Lecture 12
 Simplex method

- adjacent extreme points
- one simplex iteration
- cycling
- initialization
- implementation

Problem format and assumptions

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \leq b
\end{array}
$$

A has size $m \times n$
assumption: the feasible set is nonempty and pointed $(\operatorname{rank}(A)=n)$

- sufficient condition: for each x_{k}, the constraints include simple bounds

$$
x_{k} \geq l_{k} \quad \text { and } / \text { or } \quad x_{k} \leq u_{k}
$$

- if needed, can replace 'free' variable x_{k} by two nonnegative variables

$$
x_{k}=x_{k}^{+}-x_{k}^{-}, \quad x_{k}^{+} \geq 0, \quad x_{k}^{-} \geq 0
$$

Simplex method

- invented in 1947 (George Dantzig)
- usually developed for LPs in standard form ('primal' simplex method)
- we will outline the 'dual' simplex method (for inequality form LP)

one iteration:

move from an extreme point to an adjacent extreme point with lower cost

questions

1. how are extreme points characterized? (see lecture 3)
2. how do we find an adjacent extreme point with lower cost?
3. when does the iteration terminate?
4. how do we find an initial extreme point?

Extreme points

recall rank test: to check whether \hat{x} is an extreme point of solution set of

$$
a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
$$

- check that \hat{x} satisfies the inequalities
- find the active constraints at \hat{x},

$$
J=\left\{i_{1}, \ldots, i_{k}\right\}=\left\{i \mid a_{i}^{T} \hat{x}=b_{i}\right\}
$$

and define the submatrix

$$
A_{J}=\left[\begin{array}{c}
a_{i_{1}}^{T} \\
a_{i_{2}}^{T} \\
\vdots \\
a_{i_{k}}^{T}
\end{array}\right]
$$

- \hat{x} is an extreme point if and only if $\operatorname{rank}\left(A_{J}\right)=n$

Degeneracy

extreme point x is nondegenerate if exactly n inequalities are active at it

- A_{J} is square $(|J|=n)$ and nonsingular
- therefore x can be written as $x=A_{J}^{-1} b_{J}$, where $b_{J}=\left(b_{i_{1}}, b_{i_{2}}, \ldots, b_{i_{n}}\right)$
an extreme point is degenerate if more than n inequalities are active at x
note:
- extremality is a geometric property (of the set $\mathcal{P}=\{x \mid A x \leq b\}$)
- (non-)degeneracy also depends on the description of \mathcal{P} (i.e., A and b)
until p. 12-20 we assume that all extreme points of \mathcal{P} are nondegenerate

Adjacent extreme points

definition:

extreme points are adjacent if they have $n-1$ common active constraints example

$$
\left[\begin{array}{rr}
0 & -1 \\
-1 & -1 \\
-1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \leq\left[\begin{array}{r}
0 \\
-1 \\
0 \\
2
\end{array}\right]
$$

x	$b-A x$	J
$(1,0)$	$(0,0,1,3)$	$\{1,2\}$
$(0,1)$	$(1,0,0,1)$	$\{2,3\}$
$(0,2)$	$(2,1,0,0)$	$\{3,4\}$

Moving to an adjacent extreme point

given: extreme point x with active index set J, and an index $k \in J$
problem: find adjacent extreme point \hat{x} with active set containing $J \backslash\{k\}$

1. solve the set of n equations in n variables

$$
a_{i}^{T} \Delta x=0, \quad i \in J \backslash\{k\}, \quad a_{k}^{T} \Delta x=-1
$$

2. if $A \Delta x \leq 0$, then $\{x+\alpha \Delta x \mid \alpha \geq 0\}$ is a feasible half-line:

$$
A(x+\alpha \Delta x) \leq b \quad \forall \alpha \geq 0
$$

3. else, take $\hat{x}=x+\hat{\alpha} \Delta x$ where $\hat{\alpha}=\max \{\alpha \mid A(x+\alpha \Delta x) \leq b\}$, i.e.,

$$
\hat{\alpha}=\min _{i: a_{i}^{T} \Delta x>0} \frac{b_{i}-a_{i}^{T} x}{a_{i}^{T} \Delta x}
$$

discussion

- equations in step 1 are solvable because A_{J} is nonsingular
- $\hat{\alpha}$ computed in step 3 is positive: $A_{J} \Delta x \leq 0$ by construction, so

$$
a_{i}^{T} \Delta x>0 \quad \Longrightarrow \quad i \notin J \quad \Longrightarrow \quad a_{i}^{T} x<b_{i}
$$

