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6. Approximation and fitting

• norm approximation

• least-norm problems

• regularized approximation

• robust approximation

6.1



Norm approximation

minimize ‖�G − 1‖

(� ∈ R
<×= with < ≥ =, ‖ · ‖ is a norm on R

<)

Interpretations of solution G★ = argminG ‖�G − 1‖

• geometric: �G★ is point in R(�) closest to 1

• estimation: linear measurement model

H = �G + {

H are measurements, G is unknown, { is measurement error

given H = 1, best guess of G is G★

• optimal design: G are design variables (input), �G is result (output)

G★ is design that best approximates desired result 1
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Examples

• least-squares approximation (‖ · ‖2): solution satisfies normal equations

�)�G = �)1

(G★ = (�)�)−1�)1 if rank � = =)

• Chebyshev approximation (‖ · ‖∞): can be solved as an LP

minimize C

subject to −C1 � �G − 1 � C1

• sum of absolute residuals approximation (‖ · ‖1): can be solved as an LP

minimize 1
) H

subject to −H � �G − 1 � H
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Penalty function approximation

minimize q(A1) + · · · + q(A<)
subject to A = �G − 1

(� ∈ R
<×=, q : R → R is a convex penalty function)

Examples

• quadratic: q(D) = D2

• deadzone-linear with width 0:

q(D) = max {0, |D | − 0}

• log-barrier with limit 0:

q(D) =
{
−02 log(1 − (D/0)2) |D | < 0

∞ otherwise
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Comparison

Example (< = 100, = = 30): histogram of residuals for penalties

q(D) = |D |, q(D) = D2, q(D) = max{0, |D | − 0}, q(D) = − log(1 − D2)
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Huber penalty

Huber penalty function (with parameter ")

qhub(D) =
{
D2 |D | ≤ "

" (2|D | − ") |D | > "

linear growth for large D makes approximation less sensitive to outliers
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• left: Huber penalty for " = 1

• right: affine function 5 (C) = U + VC fitted to 42 points C8, H8 (circles) using

quadratic (dashed) and Huber (solid) penalty
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Least-norm problems

minimize ‖G‖
subject to �G = 1

(� ∈ R
<×= with < ≤ =, ‖ · ‖ is a norm on R

=)

Interpretations of solution G★ = argmin�G=1 ‖G‖

• geometric: G★ is point in affine set {G | �G = 1} with minimum distance to 0

• estimation: 1 = �G are (perfect) measurements of G; G★ is smallest (’most

plausible’) estimate consistent with measurements

• design: G are design variables (inputs); 1 are required results (outputs)

G★ is smallest (’most efficient’) design that satisfies requirements
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Examples

• least-squares solution of linear equations (‖ · ‖2):

can be solved via optimality conditions

2G + �)a = 0, �G = 1

• minimum sum of absolute values (‖ · ‖1): can be solved as an LP

minimize 1
) H

subject to −H � G � H, �G = 1

tends to produce sparse solution G★

Extension: least-penalty problem

minimize q(G1) + · · · + q(G=)
subject to �G = 1

q : R → R is convex penalty function
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Regularized approximation

minimize (w.r.t. R
2
+) (‖�G − 1‖, ‖G‖)

� ∈ R
<×=, norms on R

< and R
= can be different

Interpretation: find good approximation �G ≈ 1 with small G

• estimation: linear measurement model H = �G + {, with prior knowledge that

‖G‖ is small

• optimal design: small G is cheaper or more efficient, or the linear model H = �G

is only valid for small G

• robust approximation: good approximation �G ≈ 1 with small G is less sensitive

to errors in � than good approximation with large G
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Scalarized problem

minimize ‖�G − 1‖ + W‖G‖

• solution for W > 0 traces out optimal trade-off curve

• other common method: minimize ‖�G − 1‖2 + X‖G‖2 with X > 0

Tikhonov regularization

minimize ‖�G − 1‖2
2
+ X‖G‖2

2

can be solved as a least-squares problem

minimize
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X�
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G −
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solution G★ = (�)� + X�)−1�)1
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Optimal input design

Linear dynamical system with impulse response ℎ:

