Lecture 12 Simplex method

- adjacent extreme points
- one simplex iteration
- cycling
- initialization
- implementation

Problem format and assumptions

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \leq b \end{array}$

A has size $m \times n$

assumption: the feasible set is nonempty and **pointed** (rank(A) = n)

• sufficient condition: for each x_k , the constraints include simple bounds

$$x_k \ge l_k$$
 and/or $x_k \le u_k$

• if needed, can replace 'free' variable x_k by two nonnegative variables

$$x_k = x_k^+ - x_k^-, \qquad x_k^+ \ge 0, \qquad x_k^- \ge 0$$

Simplex method

- invented in 1947 (George Dantzig)
- usually developed for LPs in standard form ('primal' simplex method)
- we will outline the 'dual' simplex method (for inequality form LP)

one iteration:

move from an extreme point to an adjacent extreme point with lower cost

questions

- 1. how are extreme points characterized? (see lecture 3)
- 2. how do we find an adjacent extreme point with lower cost?
- 3. when does the iteration terminate?
- 4. how do we find an initial extreme point?

Extreme points

recall rank test: to check whether \hat{x} is an extreme point of solution set of

$$a_i^T x \le b_i, \quad i = 1, \dots, m$$

- check that \hat{x} satisfies the inequalities
- find the active constraints at \hat{x} ,

$$J = \{i_1, \dots, i_k\} = \{i \mid a_i^T \hat{x} = b_i\},\$$

and define the submatrix

$$A_J = \begin{bmatrix} a_{i_1}^T \\ a_{i_2}^T \\ \vdots \\ a_{i_k}^T \end{bmatrix}$$

• \hat{x} is an extreme point if and only if $rank(A_J) = n$

Degeneracy

extreme point x is **nondegenerate** if exactly n inequalities are active at it

- A_J is square (|J| = n) and nonsingular
- therefore x can be written as $x = A_J^{-1}b_J$, where $b_J = (b_{i_1}, b_{i_2}, \dots, b_{i_n})$

an extreme point is **degenerate** if more than n inequalities are active at x

note:

- extremality is a *geometric* property (of the set $\mathcal{P} = \{x \mid Ax \leq b\}$)
- (non-)degeneracy also depends on the *description* of \mathcal{P} (*i.e.*, A and b)

until p. 12–20 we assume that all extreme points of \mathcal{P} are nondegenerate

Adjacent extreme points

definition:

extreme points are **adjacent** if they have n - 1 common active constraints

Moving to an adjacent extreme point

given: extreme point x with active index set J, and an index $k \in J$ **problem**: find adjacent extreme point \hat{x} with active set containing $J \setminus \{k\}$

1. solve the set of n equations in n variables

$$a_i^T \Delta x = 0, \quad i \in J \setminus \{k\}, \qquad a_k^T \Delta x = -1$$

2. if $A\Delta x \leq 0$, then $\{x + \alpha \Delta x \mid \alpha \geq 0\}$ is a feasible half-line:

$$A(x + \alpha \Delta x) \le b \quad \forall \alpha \ge 0$$

3. else, take $\hat{x} = x + \hat{\alpha} \Delta x$ where $\hat{\alpha} = \max\{\alpha \mid A(x + \alpha \Delta x) \leq b\}$, *i.e.*,

$$\hat{\alpha} = \min_{i:a_i^T \Delta x > 0} \frac{b_i - a_i^T x}{a_i^T \Delta x}$$

discussion

- equations in step 1 are solvable because A_J is nonsingular
- $\hat{\alpha}$ computed in step 3 is positive: $A_J \Delta x \leq 0$ by construction, so

$$a_i^T \Delta x > 0 \implies i \notin J \implies a_i^T x < b_i$$

• $\hat{x} = x + \hat{\alpha} \Delta x$ is feasible with active constraints $\hat{J} = (J \setminus \{k\}) \cup I$, where

$$I = \{i \mid a_i^T \Delta x > 0, \ \frac{b_i - a_i^T x}{a_i^T \Delta x} = \hat{\alpha}\}$$