- $\hat{x}=x+\hat{\alpha} \Delta x$ is feasible with active constraints $\widehat{J}=(J \backslash\{k\}) \cup I$, where

$$
I=\left\{i \mid a_{i}^{T} \Delta x>0, \frac{b_{i}-a_{i}^{T} x}{a_{i}^{T} \Delta x}=\hat{\alpha}\right\}
$$

- \hat{x} is an extreme point $\left(\operatorname{rank}\left(A_{\widehat{J}}\right)=n\right)$: take any $j \in I$; since

$$
a_{j}^{T} \Delta x>0, \quad a_{i}^{T} \Delta x=0 \quad \text { for } i \in J \backslash\{k\}
$$

the vector a_{j} is linearly independent of the vectors $a_{i}, i \in J \backslash\{k\}$

- by nondegeneracy assumption, $|I|=1$ (minimizer in step 3 is unique)

Example

find the extreme points adjacent to $x=(1,0)$ (for example on $\mathrm{p} .12-6$)

1. try to remove $k=1$ from active set $J=\{1,2\}$

- compute Δx

$$
\left[\begin{array}{rr}
0 & -1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
\Delta x_{1} \\
\Delta x_{2}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0
\end{array}\right] \quad \Longrightarrow \quad \Delta x=(-1,1)
$$

- minimum ratio test: $A \Delta x=(-1,0,1,2)$

$$
\hat{\alpha}=\min \left\{\frac{b_{3}-a_{3}^{T} x}{a_{3}^{T} \Delta x}, \frac{b_{4}-a_{4}^{T} x}{a_{4}^{T} \Delta x}\right\}=\min \left\{\frac{1}{1}, \frac{3}{2}\right\}=1
$$

new extreme point: $\hat{x}=(0,1)$ with active set $\widehat{J}=\{2,3\}$
2. try to remove $k=2$ from active set $J=\{1,2\}$

- compute Δx

$$
\left[\begin{array}{rr}
0 & -1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
\Delta x_{1} \\
\Delta x_{2}
\end{array}\right]=\left[\begin{array}{r}
0 \\
-1
\end{array}\right] \quad \Longrightarrow \quad \Delta x=(1,0)
$$

- $A \Delta x=(0,-1,-1,-1)$:

$$
\{(1,0)+\alpha(1,0) \mid \alpha \geq 0\}
$$

is an unbounded edge of the feasible set

Finding an adjacent extreme point with lower cost

given extreme point x with active constraint set J

1. define $z \in \mathbf{R}^{m}$ with

$$
A_{J}^{T} z_{J}+c=0, \quad z_{j}=0 \quad \text { for } j \notin J
$$

2. if $z \geq 0$, then x, z are primal and dual optimal
3. otherwise select k with $z_{k}<0$ and determine Δx as on page 12-6:

$$
\begin{aligned}
c^{T}(x+\alpha \Delta x) & =c^{T} x-\alpha z_{J}^{T} A_{J} \Delta x \\
& =c^{T} x+\alpha z_{k}
\end{aligned}
$$

cost decreases in the direction Δx

One iteration of the simplex method

given an extreme point x with active set J

1. compute $z \in \mathbf{R}^{m}$ with

$$
A_{J}^{T} z_{J}+c=0, \quad z_{j}=0 \quad \text { for } j \notin J
$$

if $z \geq 0$, terminate: x, z are primal, dual optimal
2. choose k with $z_{k}<0$ and compute $\Delta x \in \mathbf{R}^{n}$ with

$$
a_{i}^{T} \Delta x=0 \quad \text { for } i \in J \backslash\{k\}, \quad a_{k}^{T} \Delta x=-1
$$

if $A \Delta x \leq 0$, terminate: LP is unbounded $\left(p^{\star}=-\infty\right)$
3. set $J:=J \backslash\{k\} \cup\{j\}$ and $x:=x+\hat{\alpha} \Delta x$ where

$$
j=\underset{i: a_{i}^{T} \Delta x>0}{\operatorname{argmin}} \frac{b_{i}-a_{i}^{T} x}{a_{i}^{T} \Delta x}, \quad \hat{\alpha}=\frac{b_{j}-a_{j}^{T} x}{a_{j}^{T} \Delta x}
$$

Pivot selection and convergence

step 2: which k do we choose if z_{k} has several negative components? many variants:

- choose most negative z_{k}
- choose maximum decrease in cost αz_{k}
- choose smallest k
all three variants work (if extreme points are nondegenerate)
step 3: j is unique and $\hat{\alpha}>0$ (if all extreme points are nondegenerate)
convergence follows from:
- finiteness of number of extreme points
- strict decrease in cost function at each step

