Additional problems for homework #1

1. Least-squares fit of a circle to points. In this problem we use least squares to fit a circle to given points \((u_i, v_i)\) in a plane, as shown in the figure.

![Circle diagram](image)

The variables \((u_c, v_c)\) denote the center of the circle and \(R\) its radius. A point \((u, v)\) is on the circle if \((u - u_c)^2 + (v - v_c)^2 = R^2\). We formulate the fitting problem as an optimization problem

\[
\text{minimize} \quad \sum_{i=1}^{m} ((u_i - u_c)^2 + (v_i - v_c)^2 - R^2)^2
\]

with three variables \(u_c, v_c, R\).

(a) Show that the problem can be written as a linear least-squares problem

\[
\text{minimize} \quad \|Ax - b\|_2^2 \tag{1}
\]

if we make a change of variables and use as variables

\[
x_1 = u_c, \quad x_2 = v_c, \quad x_3 = u_c^2 + v_c^2 - R^2.
\]

(b) Use the normal equations \(A^T Ax = A^T b\) of the least-squares problem to show that the optimal solution \(\hat{x}\) of the least-squares problem satisfies

\[
\hat{x}_1^2 + \hat{x}_2^2 - \hat{x}_3 \geq 0.
\]

This is necessary to compute \(R = \sqrt{\hat{x}_1^2 + \hat{x}_2^2 - \hat{x}_3}\) from \(\hat{x}\).
(c) Test your formulation on the problem data in the file `circlefit.m` on the course website. The commands

```matlab
circlefit;
plot(u, v, 'o');
axis equal
```
will create a plot of the \(m = 50 \) points \((u_i, v_i)\) in the figure.

Use the MATLAB command \(\mathbf{x} = \mathbf{A} \backslash \mathbf{b} \) to solve the least squares problem (1).

2. This problem is an introduction to the MATLAB software package CVX that will be used in the course. CVX can be downloaded from www.cvxr.com.

We consider the illumination problem of lecture 1. We take \(I_{\text{des}} = 1 \) and \(p_{\text{max}} = 1 \), so the problem is

\[
\begin{align*}
\text{minimize} & \quad f_0(p) = \max_{k=1, \ldots, n} |\log(a_k^T p)| \\
\text{subject to} & \quad 0 \leq p_j \leq 1, \quad j = 1, \ldots, m,
\end{align*}
\]

with variable \(p \in \mathbb{R}^m \). As mentioned in the lecture, the problem is equivalent to

\[
\begin{align*}
\text{minimize} & \quad \max_{k=1, \ldots, n} h(a_k^T p) \\
\text{subject to} & \quad 0 \leq p_j \leq 1, \quad j = 1, \ldots, m,
\end{align*}
\]

where \(h(u) = \max\{u, 1/u\} \) for \(u > 0 \). The function \(h \), shown in the figure below, is nonlinear, nondifferentiable, and convex.

To see the equivalence between (2) and (3), we note that

\[
\begin{align*}
f_0(p) &= \max_{k=1, \ldots, n} |\log(a_k^T p)| \\
&= \max_{k=1, \ldots, n} \max_{h} \{\log(a_k^T p), \log(1/a_k^T p)\}
\end{align*}
\]
and since the logarithm is a monotonically increasing function, minimizing \(f_0 \) is equivalent to minimizing \(\max_{k=1, \ldots, n} h(a_k^T p) \).

The problem data are given in the file `illum_data.m` posted on the course website. Executing this file in MATLAB creates the \(n \times m \)-matrix \(A \) (which has rows \(a_k^T \)). There are 10 lamps \((m = 10)\) and 20 patches \((n = 20)\).

Use the following methods to compute five approximate solutions and the exact solution, and compare the answers (the vectors \(p \) and the corresponding values of \(f_0(p) \)).

(a) **Equal lamp powers.** Take \(p_j = \gamma \) for \(j = 1, \ldots, m \). Plot \(f_0(p) \) versus \(\gamma \) over the interval [0, 1]. Graphically determine the optimal value of \(\gamma \), and the associated objective value. The objective function \(f_0(p) \) can be evaluated in MATLAB as \(\max(\text{abs} \log(A \cdot p)) \).

(b) **Least-squares with saturation.** Solve the least-squares problem

\[
\text{minimize } \sum_{k=1}^{n} (a_k^T p - 1)^2 = \|A p - 1\|_2^2.
\]

If the solution has negative coefficients, set them to zero; if some coefficients are greater than 1, set them to 1. Use the MATLAB command \(x = A \backslash b \) to solve a least-squares problem (minimize \(\|Ax - b\|_2^2 \)).

(c) **Regularized least-squares.** Solve the regularized least-squares problem

\[
\text{minimize } \sum_{k=1}^{n} (a_k^T p - 1)^2 + \rho \sum_{j=1}^{m} (p_j - 0.5)^2 = \|A p - 1\|_2^2 + \rho \|p - (1/2)1\|_2^2,
\]

where \(\rho > 0 \) is a parameter. Increase \(\rho \) until all coefficients of \(p \) are in the interval [0, 1].

(d) **Chebyshev approximation.** Solve the problem

\[
\text{minimize } \max_{k=1, \ldots, n} |a_k^T p - 1| = \|A p - 1\|_{\infty}
\]

subject to \(0 \leq p_j \leq 1, \quad j = 1, \ldots, m \).

We can think of this problem as obtained by approximating the nonlinear function \(h(u) \) by a piecewise-linear function \(|u - 1| + 1\). As shown in the figure below, this is a good approximation around \(u = 1 \).
This problem can be converted to a linear program and solved using the MATLAB function \texttt{linprog}. It can also be solved directly in CVX, using the expression \texttt{norm(A*p - 1, inf)} to specify the cost function.

(e) \textit{Piecewise-linear approximation.} We can improve the accuracy of the previous method by using a piecewise-linear approximation of h with more than two segments. To construct a piecewise-linear approximation of $1/u$, we take the pointwise maximum of the first-order approximations

$$h(u) \approx 1/\hat{u} - (1/\hat{u}^2)(u - \hat{u}) = 2/\hat{u} - u/\hat{u}^2,$$

at a number of different points \hat{u}. This is shown below, for $\hat{u} = 0.5, 0.8, 1$. In other words,

$$h_{\text{pwl}}(u) = \max \{u, \frac{2}{0.5} - \frac{1}{0.5^2}u, \frac{2}{0.8} - \frac{1}{0.8^2}u, 2 - u\}.$$
Solve the problem
\[
\begin{align*}
\text{minimize} & \quad \max_{k=1,\ldots,n} h_{\text{pw1}}(a_k^T p) \\
\text{subject to} & \quad 0 \leq p_j \leq 1, \quad j = 1, \ldots, m
\end{align*}
\]
using \texttt{linprog} or CVX.

(f) \textit{Exact solution.} Finally, use CVX to solve
\[
\begin{align*}
\text{minimize} & \quad \max_{k=1,\ldots,n} \max(a_k^T p, 1/a_k^T p) \\
\text{subject to} & \quad 0 \leq p_j \leq 1, \quad j = 1, \ldots, m.
\end{align*}
\]
Use the CVX function \texttt{inv_pos()} to expresss the function \(f(x) = 1/x \) with domain \(\mathbb{R}_{++} \).