• \hat{x} is an extreme point $(\operatorname{rank}(A_{\widehat{J}}) = n)$: take any $j \in I$; since

$$a_j^T \Delta x > 0, \qquad a_i^T \Delta x = 0 \quad \text{for } i \in J \setminus \{k\}$$

the vector a_j is linearly independent of the vectors a_i , $i \in J \setminus \{k\}$

• by nondegeneracy assumption, |I| = 1 (minimizer in step 3 is unique)

Example

find the extreme points adjacent to x = (1,0) (for example on p. 12–6)

- 1. try to remove k = 1 from active set $J = \{1, 2\}$
 - compute Δx

$$\begin{bmatrix} 0 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \implies \Delta x = (-1, 1)$$

• minimum ratio test: $A\Delta x = (-1, 0, 1, 2)$

$$\hat{\alpha} = \min\{\frac{b_3 - a_3^T x}{a_3^T \Delta x}, \frac{b_4 - a_4^T x}{a_4^T \Delta x}\} = \min\{\frac{1}{1}, \frac{3}{2}\} = 1$$

new extreme point: $\hat{x}=(0,1)$ with active set $\widehat{J}=\{2,3\}$

- 2. try to remove k = 2 from active set $J = \{1, 2\}$
 - compute Δx

$$\begin{bmatrix} 0 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \implies \Delta x = (1, 0)$$

•
$$A\Delta x = (0, -1, -1, -1)$$
:

$$\{(1,0) + \alpha(1,0) \mid \alpha \ge 0\}$$

is an unbounded edge of the feasible set

Finding an adjacent extreme point with lower cost

given extreme point x with active constraint set J

1. define $z \in \mathbf{R}^m$ with

$$A_J^T z_J + c = 0, \qquad z_j = 0 \quad \text{for } j \notin J$$

- 2. if $z \ge 0$, then x, z are primal and dual optimal
- 3. otherwise select k with $z_k < 0$ and determine Δx as on page 12–6:

$$c^{T}(x + \alpha \Delta x) = c^{T}x - \alpha z_{J}^{T}A_{J}\Delta x$$
$$= c^{T}x + \alpha z_{k}$$

cost decreases in the direction Δx

One iteration of the simplex method

given an extreme point x with active set J

1. compute $z \in \mathbf{R}^m$ with

$$A_J^T z_J + c = 0, \qquad z_j = 0 \quad \text{for } j \notin J$$

if $z \ge 0$, terminate: x, z are primal, dual optimal

2. choose k with $z_k < 0$ and compute $\Delta x \in \mathbf{R}^n$ with

$$a_i^T \Delta x = 0 \quad \text{for } i \in J \setminus \{k\}, \qquad a_k^T \Delta x = -1$$

if $A\Delta x \leq 0$, terminate: LP is unbounded $(p^* = -\infty)$

3. set $J := J \setminus \{k\} \cup \{j\}$ and $x := x + \hat{\alpha} \Delta x$ where

$$j = \underset{i:a_i^T \Delta x > 0}{\operatorname{argmin}} \frac{b_i - a_i^T x}{a_i^T \Delta x}, \qquad \hat{\alpha} = \frac{b_j - a_j^T x}{a_j^T \Delta x}$$

Pivot selection and convergence

step 2: which k do we choose if z_k has several negative components? many variants:

- choose most negative z_k
- choose maximum decrease in cost αz_k
- choose smallest k

all three variants work (if extreme points are nondegenerate)

step 3: *j* is unique and $\hat{\alpha} > 0$ (if all extreme points are nondegenerate)

convergence follows from:

- finiteness of number of extreme points
- strict decrease in cost function at each step

Example

iteration 1: x = (2, 2, 0), b - Ax = (2, 2, 0, 0, 0, 2, 1), $J = \{3, 4, 5\}$

1. compute z:

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} z_3 \\ z_4 \\ z_5 \end{bmatrix} = -\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \implies z = (0, 0, -1, -1, -1, 0, 0)$$

not optimal; remove k = 3 from active set

2. compute Δx

$$\begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \implies \Delta x = (0, 0, 1)$$

