minimize} \quad\|A x-b\|_{\infty}
$$

with $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$

- ℓ_{∞}-norm (Chebyshev norm) of m-vector y is

$$
\|y\|_{\infty}=\max _{i=1, \ldots, m}\left|y_{i}\right|=\max _{i=1, \ldots, m} \max \left\{y_{i},-y_{i}\right\}
$$

- equivalent LP (with variables x and auxiliary scalar variable t)

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & -t 1 \leq A x-b \leq t 1
\end{array}
$$

(for fixed x, optimal t is $t=\|A x-b\|_{\infty}$)

- equivalent LP in matrix notation

$$
\begin{array}{ll}
\operatorname{minimize} & {\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{T}\left[\begin{array}{l}
x \\
t
\end{array}\right]} \\
\text { subject to } & {\left[\begin{array}{cc}
A & -\mathbf{1} \\
-A & -\mathbf{1}
\end{array}\right]\left[\begin{array}{l}
x \\
t
\end{array}\right] \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]}
\end{array}
$$

ℓ_{1}-Norm approximation

$$
\operatorname{minimize} \quad\|A x-b\|_{1}
$$

- ℓ_{1}-norm of m-vector y is

$$
\|y\|_{1}=\sum_{i=1}^{m}\left|y_{i}\right|=\sum_{i=1}^{m} \max \left\{y_{i},-y_{i}\right\}
$$

- equivalent LP (with variable x and auxiliary vector variable u)

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{m} u_{i} \\
\text { subject to } & -u \leq A x-b \leq u
\end{array}
$$

(for fixed x, optimal u is $u_{i}=\left|(A x-b)_{i}\right|, i=1, \ldots, m$)

- equivalent LP in matrix notation

$$
\begin{array}{ll}
\operatorname{minimize} & {\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{T}\left[\begin{array}{l}
x \\
u
\end{array}\right]} \\
\text { subject to } & {\left[\begin{array}{cc}
A & -I \\
-A & -I
\end{array}\right]\left[\begin{array}{l}
x \\
u
\end{array}\right] \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]}
\end{array}
$$

Comparison with least-squares solution

histograms of residuals $A x-b$, with randomly generated $A \in \mathbf{R}^{200 \times 80}$, for

$$
x_{1 \mathrm{~s}}=\operatorname{argmin}\|A x-b\|, \quad x_{\ell_{1}}=\operatorname{argmin}\|A x-b\|_{1}
$$

ℓ_{1}-norm distribution is wider with a high peak at zero

Robust curve fitting

- fit affine function $f(t)=\alpha+\beta t$ to m points $\left(t_{i}, y_{i}\right)$
- an approximation problem $A x \approx b$ with

$$
A=\left[\begin{array}{cc}
1 & t_{1} \\
\vdots & \vdots \\
1 & t_{m}
\end{array}\right], \quad x=\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right], \quad b=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]
$$

- dashed: minimize $\|A x-b\|$
- solid: minimize $\|A x-b\|_{1}$
ℓ_{1}-norm approximation is more robust against outliers

Sparse signal recovery via ℓ_{1}-norm minimization

- $\hat{x} \in \mathbf{R}^{n}$ is unknown signal, known to be very sparse
- we make linear measurements $y=A \hat{x}$ with $A \in \mathbf{R}^{m \times n}, m<n$
estimation by ℓ_{1}-norm minimization: compute estimate by solving

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{1} \\
\text { subject to } & A x=y
\end{array}
$$

estimate is signal with smallest ℓ_{1}-norm, consistent with measurements equivalent LP (variables $x, u \in \mathbf{R}^{n}$)

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} u \\
\text { subject to } & -u \leq x \leq u \\
& A x=y
\end{array}
$$

Example

- exact signal $\hat{x} \in \mathbf{R}^{1000}$
- 10 nonzero components

least-norm solutions (randomly generated $A \in \mathbf{R}^{100 \times 1000}$)

ℓ_{1}-norm estimate is exact

Exact recovery

when are the following problems equivalent?

$$
\begin{array}{llll}
\operatorname{minimize} & \operatorname{card}(x) & \text { minimize } & \|x\|_{1} \\
\text { subject to } & A x=y & \text { subject to } & A x=y
\end{array}
$$

- $\operatorname{card}(x)$ is cardinality (number of nonzero components) of x
- depends on A and cardinality of sparsest solution of $A x=y$
we say A allows exact recovery of k-sparse vectors if

$$
\hat{x}=\underset{A x=y}{\operatorname{argmin}}\|x\|_{1} \quad \text { when } y=A \hat{x} \text { and } \operatorname{card}(\hat{x}) \leq k
$$

- here, argmin $\|x\|_{1}$ denotes the unique minimizer
- a property of (the nullspace) of the 'measurement matrix' A

‘Nullspace condition’ for exact recovery

necessary and sufficient condition for exact recovery of k-sparse vectors ${ }^{1}$

$$
\left|z^{(1)}\right|+\cdots+\left|z^{(k)}\right|<\frac{1}{2}\|z\|_{1} \quad \forall z \in \operatorname{null} \operatorname{space}(A) \backslash\{0\}
$$

here, $z^{(i)}$ denotes component z_{i} in order of decreasing magnitude

$$
\left|z^{(1)}\right| \geq\left|z^{(2)}\right| \geq \cdots \geq\left|z^{(n)}\right|
$$

- a bound on how 'concentrated' nonzero vectors in nullspace (A) can be
- implies $k<n / 2$
- difficult to verify for general A
- holds with high probability for certain distributions of random A

