6. Approximation and fitting

- norm approximation
- least-norm problems
- regularized approximation
- robust approximation
Norm approximation

minimize $\|Ax - b\|$

($A \in \mathbb{R}^{m \times n}$ with $m \geq n$, $\| \cdot \|$ is a norm on \mathbb{R}^n)

Interpretations of solution $x^* = \arg\min_x \|Ax - b\|:

- geometric: Ax^* is point in $\mathcal{R}(A)$ closest to b
- estimation: linear measurement model

\[y = Ax + v \]

y are measurements, x is unknown, v is measurement error

given $y = b$, best guess of x is x^*

- optimal design: x are design variables (input), Ax is result (output)
 x^* is design that best approximates desired result b
Examples

- least-squares approximation ($\| \cdot \|_2$): solution satisfies normal equations

\[A^T A x = A^T b \]

\[(x^* = (A^T A)^{-1} A^T b \text{ if } \text{rank } A = n) \]

- Chebyshev approximation ($\| \cdot \|_\infty$): can be solved as an LP

\[
\begin{align*}
\text{minimize} & \quad t \\
\text{subject to} & \quad -t \mathbf{1} \leq A x - b \leq t \mathbf{1}
\end{align*}
\]

- sum of absolute residuals approximation ($\| \cdot \|_1$): can be solved as an LP

\[
\begin{align*}
\text{minimize} & \quad \mathbf{1}^T y \\
\text{subject to} & \quad -y \leq A x - b \leq y
\end{align*}
\]
Penalty function approximation

minimize \(\phi(r_1) + \cdots + \phi(r_m) \)
subject to \(r = Ax - b \)

\(A \in \mathbb{R}^{m \times n}, \phi : \mathbb{R} \to \mathbb{R} \) is a convex penalty function

Examples

- quadratic: \(\phi(u) = u^2 \)
- deadzone-linear with width \(a \):
 \[\phi(u) = \max \{ 0, |u| - a \} \]
- log-barrier with limit \(a \):
 \[\phi(u) = \begin{cases} -a^2 \log(1 - (u/a)^2) & |u| < a \\ \infty & \text{otherwise} \end{cases} \]
Comparison

Example \((m = 100, n = 30)\): histogram of residuals for penalties

\[
\phi(u) = |u|, \quad \phi(u) = u^2, \quad \phi(u) = \max\{0, |u| - a\}, \quad \phi(u) = -\log(1 - u^2)
\]

shape of penalty function has large effect on distribution of residuals
Huber penalty

Huber penalty function (with parameter M)

\[
\phi_{hub}(u) = \begin{cases}
 u^2 & |u| \leq M \\
 M(2|u| - M) & |u| > M
\end{cases}
\]

linear growth for large u makes approximation less sensitive to outliers

- left: Huber penalty for $M = 1$
- right: affine function $f(t) = \alpha + \beta t$ fitted to 42 points t_i, y_i (circles) using quadratic (dashed) and Huber (solid) penalty
Least-norm problems

minimize $\|x\|$
subject to $Ax = b$

($A \in \mathbb{R}^{m \times n}$ with $m \leq n$, $\| \cdot \|$ is a norm on \mathbb{R}^n)

Interpretations of solution $x^* = \arg\min_{Ax=b} \|x\|$:

- geometric: x^* is point in affine set $\{x \mid Ax = b\}$ with minimum distance to 0

- estimation: $b = Ax$ are (perfect) measurements of x; x^* is smallest ('most plausible') estimate consistent with measurements

- design: x are design variables (inputs); b are required results (outputs)
 x^* is smallest ('most efficient') design that satisfies requirements
Examples

- least-squares solution of linear equations ($\| \cdot \|_2$):
 can be solved via optimality conditions

\[
2x + A^T y = 0, \quad Ax = b
\]

- minimum sum of absolute values ($\| \cdot \|_1$): can be solved as an LP

\[
\begin{align*}
\text{minimize} & \quad \mathbf{1}^T y \\
\text{subject to} & \quad -y \leq x \leq y, \quad Ax = b
\end{align*}
\]

