6. Approximation and fitting

- norm approximation
- least-norm problems
- regularized approximation
- robust approximation
Norm approximation

$$\text{minimize } \|Ax - b\|$$

($A \in \mathbb{R}^{m \times n}$ with $m \geq n$, $\| \cdot \|$ is a norm on \mathbb{R}^m)

interpretations of solution $x^* = \arg\min_x \|Ax - b\|$

- **geometric**: Ax^* is point in $\mathcal{R}(A)$ closest to b
- **estimation**: linear measurement model

$$y = Ax + v$$

y are measurements, x is unknown, v is measurement error

given $y = b$, best guess of x is x^*

- **optimal design**: x are design variables (input), Ax is result (output)

 x^* is design that best approximates desired result b
examples

• least-squares approximation ($\| \cdot \|_2$): solution satisfies normal equations

\[
A^T Ax = A^T b
\]

\((x^* = (A^T A)^{-1} A^T b \text{ if } \text{rank } A = n) \)

• Chebyshev approximation ($\| \cdot \|_\infty$): can be solved as an LP

\[
\begin{align*}
\text{minimize} & \quad t \\
\text{subject to} & \quad -t1 \preceq Ax - b \preceq t1
\end{align*}
\]

• sum of absolute residuals approximation ($\| \cdot \|_1$): can be solved as an LP

\[
\begin{align*}
\text{minimize} & \quad 1^T y \\
\text{subject to} & \quad -y \preceq Ax - b \preceq y
\end{align*}
\]
Penalty function approximation

\[
\text{minimize} \quad \phi(r_1) + \cdots + \phi(r_m) \\
\text{subject to} \quad r = Ax - b
\]

\((A \in \mathbb{R}^{m \times n}, \phi : \mathbb{R} \rightarrow \mathbb{R} \text{ is a convex penalty function})\)

examples

- **quadratic**: \(\phi(u) = u^2\)
- **deadzone-linear with width \(a\)**:
 \[
 \phi(u) = \max\{0, |u| - a\}
 \]
- **log-barrier with limit \(a\)**:
 \[
 \phi(u) = \begin{cases}
 -a^2 \log(1 - (u/a)^2) & |u| < a \\
 \infty & \text{otherwise}
 \end{cases}
 \]
example ($m = 100$, $n = 30$): histogram of residuals for penalties

\[\phi(u) = |u|, \quad \phi(u) = u^2, \quad \phi(u) = \max\{0, |u| - a\}, \quad \phi(u) = -\log(1-u^2) \]

shape of penalty function has large effect on distribution of residuals
Huber penalty function (with parameter M)

\[
\phi_{\text{hub}}(u) = \begin{cases}
 u^2 & |u| \leq M \\
 M(2|u| - M) & |u| > M
\end{cases}
\]

Linear growth for large u makes approximation less sensitive to outliers

- **left:** Huber penalty for $M = 1$
- **right:** affine function $f(t) = \alpha + \beta t$ fitted to 42 points t_i, y_i (circles) using quadratic (dashed) and Huber (solid) penalty
Least-norm problems

\[
\begin{align*}
\text{minimize} & \quad \| x \| \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

\((A \in \mathbb{R}^{m \times n} \text{ with } m \leq n, \| \cdot \| \text{ is a norm on } \mathbb{R}^n)\)

interpretations of solution \(x^* = \text{argmin}_{Ax=b} \| x \|:\)

- **geometric:** \(x^*\) is point in affine set \(\{ x \mid Ax = b \}\) with minimum distance to 0

- **estimation:** \(b = Ax\) are (perfect) measurements of \(x\); \(x^*\) is smallest ('most plausible') estimate consistent with measurements

- **design:** \(x\) are design variables (inputs); \(b\) are required results (outputs)
 \(x^*\) is smallest ('most efficient') design that satisfies requirements
examples

- least-squares solution of linear equations ($\| \cdot \|_2$):
 can be solved via optimality conditions
 \[2x + A^T \nu = 0, \quad Ax = b \]

