6. Approximation and fitting

- norm approximation
- least-norm problems
- regularized approximation
- robust approximation
Norm approximation

\[
\text{minimize } \| Ax - b \| \\
\]

\(A \in \mathbb{R}^{m \times n} \) with \(m \geq n \), \(\| \cdot \| \) is a norm on \(\mathbb{R}^{m} \)

Interpretations of solution \(x^* = \arg\min_x \| Ax - b \| \):

- geometric: \(Ax^* \) is point in \(\mathcal{R}(A) \) closest to \(b \)
- estimation: linear measurement model

\[
y = Ax + v
\]

\(y \) are measurements, \(x \) is unknown, \(v \) is measurement error
given \(y = b \), best guess of \(x \) is \(x^* \)

- optimal design: \(x \) are design variables (input), \(Ax \) is result (output)
 \(x^* \) is design that best approximates desired result \(b \)
Examples

- least-squares approximation ($\| \cdot \|_2$): solution satisfies normal equations

\[A^T A x = A^T b \]

\((x^* = (A^T A)^{-1} A^T b \text{ if } \text{rank} A = n) \)

- Chebyshev approximation ($\| \cdot \|_\infty$): can be solved as an LP

\[
\begin{align*}
\text{minimize} & \quad t \\
\text{subject to} & \quad -t \mathbf{1} \leq A x - b \leq t \mathbf{1}
\end{align*}
\]

- sum of absolute residuals approximation ($\| \cdot \|_1$): can be solved as an LP

\[
\begin{align*}
\text{minimize} & \quad \mathbf{1}^T y \\
\text{subject to} & \quad -y \leq A x - b \leq y
\end{align*}
\]
Penalty function approximation

\[
\text{minimize} \quad \phi(r_1) + \cdots + \phi(r_m)
\]
\[
\text{subject to} \quad r = Ax - b
\]

\((A \in \mathbb{R}^{m \times n}, \phi : \mathbb{R} \rightarrow \mathbb{R} \text{ is a convex penalty function})\)

Examples

- **quadratic**: \(\phi(u) = u^2\)

- **deadzone-linear with width** \(a\):
 \[
 \phi(u) = \max\{0, |u| - a\}
 \]

- **log-barrier with limit** \(a\):
 \[
 \phi(u) = \begin{cases}
 -a^2 \log(1 - (u/a)^2) & |u| < a \\
 \infty & \text{otherwise}
 \end{cases}
 \]
Comparison

Example \((m = 100, n = 30)\): histogram of residuals for penalties

\[
\phi(u) = |u|, \quad \phi(u) = u^2, \quad \phi(u) = \max\{0, |u| - a\}, \quad \phi(u) = -\log(1 - u^2)
\]

shape of penalty function has large effect on distribution of residuals
Huber penalty

Huber penalty function (with parameter M)

$$\phi_{\text{hub}}(u) = \begin{cases} u^2 & |u| \leq M \\ M(2|u| - M) & |u| > M \end{cases}$$

linear growth for large u makes approximation less sensitive to outliers

- left: Huber penalty for $M = 1$
- right: affine function $f(t) = \alpha + \beta t$ fitted to 42 points t_i, y_i (circles) using quadratic (dashed) and Huber (solid) penalty
Least-norm problems

\[
\begin{align*}
\text{minimize} & \quad \|x\| \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

\((A \in \mathbb{R}^{m \times n} \text{ with } m \leq n, \| \cdot \| \text{ is a norm on } \mathbb{R}^n)\)

Interpretations of solution \(x^* = \arg\min_{Ax=b} \|x\|\):

- geometric: \(x^*\) is point in affine set \(\{x \mid Ax = b\}\) with minimum distance to \(0\)
- estimation: \(b = Ax\) are (perfect) measurements of \(x\); \(x^*\) is smallest (‘most plausible’) estimate consistent with measurements
- design: \(x\) are design variables (inputs); \(b\) are required results (outputs)
 \(x^*\) is smallest (‘most efficient’) design that satisfies requirements
Examples

- least-squares solution of linear equations ($\| \cdot \|_2$):

 can be solved via optimality conditions

 \[2x + A^T v = 0, \quad Ax = b \]

