6. Approximation and fitting

- norm approximation
- least-norm problems
- regularized approximation
- robust approximation
Norm approximation

minimize $\|Ax - b\|$

($A \in \mathbb{R}^{m \times n}$ with $m \geq n$, $\| \cdot \|$ is a norm on \mathbb{R}^m)

Interpretations of solution $x^* = \operatorname{argmin}_x \|Ax - b\|$

- geometric: Ax^* is point in $\mathcal{R}(A)$ closest to b
- estimation: linear measurement model

$$y = Ax + v$$

y are measurements, x is unknown, v is measurement error

given $y = b$, best guess of x is x^*

- optimal design: x are design variables (input), Ax is result (output)
 x^* is design that best approximates desired result b
Examples

- least-squares approximation ($\| \cdot \|_2$): solution satisfies normal equations
 \[A^T A x = A^T b \]
 \((x^* = (A^T A)^{-1} A^T b \text{ if } \text{rank } A = n)\)

- Chebyshev approximation ($\| \cdot \|_\infty$): can be solved as an LP
 \[
 \begin{align*}
 \text{minimize} & \quad t \\
 \text{subject to} & \quad -t 1 \leq A x - b \leq t 1
 \end{align*}
 \]

- sum of absolute residuals approximation ($\| \cdot \|_1$): can be solved as an LP
 \[
 \begin{align*}
 \text{minimize} & \quad 1^T y \\
 \text{subject to} & \quad -y \leq A x - b \leq y
 \end{align*}
 \]
Penalty function approximation

\[
\text{minimize} \quad \phi(r_1) + \cdots + \phi(r_m)
\]
\[
\text{subject to} \quad r = Ax - b
\]

\((A \in \mathbb{R}^{m \times n}, \phi : \mathbb{R} \rightarrow \mathbb{R} \text{ is a convex penalty function})\)

Examples

- quadratic: \(\phi(u) = u^2\)
- deadzone-linear with width \(a\):
 \[
 \phi(u) = \max \{0, |u| - a\}
 \]
- log-barrier with limit \(a\):
 \[
 \phi(u) = \begin{cases}
 -a^2 \log(1 - (u/a)^2) & |u| < a \\
 \infty & \text{otherwise}
 \end{cases}
 \]
Comparison

Example \((m = 100, n = 30)\): histogram of residuals for penalties

\[
\phi(u) = |u|, \quad \phi(u) = u^2, \quad \phi(u) = \max\{0, |u| - a\}, \quad \phi(u) = -\log(1 - u^2)
\]

The shape of penalty function has a large effect on the distribution of residuals.

Approximation and fitting 6.5
Huber penalty

Huber penalty function (with parameter M)

$$
\phi_{\text{hub}}(u) = \begin{cases}
 u^2 & |u| \leq M \\
 M(2|u| - M) & |u| > M
\end{cases}
$$

linear growth for large u makes approximation less sensitive to outliers

- left: Huber penalty for $M = 1$
- right: affine function $f(t) = \alpha + \beta t$ fitted to 42 points t_i, y_i (circles) using quadratic (dashed) and Huber (solid) penalty
Least-norm problems

\[
\begin{align*}
&\text{minimize} & \|x\| \\
&\text{subject to} & Ax = b \\
\end{align*}
\]

\((A \in \mathbb{R}^{m \times n} \text{ with } m \leq n, \| \cdot \| \text{ is a norm on } \mathbb{R}^n) \)

Interpretations of solution \(x^* = \arg\min_{Ax=b} \|x\| \)

- geometric: \(x^* \) is point in affine set \(\{x \mid Ax = b\} \) with minimum distance to 0
- estimation: \(b = Ax \) are (perfect) measurements of \(x \); \(x^* \) is smallest (‘most plausible’) estimate consistent with measurements
- design: \(x \) are design variables (inputs); \(b \) are required results (outputs)
 \(x^* \) is smallest (‘most efficient’) design that satisfies requirements
Examples

• least-squares solution of linear equations ($\| \cdot \|_2$):

 can be solved via optimality conditions

 \[2x + A^T v = 0, \quad Ax = b \]