- minimum sum of absolute values ($\| \cdot \|_1$): can be solved as an LP
 \[
 \begin{align*}
 & \text{minimize} & & 1^T y \\
 & \text{subject to} & & -y \leq x \leq y, \quad Ax = b
 \end{align*}
 \]
 tends to produce sparse solution x^*

extension: least-penalty problem

\[
\begin{align*}
& \text{minimize} & & \phi(x_1) + \cdots + \phi(x_n) \\
& \text{subject to} & & Ax = b
\end{align*}
\]

$\phi : \mathbb{R} \to \mathbb{R}$ is convex penalty function

Approximation and fitting
Regularized approximation

\[
\text{minimize (w.r.t. } \mathbb{R}_+^2) \quad (\|Ax - b\|, \|x\|)
\]

\(A \in \mathbb{R}^{m \times n}\), norms on \(\mathbb{R}^m\) and \(\mathbb{R}^n\) can be different

interpretation: find good approximation \(Ax \approx b\) with small \(x\)

• **estimation**: linear measurement model \(y = Ax + v\), with prior knowledge that \(\|x\|\) is small

• **optimal design**: small \(x\) is cheaper or more efficient, or the linear model \(y = Ax\) is only valid for small \(x\)

• **robust approximation**: good approximation \(Ax \approx b\) with small \(x\) is less sensitive to errors in \(A\) than good approximation with large \(x\)
Scalarized problem

minimize $\| Ax - b \| + \gamma \| x \|$

- solution for $\gamma > 0$ traces out optimal trade-off curve
- other common method: minimize $\| Ax - b \|^2 + \delta \| x \|^2$ with $\delta > 0$

Tikhonov regularization

minimize $\| Ax - b \|^2_2 + \delta \| x \|^2_2$

can be solved as a least-squares problem

minimize $\left\| \begin{bmatrix} A \\ \sqrt{\delta} I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|^2_2$

solution $x^* = (A^T A + \delta I)^{-1} A^T b$
Optimal input design

linear dynamical system with impulse response h:

$$y(t) = \sum_{\tau=0}^{t} h(\tau)u(t - \tau), \quad t = 0, 1, \ldots, N$$

input design problem: multicriterion problem with 3 objectives

1. tracking error with desired output y_{des}: $J_{\text{track}} = \sum_{t=0}^{N}(y(t) - y_{\text{des}}(t))^{2}$
2. input magnitude: $J_{\text{mag}} = \sum_{t=0}^{N}u(t)^{2}$
3. input variation: $J_{\text{der}} = \sum_{t=0}^{N-1}(u(t + 1) - u(t))^{2}$

track desired output using a small and slowly varying input signal

regularized least-squares formulation

minimize $J_{\text{track}} + \delta J_{\text{der}} + \eta J_{\text{mag}}$

for fixed δ, η, a least-squares problem in $u(0), \ldots, u(N)$
example: 3 solutions on optimal trade-off surface

(top) $\delta = 0$, small η; (middle) $\delta = 0$, larger η; (bottom) large δ
Signal reconstruction

minimize (w.r.t. \mathbb{R}^2_+) $(\|\hat{x} - x_{\text{cor}}\|_2, \phi(\hat{x}))$

- $x \in \mathbb{R}^n$ is unknown signal
- $x_{\text{cor}} = x + v$ is (known) corrupted version of x, with additive noise v
- variable \hat{x} (reconstructed signal) is estimate of x
- $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$ is regularization function or smoothing objective

examples: quadratic smoothing, total variation smoothing:

$$
\phi_{\text{quad}}(\hat{x}) = \sum_{i=1}^{n-1} (\hat{x}_{i+1} - \hat{x}_i)^2, \quad \phi_{\text{tv}}(\hat{x}) = \sum_{i=1}^{n-1} |\hat{x}_{i+1} - \hat{x}_i|$