3. minimum ratio test: $A\Delta x = (0, 0, -1, 0, 0, 1, 1)$

$$\hat{\alpha} = \operatorname{argmin}\{2/1, 1/1\} = 1, \qquad j = 7$$

iteration 2: x = (2, 2, 1), b - Ax = (2, 2, 1, 0, 0, 1, 0), $J = \{4, 5, 7\}$

1. compute z:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} z_4 \\ z_5 \\ z_7 \end{bmatrix} = -\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \implies z = (0, 0, 0, -2, -2, 0, 1)$$

not optimal; remove k = 5 from active set

2. compute Δx

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \implies \Delta x = (0, -1, 1)$$

3. minimum ratio test: $A\Delta x = (0, 1, -1, 0, -1, 1, 0)$

$$\hat{\alpha} = \operatorname{argmin}\{2/1, 1/1\} = 1, \qquad j = 6$$

iteration 3: x = (2, 1, 2), b - Ax = (2, 1, 2, 0, 1, 0, 0), $J = \{4, 6, 7\}$

1. compute z:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} z_4 \\ z_6 \\ z_7 \end{bmatrix} = -\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \implies z = (0, 0, 0, 0, 0, 2, -1)$$

not optimal; remove k = 7 from active set

2. compute Δx

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} \implies \Delta x = (0, -1, 0)$$

3. minimum ratio test: $A\Delta x = (0, 1, 0, 0, -1, 0, -1)$

$$\hat{\alpha} = \operatorname{argmin}\{1/1\} = 1, \qquad j = 2$$

iteration 4: x = (2, 0, 2), b - Ax = (2, 0, 2, 0, 2, 0, 1), $J = \{2, 4, 6\}$

1. compute z:

$$\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} z_2 \\ z_4 \\ z_6 \end{bmatrix} = -\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \implies z = (0, 1, 0, -1, 0, 1, 0)$$

not optimal; remove k = 4 from active set

2. compute Δx

$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \implies \Delta x = (-1, 0, 0)$$

3. minimum ratio test: $A\Delta x = (1, 0, 0, -1, 0, 0, -1)$

$$\hat{\alpha} = \operatorname{argmin}\{2/1\} = 2, \qquad j = 1$$

iteration 5: x = (0, 0, 2), b - Ax = (0, 0, 2, 2, 2, 0, 3), $J = \{1, 2, 6\}$

1. compute z:

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_6 \end{bmatrix} = -\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \implies z = (1, 1, 0, 0, 0, 1, 0)$$

optimal

Degeneracy

- if x is degenerate, A_J has rank n but is not square
- if next point is degenerate, we have a tie in the minimization in step 3

solution

- define J to be a subset of n linearly independent active constraints
- A_J is square; steps 1 and 2 work as in the nondegenerate case
- in step 3, break ties arbitrarily

does it work?

- in step 3 we can have $\hat{\alpha} = 0$ (*i.e.*, x does not change)
- $\bullet\,$ maybe this is okay, as long as J keeps changing

Example

• x = (0, 0, 0, 0) is a degenerate extreme point with

$$b - Ax = (0, 0, 1, 0, 0, 0, 0)$$

• start simplex with $J = \{4, 5, 6, 7\}$

iteration 1:
$$J = \{4, 5, 6, 7\}$$

1. $z = (0, 0, 0, -3, 5, -1, 2)$: remove 4 from active set
2. $\Delta x = (1, 0, 0, 0)$
3. $A\Delta x = (1, 2, 0, -1, 0, 0, 0)$: $\hat{\alpha} = 0$, add 1 to active set
iteration 2: $J = \{1, 5, 6, 7\}$
1. $z = (3, 0, 0, 0, -1, -7, 11)$: remove 5 from active set
2. $\Delta x = (2, 1, 0, 0)$
3. $A\Delta x = (0, 1, 0, -2, -1, 0, 0)$: $\hat{\alpha} = 0$, add 2 to active set
iteration 3: $J = \{1, 2, 6, 7\}$
1. $z = (1, 1, 0, 0, 0, -4, 6)$: remove 6 from active set
2. $\Delta x = (-4, -3, 1, 0)$
3. $A\Delta x = (0, 0, 1, 4, 3, -1, 0)$: $\hat{\alpha} = 0$, add 4 to active set