H(C) =
C∑

g=0

ℎ(g)D(C − g), C = 0, 1, . . . , #

Input design problem: multicriterion problem with 3 objectives

1. tracking error with desired output Hdes: �track =

∑#
C=0

(H(C) − Hdes(C))2

2. input magnitude: �mag =

∑#
C=0

D(C)2

3. input variation: �der =
∑#−1

C=0
(D(C + 1) − D(C))2

track desired output using a small and slowly varying input signal

Regularized least-squares formulation

minimize �track + X�der + [�mag

for fixed X, [, a least-squares problem in D(0), . . . , D(#)
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Example

3 solutions on optimal trade-off surface

(top) X = 0, small [; (middle) X = 0, larger [; (bottom) large X
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Signal reconstruction

minimize (w.r.t. R
2
+) (‖Ĝ − Gcor‖2, q(Ĝ))

• G ∈ R
= is unknown signal

• Gcor = G + { is (known) corrupted version of G, with additive noise {

• variable Ĝ (reconstructed signal) is estimate of G

• q : R
= → R is regularization function or smoothing objective

Examples: quadratic smoothing, total variation smoothing:

qquad(Ĝ) =
=−1∑

8=1

(Ĝ8+1 − Ĝ8)2, qtv(Ĝ) =
=−1∑

8=1

|Ĝ8+1 − Ĝ8 |
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Quadratic smoothing example
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Ĝ
Ĝ
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Total variation reconstruction example
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Ĝ
8

0

0

0

500

500

500

1000

1000

1000

1500

1500

1500

2000

2000

2000

−2

−2

−2

0

0

0

2

2

2

original signal G and noisy signal Gcor
three solutions on trade-off curve
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Robust approximation

minimize ‖�G − 1‖ with uncertain �

two approaches:

• stochastic: assume � is random, minimize E ‖�G − 1‖
• worst-case: set A of possible values of �, minimize sup�∈A ‖�G − 1‖

tractable only in special cases (certain norms ‖ · ‖, distributions, sets A)

Example: �(D) = �0 + D�1

• Gnom minimizes ‖�0G − 1‖2
2

• Gstoch minimizes E ‖�(D)G − 1‖2
2

with D uniform on [−1, 1]

• Gwc minimizes sup−1≤D≤1 ‖�(D)G − 1‖2
2

figure shows A (D) = ‖�(D)G − 1‖2
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Stochastic robust LS

with � = �̄ +*, * random, E* = 0, E*)* = %

minimize E ‖( �̄ +*)G − 1‖2
2

• explicit expression for objective:

E ‖�G − 1‖2
2 = E ‖ �̄G − 1 +*G‖2

2

= ‖ �̄G − 1‖2
2 + E G)*)*G

= ‖ �̄G − 1‖2
2 + G)%G

• hence, robust LS problem is equivalent to LS problem

minimize ‖ �̄G − 1‖2
2
+ ‖%1/2G‖2

2

• for % = X�, get Tikhonov regularized problem

minimize ‖ �̄G − 1‖2
2
+ X‖G‖2

2
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Worst-case robust LS

with A = { �̄ + D1�1 + · · · + D?�? | ‖D‖2 ≤ 1}

minimize sup
�∈A

‖�G − 1‖2
2
= sup

‖D‖2≤1

‖%(G)D + @(G)‖2
2

where %(G) =
[
�1G �2G · · · �?G

]
, @(G) = �̄G − 1

• from page 5.16, strong duality holds between the following problems

maximize ‖%D + @‖2
2

subject to ‖D‖2
2
≤ 1

minimize C + _

subject to



� % @

%) _� 0

@) 0 C


� 0

• hence, robust LS problem is equivalent to SDP

minimize C + _

subject to



� %(G) @(G)
%(G)) _� 0

@(G)) 0 C


� 0
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Example: histogram of residuals

A (D) = ‖(�0 + D1�1 + D2�2)G − 1‖2

with D uniformly distributed on unit disk, for three values of G
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• Gls minimizes ‖�0G − 1‖2

• Gtik minimizes ‖�0G − 1‖2
2
+ X‖G‖2

2
(Tikhonov solution)

• Grls minimizes sup�∈A ‖�G − 1‖2
2
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