Example

$\min . x_{1}+x_{2}-x_{3} \quad$ s.t. $\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \leq\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 2 \\ 2 \\ 2 \\ 5\end{array}\right]$

- optimal point is $x=(0,0,2)$
- start simplex method at $x=(2,2,0)$
iteration 1: $x=(2,2,0), \quad b-A x=(2,2,0,0,0,2,1), \quad J=\{3,4,5\}$

1. compute z :

$$
\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{3} \\
z_{4} \\
z_{5}
\end{array}\right]=-\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right] \quad \Longrightarrow \quad z=(0,0,-1,-1,-1,0,0)
$$

not optimal; remove $k=3$ from active set
2. compute Δx

$$
\left[\begin{array}{rrr}
0 & 0 & -1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\Delta x_{1} \\
\Delta x_{2} \\
\Delta x_{3}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
0
\end{array}\right] \quad \Longrightarrow \quad \Delta x=(0,0,1)
$$

3. minimum ratio test: $A \Delta x=(0,0,-1,0,0,1,1)$

$$
\hat{\alpha}=\operatorname{argmin}\{2 / 1,1 / 1\}=1, \quad j=7
$$

iteration 2: $x=(2,2,1), \quad b-A x=(2,2,1,0,0,1,0), \quad J=\{4,5,7\}$

1. compute z :

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
z_{4} \\
z_{5} \\
z_{7}
\end{array}\right]=-\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right] \quad \Longrightarrow \quad z=(0,0,0,-2,-2,0,1)
$$

not optimal; remove $k=5$ from active set
2. compute Δx

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\Delta x_{1} \\
\Delta x_{2} \\
\Delta x_{3}
\end{array}\right]=\left[\begin{array}{r}
0 \\
-1 \\
0
\end{array}\right] \quad \Longrightarrow \quad \Delta x=(0,-1,1)
$$

3. minimum ratio test: $A \Delta x=(0,1,-1,0,-1,1,0)$

$$
\hat{\alpha}=\operatorname{argmin}\{2 / 1,1 / 1\}=1, \quad j=6
$$

iteration 3: $x=(2,1,2), \quad b-A x=(2,1,2,0,1,0,0), \quad J=\{4,6,7\}$

1. compute z :

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
z_{4} \\
z_{6} \\
z_{7}
\end{array}\right]=-\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right] \quad \Longrightarrow \quad z=(0,0,0,0,0,2,-1)
$$

not optimal; remove $k=7$ from active set
2. compute Δx

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\Delta x_{1} \\
\Delta x_{2} \\
\Delta x_{3}
\end{array}\right]=\left[\begin{array}{r}
0 \\
0 \\
-1
\end{array}\right] \quad \Longrightarrow \quad \Delta x=(0,-1,0)
$$

3. minimum ratio test: $A \Delta x=(0,1,0,0,-1,0,-1)$

$$
\hat{\alpha}=\operatorname{argmin}\{1 / 1\}=1, \quad j=2
$$

iteration 4: $x=(2,0,2), \quad b-A x=(2,0,2,0,2,0,1), \quad J=\{2,4,6\}$

1. compute z :

$$
\left[\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
z_{2} \\
z_{4} \\
z_{6}
\end{array}\right]=-\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right] \quad \Longrightarrow \quad z=(0,1,0,-1,0,1,0)
$$

not optimal; remove $k=4$ from active set
2. compute Δx

$$
\left[\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\Delta x_{1} \\
\Delta x_{2} \\
\Delta x_{3}
\end{array}\right]=\left[\begin{array}{r}
0 \\
-1 \\
0
\end{array}\right] \quad \Longrightarrow \quad \Delta x=(-1,0,0)
$$

3. minimum ratio test: $A \Delta x=(1,0,0,-1,0,0,-1)$

$$
\hat{\alpha}=\operatorname{argmin}\{2 / 1\}=2, \quad j=1
$$

iteration 5: $x=(0,0,2), \quad b-A x=(0,0,2,2,2,0,3), \quad J=\{1,2,6\}$

1. compute z :

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{6}
\end{array}\right]=-\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right] \Longrightarrow z=(1,1,0,0,0,1,0)} \\
& \text { optimal }
\end{aligned}
$$

Degeneracy

- if x is degenerate, A_{J} has rank n but is not square
- if next point is degenerate, we have a tie in the minimization in step 3

solution

- define J to be a subset of n linearly independent active constraints
- A_{J} is square; steps 1 and 2 work as in the nondegenerate case
- in step 3, break ties arbitrarily

does it work?