Simplex method

iteration 4: $J = \{1, 2, 4, 7\}$ 1. z = (-2, 3, 0, 1, 0, 0, -1): remove 7 from active set 2. $\Delta x = (0, -1/4, 7/4, 1)$ 3. $A\Delta x = (0, 0, 7/4, 0, 1/4, -7/4, -1)$: $\hat{\alpha} = 0$, add 5 to active set iteration 5: $J = \{1, 2, 4, 5\}$ 1. z = (-1, 1, 0, -2, 4, 0, 0): remove 1 from active set 2. $\Delta x = (0, 0, -1, -1)$ 3. $A\Delta x = (-1, 0, -1, 0, 0, 1, 1)$: $\hat{\alpha} = 0$, add 6 to active set iteration 6: $J = \{2, 4, 5, 6\}$ 1. z = (0, -2, 0, -7, 11, 1, 0): remove 2 from active set 2. $\Delta x = (0, 0, 0, -1)$ 3. $A\Delta x = (-3, -1, 0, 0, 0, 0, 1)$: $\hat{\alpha} = 0$, add 7 to active set

iteration 7: $J = \{4, 5, 6, 7\}$, the initial active set

Simplex method

Bland's ('least-index') pivoting rule

no cycling occurs if we follow the following rule

- in step 2, choose the smallest k for which $z_k < 0$
- if there is a tie in step 3, choose the smallest j

proof (by contradiction) suppose there is a cycle, *i.e.*, for some q > p

$$x^{(p)} = x^{(p+1)} = \dots = x^{(q)}, \qquad J^{(p)} \neq J^{(p+1)} \neq \dots \neq J^{(q)} = J^{(p)}$$

where $x^{(s)},~J^{(s)},~z^{(s)},~\Delta x^{(s)}$ are the values of $x,~J,~z,~\Delta x$ at iteration s we also define

- k_s : index removed from $J^{(s)}$ in iteration s; j_s : index added in iteration s
- $\bar{k} = \max_{p \le s \le q-1} k_s$
- r: the iteration $(p \le r \le q 1)$ in which \overline{k} is removed $(\overline{k} = k_r)$
- t: the iteration $(r < t \le q)$ in which \overline{k} is added back again $(\overline{k} = j_t)$

at iteration r we remove index \overline{k} from $J^{(r)}$; therefore

- $z_{\overline{k}}^{(r)} < 0$
- $z_i^{(r)} \ge 0$ for $i \in J^{(r)}$, $i < \overline{k}$ (otherwise we should have removed i)

•
$$z_i^{(r)} = 0$$
 for $i \notin J^{(r)}$ (by definition of $z^{(r)}$)

at iteration t we add index \bar{k} to $J^{(t)}$; therefore

•
$$a_{\bar{k}}^T \Delta x^{(t)} > 0$$

•
$$a_i^T \Delta x^{(t)} \leq 0$$
 for $i \in J^{(r)}$, $i < \bar{k}$

(otherwise we should have added *i*, since $b_i - a_i^T x = 0$ for all $i \in J^{(r)}$)

•
$$a_i^T \Delta x^{(t)} = 0$$
 for $i \in J^{(r)}$, $i > \bar{k}$

(if $i > \overline{k}$ and $i \in J^{(r)}$ then it is never removed, so $i \in J^{(t)} \setminus \{k_t\}$)

conclusion: $z^{(r)}{}^T A \Delta x^{(t)} < 0$

a contradiction, because $-{z^{(r)}}^TA\Delta x^{(t)}=c^T\Delta x^{(t)}\leq 0$

Example

example of page 12–21, same starting point but applying Bland's rule

iteration 1: $J = \{4, 5, 6, 7\}$ 1. z = (0, 0, 0, -3, 5, -1, 2): remove 4 from active set 2. $\Delta x = (1, 0, 0, 0)$ 3. $A\Delta x = (1, 2, 0, -1, 0, 0, 0)$: $\hat{\alpha} = 0$, add 1 to active set