• minimum sum of absolute values ($\| \cdot \|_1$):

 can be solved as an LP

 minimize $1^T y$

 subject to $-y \leq x \leq y, \quad Ax = b$

 tends to produce sparse solution x^*

Extension: least-penalty problem

 minimize $\phi(x_1) + \cdots + \phi(x_n)$

 subject to $Ax = b$

$\phi : \mathbb{R} \rightarrow \mathbb{R}$ is convex penalty function
Regularized approximation

minimize (w.r.t. \mathbb{R}^2_+) $\left(\|Ax - b\|, \|x\| \right)$

$A \in \mathbb{R}^{m \times n}$, norms on \mathbb{R}^m and \mathbb{R}^n can be different

Interpretation: find good approximation $Ax \approx b$ with small x

- estimation: linear measurement model $y = Ax + v$, with prior knowledge that $\|x\|$ is small

- optimal design: small x is cheaper or more efficient, or the linear model $y = Ax$ is only valid for small x

- robust approximation: good approximation $Ax \approx b$ with small x is less sensitive to errors in A than good approximation with large x
Scalarized problem

minimize \[||Ax - b|| + \gamma ||x|| \]

- solution for \(\gamma > 0 \) traces out optimal trade-off curve
- other common method: minimize \(||Ax - b||^2 + \delta ||x||^2 \) with \(\delta > 0 \)

Tikhonov regularization

minimize \[||Ax - b||_2^2 + \delta ||x||_2^2 \]

can be solved as a least-squares problem

\[
\text{minimize} \quad \left\| \begin{bmatrix} A \\ \sqrt{\delta} I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|_2^2
\]

solution \(x^* = (A^T A + \delta I)^{-1} A^T b \)
Optimal input design

Linear dynamical system with impulse response h:

$$y(t) = \sum_{\tau=0}^{t} h(\tau)u(t - \tau), \quad t = 0, 1, \ldots, N$$

Input design problem: multicriterion problem with 3 objectives

1. tracking error with desired output y_{des}: $J_{\text{track}} = \sum_{t=0}^{N} (y(t) - y_{\text{des}}(t))^2$
2. input magnitude: $J_{\text{mag}} = \sum_{t=0}^{N} u(t)^2$
3. input variation: $J_{\text{der}} = \sum_{t=0}^{N-1} (u(t + 1) - u(t))^2$

track desired output using a small and slowly varying input signal

Regularized least-squares formulation

$$\text{minimize} \quad J_{\text{track}} + \delta J_{\text{der}} + \eta J_{\text{mag}}$$

for fixed δ, η, a least-squares problem in $u(0), \ldots, u(N)$
Example

3 solutions on optimal trade-off surface

(top) $\delta = 0$, small η; (middle) $\delta = 0$, larger η; (bottom) large δ
Signal reconstruction

\[
\text{minimize (w.r.t. } R_+^2) \quad (||\hat{x} - x_{cor}||_2, \phi(\hat{x}))
\]

- \(x \in \mathbb{R}^n \) is unknown signal
- \(x_{cor} = x + v \) is (known) corrupted version of \(x \), with additive noise \(v \)
- variable \(\hat{x} \) (reconstructed signal) is estimate of \(x \)
- \(\phi : \mathbb{R}^n \rightarrow \mathbb{R} \) is regularization function or smoothing objective

Examples: quadratic smoothing, total variation smoothing:

\[
\phi_{\text{quad}}(\hat{x}) = \sum_{i=1}^{n-1} (\hat{x}_{i+1} - \hat{x}_i)^2, \quad \phi_{\text{tv}}(\hat{x}) = \sum_{i=1}^{n-1} |\hat{x}_{i+1} - \hat{x}_i|
\]
Quadratic smoothing example

original signal x and noisy signal x_{cor}

three solutions on trade-off curve

$\|\hat{x} - x_{\text{cor}}\|_2 \text{ versus } \phi_{\text{quad}}(\hat{x})$
Total variation reconstruction example

original signal x and noisy signal x_{cor}

quadratic smoothing smooths out noise and sharp transitions in signal

three solutions on trade-off curve $\|\hat{x} - x_{\text{cor}}\|_2$ versus $\phi_{\text{quad}}(\hat{x})$
original signal x and noisy signal x_{cor}

three solutions on trade-off curve $\| \hat{x} - x_{\text{cor}} \|_2$ versus $\phi_{\text{tv}}(\hat{x})$

total variation smoothing preserves sharp transitions in signal

Approximation and fitting 6.16
Robust approximation

minimize $\|Ax - b\|$ with uncertain A

two approaches:

- **stochastic**: assume A is random, minimize $\mathbb{E} \|Ax - b\|$
- **worst-case**: set \mathcal{A} of possible values of A, minimize $\sup_{A \in \mathcal{A}} \|Ax - b\|$

tractable only in special cases (certain norms $\| \cdot \|$), distributions, sets \mathcal{A}

Example: $A(u) = A_0 + uA_1$

- x_{nom} minimizes $\|A_0x - b\|_2^2$
- x_{stoch} minimizes $\mathbb{E} \|A(u)x - b\|_2^2$
 with u uniform on $[-1, 1]$
- x_{wc} minimizes $\sup_{-1 \leq u \leq 1} \|A(u)x - b\|_2^2$

figure shows $r(u) = \|A(u)x - b\|_2$
Stochastic robust LS

with \(A = \tilde{A} + U \), \(U \) random, \(\mathbf{E} U = 0 \), \(\mathbf{E} U^T U = P \)

\[
\text{minimize} \quad \mathbf{E} \| (\tilde{A} + U)x - b \|_2^2
\]

- explicit expression for objective:

\[
\mathbf{E} \| Ax - b \|_2^2 = \mathbf{E} \| \tilde{A}x - b + Ux \|_2^2 = \| \tilde{A}x - b \|_2^2 + \mathbf{E} x^T U^T U x = \| \tilde{A}x - b \|_2^2 + x^T P x
\]

- hence, robust LS problem is equivalent to LS problem

\[
\text{minimize} \quad \| \tilde{A}x - b \|_2^2 + P^{1/2}x \|_2^2
\]

- for \(P = \delta I \), get Tikhonov regularized problem

\[
\text{minimize} \quad \| \tilde{A}x - b \|_2^2 + \delta \| x \|_2^2
\]
Worst-case robust LS

with \(\mathcal{A} = \{ \tilde{A} + u_1 A_1 + \cdots + u_p A_p \mid \|u\|_2 \leq 1 \} \)

\[
\begin{align*}
\text{minimize} & \quad \sup_{A \in \mathcal{A}} \|Ax - b\|_2^2 = \sup_{\|u\|_2 \leq 1} \|P(x)u + q(x)\|_2^2
\end{align*}
\]

where \(P(x) = \begin{bmatrix} A_1 x & A_2 x & \cdots & A_p x \end{bmatrix} \), \(q(x) = \tilde{A}x - b \)

- from page 5.16, strong duality holds between the following problems

\[
\begin{align*}
\text{maximize} & \quad \|Pu + q\|_2^2 \\
\text{subject to} & \quad \|u\|_2^2 \leq 1
\end{align*}
\]

\[
\begin{align*}
\text{minimize} & \quad t + \lambda \\
\text{subject to} & \quad \begin{bmatrix} I & P & q \\ P^T & \lambda I & 0 \\ q^T & 0 & t \end{bmatrix} \succeq 0
\end{align*}
\]

- hence, robust LS problem is equivalent to SDP

\[
\begin{align*}
\text{minimize} & \quad t + \lambda \\
\text{subject to} & \quad \begin{bmatrix} I & P(x) & q(x) \\ P(x)^T & \lambda I & 0 \\ q(x)^T & 0 & t \end{bmatrix} \succeq 0
\end{align*}
\]
Example: histogram of residuals

\[r(u) = \|(A_0 + u_1 A_1 + u_2 A_2)x - b\|_2 \]

with \(u \) uniformly distributed on unit disk, for three values of \(x \)

- \(x_{ls} \) minimizes \(\|A_0x - b\|_2 \)
- \(x_{tik} \) minimizes \(\|A_0x - b\|_2^2 + \delta \|x\|_2^2 \) (Tikhonov solution)
- \(x_{rls} \) minimizes \(\sup_{A \in \mathcal{A}} \|Ax - b\|_2^2 + \|x\|_2^2 \)