- in step 3 we can have $\hat{\alpha}=0$ (i.e., x does not change)
- maybe this is okay, as long as J keeps changing

Example

$$
\begin{array}{ll}
\operatorname{minimize} & -3 x_{1}+5 x_{2}-x_{3}+2 x_{4} \\
\text { subject to } & {\left[\begin{array}{rrrr}
1 & -2 & -2 & 3 \\
2 & -3 & -1 & 1 \\
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leq\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{array}
$$

- $x=(0,0,0,0)$ is a degenerate extreme point with

$$
b-A x=(0,0,1,0,0,0,0)
$$

- start simplex with $J=\{4,5,6,7\}$
iteration 1: $J=\{4,5,6,7\}$

1. $z=(0,0,0,-3,5,-1,2)$: remove 4 from active set
2. $\Delta x=(1,0,0,0)$
3. $A \Delta x=(1,2,0,-1,0,0,0): \hat{\alpha}=0$, add 1 to active set
iteration 2: $J=\{1,5,6,7\}$
4. $z=(3,0,0,0,-1,-7,11)$: remove 5 from active set
5. $\Delta x=(2,1,0,0)$
6. $A \Delta x=(0,1,0,-2,-1,0,0): \hat{\alpha}=0$, add 2 to active set
iteration 3: $J=\{1,2,6,7\}$
7. $z=(1,1,0,0,0,-4,6)$: remove 6 from active set
8. $\Delta x=(-4,-3,1,0)$
9. $A \Delta x=(0,0,1,4,3,-1,0): \hat{\alpha}=0$, add 4 to active set
iteration 4: $J=\{1,2,4,7\}$
10. $z=(-2,3,0,1,0,0,-1)$: remove 7 from active set
11. $\Delta x=(0,-1 / 4,7 / 4,1)$
12. $A \Delta x=(0,0,7 / 4,0,1 / 4,-7 / 4,-1): \hat{\alpha}=0$, add 5 to active set
iteration 5: $J=\{1,2,4,5\}$
13. $z=(-1,1,0,-2,4,0,0)$: remove 1 from active set
14. $\Delta x=(0,0,-1,-1)$
15. $A \Delta x=(-1,0,-1,0,0,1,1): \hat{\alpha}=0$, add 6 to active set
iteration 6: $J=\{2,4,5,6\}$
16. $z=(0,-2,0,-7,11,1,0)$: remove 2 from active set
17. $\Delta x=(0,0,0,-1)$
18. $A \Delta x=(-3,-1,0,0,0,0,1): \hat{\alpha}=0$, add 7 to active set
iteration 7: $J=\{4,5,6,7\}$, the initial active set

Bland's ('least-index’) pivoting rule

no cycling occurs if we follow the following rule

- in step 2 , choose the smallest k for which $z_{k}<0$
- if there is a tie in step 3, choose the smallest j
proof (by contradiction) suppose there is a cycle, i.e., for some $q>p$

$$
x^{(p)}=x^{(p+1)}=\cdots=x^{(q)}, \quad J^{(p)} \neq J^{(p+1)} \neq \cdots \neq J^{(q)}=J^{(p)}
$$

where $x^{(s)}, J^{(s)}, z^{(s)}, \Delta x^{(s)}$ are the values of $x, J, z, \Delta x$ at iteration s we also define

- k_{s} : index removed from $J^{(s)}$ in iteration $s ; j_{s}$: index added in iteration s
- $\bar{k}=\max _{p \leq s \leq q-1} k_{s}$
- r : the iteration $(p \leq r \leq q-1)$ in which \bar{k} is removed $\left(\bar{k}=k_{r}\right)$
- t : the iteration $(r<t \leq q)$ in which \bar{k} is added back again $\left(\bar{k}=j_{t}\right)$
at iteration r we remove index \bar{k} from $J^{(r)}$; therefore
- $z_{\bar{k}}^{(r)}<0$
- $z_{i}^{(r)} \geq 0$ for $i \in J^{(r)}, i<\bar{k}$ (otherwise we should have removed i)
- $z_{i}^{(r)}=0$ for $i \notin J^{(r)}$ (by definition of $z^{(r)}$)
at iteration t we add index \bar{k} to $J^{(t)}$; therefore
- $a_{\bar{k}}^{T} \Delta x^{(t)}>0$
- $a_{i}^{T} \Delta x^{(t)} \leq 0$ for $i \in J^{(r)}, i<\bar{k}$
(otherwise we should have added i, since $b_{i}-a_{i}^{T} x=0$ for all $i \in J^{(r)}$)
- $a_{i}^{T} \Delta x^{(t)}=0$ for $i \in J^{(r)}, i>\bar{k}$
(if $i>\bar{k}$ and $i \in J^{(r)}$ then it is never removed, so $i \in J^{(t)} \backslash\left\{k_{t}\right\}$)
conclusion: $z^{(r)^{T}} A \Delta x^{(t)}<0$
a contradiction, because $-z^{(r)^{T}} A \Delta x^{(t)}=c^{T} \Delta x^{(t)} \leq 0$