iteration 2: $J = \{1, 5, 6, 7\}$ 1. z = (3, 0, 0, 0, -1, -7, 11): remove 5 from active set 2. $\Delta x = (2, 1, 0, 0)$ 3. $A\Delta x = (0, 1, 0, -2, -1, 0, 0)$: $\hat{\alpha} = 0$, add 2 to active set

iteration 3: $J = \{1, 2, 6, 7\}$ 1. z = (1, 1, 0, 0, 0, -4, 6): remove 6 from active set 2. $\Delta x = (-4, -3, 1, 0)$ 3. $A\Delta x = (0, 0, 1, 4, 3, -1, 0)$: $\hat{\alpha} = 0$, add 4 to active set iteration 4: $J = \{1, 2, 4, 7\}$ 1. z = (-2, 3, 0, 1, 0, 0, -1): remove 1 from active set 2. $\Delta x = (0, -1/4, 3/4, 1)$ 3. $A\Delta x = (-1, 0, 3/4, 0, 1/4, -3/4, 0)$: $\hat{\alpha} = 0$, add 5 to active set iteration 5: $J = \{2, 4, 5, 7\}$ 1. z = (0, -1, 0, -5, 8, 0, 1): remove 2 from active set 2. $\Delta x = (0, 0, 1, 0)$ 3. $A\Delta x = (-2, -1, 1, 0, 0, -1, 0)$: $\hat{\alpha} = 1$, add 3 to active set new x = (0, 0, 1, 0), b - Ax = (2, 1, 0, 0, 0, 1, 0)

iteration 6:
$$J = \{3, 4, 5, 7\}$$

1. $z = (0, 0, 1, -3, 5, 0, 2)$: remove 4 from active set
2. $\Delta x = (1, 0, 0, 0)$
3. $A\Delta x = (1, 2, 0, -1, 0, 0, 0)$: $\hat{\alpha} = 1/2$, add 2 to active set
new $x = (1/2, 0, 1, 0)$, $b - Ax = (3/2, 0, 0, 1/2, 0, 1, 0)$
iteration 7: $J = \{1, 3, 5, 7\}$
1. $z = (3, 0, 7, 0, -1, 0, 11)$: remove 5 from active set
2. $\Delta x = (2, 1, 0, 0)$
3. $A\Delta x = (0, 1, 0, -2, -1, 0, 0)$: $\hat{\alpha} = 0$, add 2 to active set
iteration 8: $J = \{1, 2, 3, 7\}$

1. z = (1, 1, 4, 0, 0, 0, 6): optimal

Initialization

linear program with variable bounds

$$\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & Ax \leq b, \quad x \geq 0 \end{array}$$

(general: free x_k can be split as $x_k = x_k^+ - x_k^-$ with $x_k^+ \ge 0$, $x_k^- \ge 0$)

phase I problem

$$\begin{array}{ll} \mbox{minimize} & t \\ \mbox{subject to} & Ax \leq (1-t)b, \quad x \geq 0, \quad 0 \leq t \leq 1 \end{array}$$

- x = 0, t = 1 is an extreme point for phase I problem
- can compute an optimal extreme point x^{\star} , t^{\star} via simplex method
- if $t^* > 0$, original problem is infeasible
- if $t^{\star} = 0$, then x^{\star} is an extreme point of original problem

Implementation

• most expensive step: solution of two sets of linear equations

$$A_J^T z_J = -c, \qquad A_J \Delta x = -(e_k)_J$$

where e_k is kth unit vector

• one row of A_J changes at each iteration

efficient implementation: propagate LU factorization of A_J

- given the factorization, the equations can be solved in $O(n^2)$ operations
- updating LU factorization after changing a row costs $O(n^2)$ operations

total cost is $O(n^2)$ per iteration (and much less than $O(n^2)$ if A is sparse)

Complexity

worst-case

- for most pivoting rules, there exist examples where the number of iterations grows exponentially with n and m
- it is an open question whether there exists a pivoting rule for which the number of iterations is bounded by a polynomial of n and m

in practice: very efficient (#iterations typically grows linearly with m, n)