- minimum sum of absolute values ($\| \cdot \|_1$): can be solved as an LP

 minimize \[1^T y \]
 subject to \[-y \leq x \leq y, \quad Ax = b\]

 tends to produce sparse solution x^*

Extension: least-penalty problem

 minimize \[\phi(x_1) + \cdots + \phi(x_n) \]
 subject to \[Ax = b \]

$\phi : \mathbb{R} \rightarrow \mathbb{R}$ is convex penalty function
Regularized approximation

minimize (w.r.t. \mathbb{R}_+^2) $\left(\|Ax - b\|, \|x\| \right)$

$A \in \mathbb{R}^{m \times n}$, norms on \mathbb{R}^m and \mathbb{R}^n can be different

Interpretation: find good approximation $Ax \approx b$ with small x

- estimation: linear measurement model $y = Ax + v$, with prior knowledge that $\|x\|$ is small

- optimal design: small x is cheaper or more efficient, or the linear model $y = Ax$ is only valid for small x

- robust approximation: good approximation $Ax \approx b$ with small x is less sensitive to errors in A than good approximation with large x
Scalarized problem

\[
\text{minimize} \quad \|Ax - b\| + \gamma \|x\|
\]

- solution for \(\gamma > 0 \) traces out optimal trade-off curve
- other common method: minimize \(\|Ax - b\|^2 + \delta \|x\|^2 \) with \(\delta > 0 \)

Tikhonov regularization

\[
\text{minimize} \quad \|Ax - b\|^2 + \delta \|x\|^2
\]

can be solved as a least-squares problem

\[
\text{minimize} \quad \left\| \begin{bmatrix} A \\ \sqrt{\delta} I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|^2_2
\]

solution \(x^* = (A^T A + \delta I)^{-1} A^T b \)
Optimal input design

Linear dynamical system with impulse response h:

$$y(t) = \sum_{\tau=0}^{t} h(\tau)u(t - \tau), \quad t = 0, 1, \ldots, N$$

Input design problem: multicriterion problem with 3 objectives

1. tracking error with desired output y_{des}: $J_{\text{track}} = \sum_{t=0}^{N} (y(t) - y_{\text{des}}(t))^2$

2. input magnitude: $J_{\text{mag}} = \sum_{t=0}^{N} u(t)^2$

3. input variation: $J_{\text{der}} = \sum_{t=0}^{N-1} (u(t + 1) - u(t))^2$

track desired output using a small and slowly varying input signal

Regularized least-squares formulation

minimize $J_{\text{track}} + \delta J_{\text{der}} + \eta J_{\text{mag}}$

for fixed δ, η, a least-squares problem in $u(0), \ldots, u(N)$
Example

3 solutions on optimal trade-off surface

(top) $\delta = 0$, small η; (middle) $\delta = 0$, larger η; (bottom) large δ
Signal reconstruction

\[\text{minimize (w.r.t. } R_+^2) \ (||\hat{x} - x_{\text{cor}}||_2, \ \phi(\hat{x})) \]

- \(x \in R^n \) is unknown signal
- \(x_{\text{cor}} = x + v \) is (known) corrupted version of \(x \), with additive noise \(v \)
- variable \(\hat{x} \) (reconstructed signal) is estimate of \(x \)
- \(\phi : R^n \rightarrow R \) is regularization function or smoothing objective

Examples: quadratic smoothing, total variation smoothing:

\[
\phi_{\text{quad}}(\hat{x}) = \sum_{i=1}^{n-1} (\hat{x}_{i+1} - \hat{x}_i)^2, \quad \phi_{\text{tv}}(\hat{x}) = \sum_{i=1}^{n-1} |\hat{x}_{i+1} - \hat{x}_i|\]
Quadratic smoothing example

original signal x and noisy signal x_{cor}

three solutions on trade-off curve

$||\hat{x} - x_{\text{cor}}||_2$ versus $\phi_{\text{quad}}(\hat{x})$
Total variation reconstruction example

original signal x and noisy signal x_{cor}

quadratic smoothing smooths out noise and sharp transitions in signal

three solutions on trade-off curve $\|\hat{x} - x_{\text{cor}}\|_2$ versus $\phi_{\text{quad}}(\hat{x})$
original signal x and noisy signal x_{cor}
	hree solutions on trade-off curve