...tends to produce sparse solution x^*

Extension: least-penalty problem

\[
\begin{align*}
\text{minimize} & \quad \phi(x_1) + \cdots + \phi(x_n) \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

$\phi : \mathbb{R} \to \mathbb{R}$ is convex penalty function
Regularized approximation

minimize (w.r.t. R_+^2) $(\|Ax - b\|, \|x\|)$

$A \in \mathbb{R}^{m \times n}$, norms on \mathbb{R}^m and \mathbb{R}^n can be different

Interpretation: find good approximation $Ax \approx b$ with small x

- estimation: linear measurement model $y = Ax + v$, with prior knowledge that $\|x\|$ is small

- optimal design: small x is cheaper or more efficient, or the linear model $y = Ax$ is only valid for small x

- robust approximation: good approximation $Ax \approx b$ with small x is less sensitive to errors in A than good approximation with large x
Scalarized problem

\[
\text{minimize } \|Ax - b\| + \gamma \|x\|
\]

- solution for \(\gamma > 0\) traces out optimal trade-off curve
- other common method: minimize \(\|Ax - b\|^2 + \delta \|x\|^2\) with \(\delta > 0\)

Tikhonov regularization

\[
\text{minimize } \|Ax - b\|^2 + \delta \|x\|^2
\]

can be solved as a least-squares problem

\[
\text{minimize } \left\| \begin{bmatrix} A \\ \sqrt{\delta} I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|^2_2
\]

solution \(x^* = (A^T A + \delta I)^{-1} A^T b\)
Optimal input design

Linear dynamical system with impulse response h:

$$y(t) = \sum_{\tau=0}^{t} h(\tau) u(t - \tau), \quad t = 0, 1, \ldots, N$$

Input design problem: multicriterion problem with 3 objectives

1. tracking error with desired output y_{des}: $J_{\text{track}} = \sum_{t=0}^{N} (y(t) - y_{\text{des}}(t))^2$
2. input magnitude: $J_{\text{mag}} = \sum_{t=0}^{N} u(t)^2$
3. input variation: $J_{\text{der}} = \sum_{t=0}^{N-1} (u(t + 1) - u(t))^2$

track desired output using a small and slowly varying input signal

Regularized least-squares formulation

minimize $J_{\text{track}} + \delta J_{\text{der}} + \eta J_{\text{mag}}$

for fixed δ, η, a least-squares problem in $u(0), \ldots, u(N)$
Example

3 solutions on optimal trade-off surface

(top) \(\delta = 0 \), small \(\eta \); (middle) \(\delta = 0 \), larger \(\eta \); (bottom) large \(\delta \)
Signal reconstruction

$$\text{minimize (w.r.t. } R_+^2) \ (|| \hat{x} - x_{\text{cor}} ||_2, \ \phi(\hat{x}))$$

- $x \in \mathbb{R}^n$ is unknown signal
- $x_{\text{cor}} = x + v$ is (known) corrupted version of x, with additive noise v
- variable \hat{x} (reconstructed signal) is estimate of x
- $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$ is regularization function or smoothing objective

Examples: quadratic smoothing, total variation smoothing:

$$\phi_{\text{quad}}(\hat{x}) = \sum_{i=1}^{n-1} (\hat{x}_{i+1} - \hat{x}_i)^2, \quad \phi_{\text{tv}}(\hat{x}) = \sum_{i=1}^{n-1} |\hat{x}_{i+1} - \hat{x}_i|$$
Quadratic smoothing example

original signal x and noisy signal x_{cor}

three solutions on trade-off curve $\|\hat{x} - x_{\text{cor}}\|_2$ versus $\phi_{\text{quad}}(\hat{x})$
Total variation reconstruction example

original signal x and noisy signal x_{cor}

quadratic smoothing smooths out noise and sharp transitions in signal

three solutions on trade-off curve $||\hat{x} - x_{\text{cor}}||_2$ versus $\phi_{\text{quad}}(\hat{x})$
original signal x and noisy signal x_{cor}

three solutions on trade-off curve

\[\| \hat{x} - x_{\text{cor}} \|_2 \text{ versus } \phi_{\text{tv}}(\hat{x}) \]

total variation smoothing preserves sharp transitions in signal
Robust approximation

minimize \(\|Ax - b\| \) with uncertain \(A \)

two approaches:

- **stochastic**: assume \(A \) is random, minimize \(\mathbb{E} \|Ax - b\| \)
- **worst-case**: set \(\mathcal{A} \) of possible values of \(A \), minimize \(\sup_{A \in \mathcal{A}} \|Ax - b\| \)

tractable only in special cases (certain norms \(\| \cdot \| \), distributions, sets \(\mathcal{A} \))

Example: \(A(u) = A_0 + uA_1 \)

- \(x_{\text{nom}} \) minimizes \(\|A_0x - b\|^2 \)
- \(x_{\text{stoch}} \) minimizes \(\mathbb{E} \|A(u)x - b\|^2 \)
 with \(u \) uniform on \([-1, 1]\)
- \(x_{\text{wc}} \) minimizes \(\sup_{-1 \leq u \leq 1} \|A(u)x - b\|^2 \)

figure shows \(r(u) = \|A(u)x - b\|_2 \)
Stochastic robust LS

with \(A = \bar{A} + U \), \(U \) random, \(\mathbf{E} U = 0 \), \(\mathbf{E} U^T U = P \)

\[
\text{minimize} \quad \mathbf{E} \| (\bar{A} + U)x - b \|_2^2
\]

• explicit expression for objective:

\[
\mathbf{E} \| Ax - b \|_2^2 = \mathbf{E} \| \bar{A}x - b + Ux \|_2^2 \\
= \| \bar{A}x - b \|_2^2 + \mathbf{E} x^T U^T U x \\
= \| \bar{A}x - b \|_2^2 + x^T Px
\]

• hence, robust LS problem is equivalent to LS problem

\[
\text{minimize} \quad \| \bar{A}x - b \|_2^2 + \| P^{1/2} x \|_2^2
\]

• for \(P = \delta I \), get Tikhonov regularized problem

\[
\text{minimize} \quad \| \bar{A}x - b \|_2^2 + \delta \| x \|_2^2
\]
Worst-case robust LS

with $\mathcal{A} = \{ \bar{A} + u_1 A_1 + \cdots + u_p A_p \mid \|u\|_2 \leq 1 \}$

$$\text{minimize } \sup_{A \in \mathcal{A}} \|Ax - b\|_2^2 = \sup_{\|u\|_2 \leq 1} \|P(x)u + q(x)\|_2^2$$

where $P(x) = \begin{bmatrix} A_1 x & A_2 x & \cdots & A_p x \end{bmatrix}$, $q(x) = \bar{A}x - b$

- from page 5.16, strong duality holds between the following problems

 $$\begin{align*}
 \text{maximize} & \quad \|Pu + q\|_2^2 \\
 \text{subject to} & \quad \|u\|_2^2 \leq 1
 \end{align*}$$

 $$\begin{align*}
 \text{minimize} & \quad t + \lambda \\
 \text{subject to} & \quad \begin{bmatrix}
 I & P & q \\
 P^T & \lambda I & 0 \\
 q^T & 0 & t
 \end{bmatrix} \succeq 0
 \end{align*}$$

- hence, robust LS problem is equivalent to SDP

 $$\begin{align*}
 \text{minimize} & \quad t + \lambda \\
 \text{subject to} & \quad \begin{bmatrix}
 I & P(x) & q(x) \\
 P(x)^T & \lambda I & 0 \\
 q(x)^T & 0 & t
 \end{bmatrix} \succeq 0
 \end{align*}$$

Approximation and fitting 6.19
Example: histogram of residuals

\[r(u) = \| (A_0 + u_1 A_1 + u_2 A_2) x - b \|_2 \]

with \(u \) uniformly distributed on unit disk, for three values of \(x \)

- \(x_{ls} \) minimizing \(\| A_0 x - b \|_2 \)
- \(x_{tik} \) minimizing \(\| A_0 x - b \|_2^2 + \delta \| x \|_2^2 \) (Tikhonov solution)
- \(x_{rls} \) minimizing \(\sup_{A \in \mathcal{A}} \| A x - b \|_2^2 + \| x \|_2^2 \)