Approximation and fitting
quadratic smoothing example

original signal x and noisy signal x_{cor}

three solutions on trade-off curve $\|\hat{x} - x_{\text{cor}}\|_2$ versus $\phi_{\text{quad}}(\hat{x})$
total variation reconstruction example

original signal x and noisy signal x_{cor}

three solutions on trade-off curve $\|\hat{x} - x_{\text{cor}}\|_2$ versus $\phi_{\text{quad}}(\hat{x})$

quadratic smoothing smooths out noise and sharp transitions in signal
original signal x and noisy signal x_{cor}

three solutions on trade-off curve $\|\hat{x} - x_{\text{cor}}\|_2$ versus $\phi_{\text{tv}}(\hat{x})$

total variation smoothing preserves sharp transitions in signal
Robust approximation

minimize $\|Ax - b\|$ with uncertain A

two approaches:

- **stochastic**: assume A is random, minimize $\mathbb{E}\|Ax - b\|$
- **worst-case**: set \mathcal{A} of possible values of A, minimize $\sup_{A \in \mathcal{A}} \|Ax - b\|$

tractable only in special cases (certain norms $\| \cdot \|$, distributions, sets \mathcal{A})

example: $A(u) = A_0 + uA_1$

- x_{nom} minimizes $\|A_0x - b\|_2^2$
- x_{stoch} minimizes $\mathbb{E}\|A(u)x - b\|_2^2$
 with u uniform on $[-1, 1]$
- x_{wc} minimizes $\sup_{-1 \leq u \leq 1} \|A(u)x - b\|_2^2$

figure shows $r(u) = \|A(u)x - b\|_2$
stochastic robust LS with $A = \bar{A} + U$, U random, $EU = 0$, $EU^TU = P$

minimize $\mathbb{E} \| (\bar{A} + U)x - b \|_2^2$

• explicit expression for objective:

\[
\mathbb{E} \| Ax - b \|_2^2 = \mathbb{E} \| \bar{A}x - b + Ux \|_2^2 = \| \bar{A}x - b \|_2^2 + \mathbb{E} x^T U^T U x = \| \bar{A}x - b \|_2^2 + x^T P x
\]

• hence, robust LS problem is equivalent to LS problem

minimize $\| \bar{A}x - b \|_2^2 + \| P^{1/2} x \|_2^2$

• for $P = \delta I$, get Tikhonov regularized problem

minimize $\| \bar{A}x - b \|_2^2 + \delta \| x \|_2^2$
worst-case robust LS with $\mathcal{A} = \{\bar{A} + u_1A_1 + \cdots + u_pA_p \mid \|u\|_2 \leq 1\}$

$\begin{align*}
\text{minimize} & \quad \sup_{A \in \mathcal{A}} \|Ax - b\|_2^2 = \sup_{\|u\|_2 \leq 1} \|P(x)u + q(x)\|_2^2 \\
\text{where} & \quad P(x) = \begin{bmatrix} A_1 x & A_2 x & \cdots & A_p x \end{bmatrix}, q(x) = \bar{A}x - b
\end{align*}$

- from page 5–14, strong duality holds between the following problems

$\begin{align*}
\text{maximize} & \quad \|Pu + q\|_2^2 \\
\text{subject to} & \quad \|u\|_2^2 \leq 1 \\
\text{minimize} & \quad t + \lambda \\
\text{subject to} & \quad \begin{bmatrix} I & P & q \\ P^T & \lambda I & 0 \\ q^T & 0 & t \end{bmatrix} \succeq 0
\end{align*}$

- hence, robust LS problem is equivalent to SDP

$\begin{align*}
\text{minimize} & \quad t + \lambda \\
\text{subject to} & \quad \begin{bmatrix} I & P(x) & q(x) \\ P(x)^T & \lambda I & 0 \\ q(x)^T & 0 & t \end{bmatrix} \succeq 0
\end{align*}$
example: histogram of residuals

\[r(u) = \| (A_0 + u_1 A_1 + u_2 A_2)x - b \|_2 \]

with \(u \) uniformly distributed on unit disk, for three values of \(x \)

- \(x_{ls} \) minimizes \(\| A_0 x - b \|_2 \)
- \(x_{tik} \) minimizes \(\| A_0 x - b \|_2^2 + \delta \| x \|_2^2 \) (Tikhonov solution)
- \(x_{wc} \) minimizes \(\sup_{\| u \|_2 \leq 1} \| A_0 x - b \|_2^2 + \| x \|_2^2 \)