$\|\hat{x} - x_{\text{cor}}\|_2$ versus $\phi_{tv}(\hat{x})$

total variation smoothing preserves sharp transitions in signal
Robust approximation

minimize $\|Ax - b\|$ with uncertain A

two approaches:

- **stochastic:** assume A is random, minimize $E \|Ax - b\|$
- **worst-case:** set \mathcal{A} of possible values of A, minimize $\sup_{A \in \mathcal{A}} \|Ax - b\|$

tractable only in special cases (certain norms $\| \cdot \|$, distributions, sets \mathcal{A})

Example: $A(u) = A_0 + uA_1$

- x_{nom} minimizes $\|A_0x - b\|_2^2$
- x_{stoch} minimizes $E \|A(u)x - b\|_2^2$
 with u uniform on $[-1, 1]$
- x_{wc} minimizes $\sup_{-1 \leq u \leq 1} \|A(u)x - b\|_2^2$

figure shows $r(u) = \|A(u)x - b\|_2$
Stochastic robust LS

with \(A = \tilde{A} + U, U \) random, \(\textbf{E}U = 0, \textbf{E}U^TU = P \)

\[
\text{minimize} \quad \textbf{E} \| (\tilde{A} + U)x - b \|_2^2
\]

• explicit expression for objective:

\[
\textbf{E} \| Ax - b \|_2^2 = \textbf{E} \| \tilde{A}x - b + Ux \|_2^2
\]

\[
= \| \tilde{A}x - b \|_2^2 + \textbf{E} x^TU^TUx
\]

\[
= \| \tilde{A}x - b \|_2^2 + x^TPx
\]

• hence, robust LS problem is equivalent to LS problem

\[
\text{minimize} \quad \| \tilde{A}x - b \|_2^2 + \| P^{1/2}x \|_2^2
\]

• for \(P = \delta I \), get Tikhonov regularized problem

\[
\text{minimize} \quad \| \tilde{A}x - b \|_2^2 + \delta \| x \|_2^2
\]
Worst-case robust LS

with \(\mathcal{A} = \{ \tilde{A} + u_1 A_1 + \cdots + u_p A_p \mid \|u\|_2 \leq 1 \} \)

\[
\begin{align*}
\text{minimize} \quad & \sup_{A \in \mathcal{A}} \|Ax - b\|_2^2 = \sup_{\|u\|_2 \leq 1} \|P(x)u + q(x)\|_2^2 \\
\text{where} \quad P(x) &= \begin{bmatrix} A_1x & A_2x & \cdots & A_p x \end{bmatrix}, \quad q(x) = \tilde{A}x - b
\end{align*}
\]

- from page 5.16, strong duality holds between the following problems

\[
\begin{align*}
\text{maximize} \quad & \|Pu + q\|_2^2 \\
\text{subject to} \quad & \|u\|_2^2 \leq 1 \\
\text{minimize} \quad & t + \lambda \\
\text{subject to} \quad & \begin{bmatrix}
I & P & q \\
P^T & \lambda I & 0 \\
q^T & 0 & t
\end{bmatrix} \succeq 0
\end{align*}
\]

- hence, robust LS problem is equivalent to SDP

\[
\begin{align*}
\text{minimize} \quad & t + \lambda \\
\text{subject to} \quad & \begin{bmatrix}
I & P(x) & q(x) \\
P(x)^T & \lambda I & 0 \\
q(x)^T & 0 & t
\end{bmatrix} \succeq 0
\end{align*}
\]
Example: histogram of residuals

\[r(u) = \| (A_0 + u_1A_1 + u_2A_2)x - b \|_2 \]

with \(u \) uniformly distributed on unit disk, for three values of \(x \)

- \(x_{ls} \) minimizes \(\| A_0x - b \|_2 \)
- \(x_{tik} \) minimizes \(\| A_0x - b \|_2^2 + \delta \| x \|_2^2 \) (Tikhonov solution)
- \(x_{rls} \) minimizes \(\sup_{A \in \mathcal{A}} \| Ax - b \|_2^2 + \| x \|_2^2 \)