[^0]
Proof of nullspace condition

notation

- x has support $I \subseteq\{1,2, \ldots, n\}$ if $x_{i}=0$ for $i \notin I$
- $|I|$ is number of elements in I
- P_{I} is projection matrix on n-vectors with support $I: P_{I}$ is diagonal with

$$
\left(P_{I}\right)_{j j}= \begin{cases}1 & j \in I \\ 0 & \text { otherwise }\end{cases}
$$

- A satisfies the nullspace condition if

$$
\left\|P_{I} z\right\|_{1}<\frac{1}{2}\|z\|_{1}
$$

for all nonzero z in nullspace (A) and for all support sets I with $|I| \leq k$
sufficiency: suppose A satisfies the nullspace condition

- let \hat{x} be k-sparse with support I (i.e., with $P_{I} \hat{x}=\hat{x}$); define $y=A \hat{x}$
- consider any feasible x (i.e., satisfying $A x=y$), different from \hat{x}
- define $z=x-\hat{x}$; this is a nonzero vector in nullspace (A)

$$
\begin{aligned}
\|x\|_{1} & =\|\hat{x}+z\|_{1} \\
& \geq\left\|\hat{x}+z-P_{I} z\right\|_{1}-\left\|P_{I} z\right\|_{1} \\
& =\sum_{k \in I}\left|\hat{x}_{k}\right|+\sum_{k \notin I}\left|z_{k}\right|-\left\|P_{I} z\right\|_{1} \\
& =\|\hat{x}\|_{1}+\|z\|_{1}-2\left\|P_{I} z\right\|_{1} \\
& >\|\hat{x}\|_{1}
\end{aligned}
$$

(line 2 is the triangle inequality; the last line is the nullspace condition) therefore $\hat{x}=\operatorname{argmin}_{A x=y}\|x\|_{1}$
necessity: suppose A does not satisfy the nullspace condition

- for some nonzero $z \in$ nullspace (A) and support set I with $|I| \leq k$,

$$
\left\|P_{I} z\right\|_{1} \geq \frac{1}{2}\|z\|_{1}
$$

- define a k-sparse vector $\hat{x}=-P_{I} z$ and $y=A \hat{x}$
- the vector $x=\hat{x}+z$ satisfies $A x=y$ and has ℓ_{1}-norm

$$
\begin{aligned}
\|x\|_{1} & =\left\|-P_{I} z+z\right\|_{1} \\
& =\|z\|_{1}-\left\|P_{I} z\right\|_{1} \\
& \leq 2\left\|P_{I} z\right\|_{1}-\left\|P_{I} z\right\|_{1} \\
& =\|\hat{x}\|_{1}
\end{aligned}
$$

therefore \hat{x} is not the unique ℓ_{1}-minimizer

Linear classification

- given a set of points $\left\{v_{1}, \ldots, v_{N}\right\}$ with binary labels $s_{i} \in\{-1,1\}$
- find hyperplane that strictly separates the two classes

$$
\begin{array}{lc}
a^{T} v_{i}+b>0 & \text { if } s_{i}=1 \\
a^{T} v_{i}+b<0 & \text { if } s_{i}=-1
\end{array}
$$

homogeneous in a, b, hence equivalent to the linear inequalities (in a, b)

$$
s_{i}\left(a^{T} v_{i}+b\right) \geq 1, \quad i=1, \ldots, N
$$

Approximate linear separation of non-separable sets

$$
\operatorname{minimize} \sum_{i=1}^{N} \max \left\{0,1-s_{i}\left(a^{T} v_{i}+b\right)\right\}
$$

- penalty $1-s_{i}\left(a_{i}^{T} v_{i}+b\right)$ for misclassifying point v_{i}
- can be interpreted as a heuristic for minimizing \#misclassified points
- a piecewise-linear minimization problem with variables a, b
equivalent LP (variables $a \in \mathbf{R}^{n}, b \in \mathbf{R}, u \in \mathbf{R}^{N}$)

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{N} u_{i} \\
\text { subject to } & 1-s_{i}\left(v_{i}^{T} a+b\right) \leq u_{i}, \quad i=1, \ldots, N \\
& u_{i} \geq 0, \quad i=1, \ldots, N
\end{array}
$$

in matrix notation:

minimize	$\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]^{T}\left[\begin{array}{l}a \\ b \\ u\end{array}\right]$
subject to	$\left[\begin{array}{cccccc}-s_{1} v_{1}^{T} & -s_{1} & -1 & 0 & \cdots & 0 \\ -s_{2} v_{2}^{T} & -s_{2} & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ -s_{N} v_{N}^{T} & -s_{N} & 0 & 0 & \cdots & -1 \\ 0 & 0 & -1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -1\end{array}\right]\left[\begin{array}{c}a \\ b \\ u_{1} \\ u_{2} \\ \vdots \\ u_{N}\end{array}\right] \leq\left[\begin{array}{c}-1 \\ -1 \\ \vdots \\ -1 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right]$

Modeling software

modeling tools simplify the formulation of LPs (and other problems)

- accept optimization problem in standard notation (max, $\|\cdot\|_{1}, \ldots$)
- recognize problems that can be converted to LPs
- express the problem in the input format required by a specific LP solver
examples of modeling packages
- AMPL, GAMS
- CVX, YALMIP (MATLAB)
- CVXPY, Pyomo, CVXOPT (Python)

CVX example

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|_{1} \\
\text { subject to } & 0 \leq x_{k} \leq 1, \quad k=1, \ldots, n
\end{array}
$$

MATLAB code

```
cvx_begin
    variable x(n);
    minimize( norm(A*x - b, 1) )
    subject to
        x >= 0
        x <= 1
cvx_end
```

- between cvx_begin and cvx_end, x is a CVX variable
- after execution, x is MATLAB variable with optimal solution

[^0]: ${ }^{1}$ Feuer \& Nemirovski (IEEE Trans. IT, 2003) and several other papers on compressed sensing.