Example

example of page $12-21$, same starting point but applying Bland's rule
iteration 1: $J=\{4,5,6,7\}$

1. $z=(0,0,0,-3,5,-1,2)$: remove 4 from active set
2. $\Delta x=(1,0,0,0)$
3. $A \Delta x=(1,2,0,-1,0,0,0): \hat{\alpha}=0$, add 1 to active set
iteration 2: $J=\{1,5,6,7\}$
4. $z=(3,0,0,0,-1,-7,11)$: remove 5 from active set
5. $\Delta x=(2,1,0,0)$
6. $A \Delta x=(0,1,0,-2,-1,0,0): \hat{\alpha}=0$, add 2 to active set
iteration 3: $J=\{1,2,6,7\}$
7. $z=(1,1,0,0,0,-4,6)$: remove 6 from active set
8. $\Delta x=(-4,-3,1,0)$
9. $A \Delta x=(0,0,1,4,3,-1,0): \hat{\alpha}=0$, add 4 to active set
iteration 4: $J=\{1,2,4,7\}$
10. $z=(-2,3,0,1,0,0,-1)$: remove 1 from active set
11. $\Delta x=(0,-1 / 4,3 / 4,1)$
12. $A \Delta x=(-1,0,3 / 4,0,1 / 4,-3 / 4,0): \hat{\alpha}=0$, add 5 to active set
iteration 5: $J=\{2,4,5,7\}$
13. $z=(0,-1,0,-5,8,0,1)$: remove 2 from active set
14. $\Delta x=(0,0,1,0)$
15. $A \Delta x=(-2,-1,1,0,0,-1,0): \hat{\alpha}=1$, add 3 to active set
new $x=(0,0,1,0), b-A x=(2,1,0,0,0,1,0)$
iteration 6: $J=\{3,4,5,7\}$
16. $z=(0,0,1,-3,5,0,2)$: remove 4 from active set
17. $\Delta x=(1,0,0,0)$
18. $A \Delta x=(1,2,0,-1,0,0,0): \hat{\alpha}=1 / 2$, add 2 to active set
new $x=(1 / 2,0,1,0), b-A x=(3 / 2,0,0,1 / 2,0,1,0)$
iteration 7: $J=\{1,3,5,7\}$
19. $z=(3,0,7,0,-1,0,11)$: remove 5 from active set
20. $\Delta x=(2,1,0,0)$
21. $A \Delta x=(0,1,0,-2,-1,0,0): \hat{\alpha}=0$, add 2 to active set
iteration 8: $J=\{1,2,3,7\}$
22. $z=(1,1,4,0,0,0,6)$: optimal

Initialization

linear program with variable bounds

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \leq b, \quad x \geq 0
\end{array}
$$

(general: free x_{k} can be split as $x_{k}=x_{k}^{+}-x_{k}^{-}$with $x_{k}^{+} \geq 0, x_{k}^{-} \geq 0$) phase I problem

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & A x \leq(1-t) b, \quad x \geq 0, \quad 0 \leq t \leq 1
\end{array}
$$

- $x=0, t=1$ is an extreme point for phase I problem
- can compute an optimal extreme point x^{\star}, t^{\star} via simplex method
- if $t^{\star}>0$, original problem is infeasible
- if $t^{\star}=0$, then x^{\star} is an extreme point of original problem

Implementation

- most expensive step: solution of two sets of linear equations

$$
A_{J}^{T} z_{J}=-c, \quad A_{J} \Delta x=-\left(e_{k}\right)_{J}
$$

where e_{k} is k th unit vector

- one row of A_{J} changes at each iteration
efficient implementation: propagate LU factorization of A_{J}
- given the factorization, the equations can be solved in $O\left(n^{2}\right)$ operations
- updating LU factorization after changing a row costs $O\left(n^{2}\right)$ operations
total cost is $O\left(n^{2}\right)$ per iteration (and much less than $O\left(n^{2}\right)$ if A is sparse)

Complexity

worst-case

- for most pivoting rules, there exist examples where the number of iterations grows exponentially with n and m
- it is an open question whether there exists a pivoting rule for which the number of iterations is bounded by a polynomial of n and m
in practice: very efficient (\#iterations typically grows linearly with m, n)

