L. Vandenberghe ECE236B (Winter 2025)

6. Approximation and fitting

e norm approximation
e |east-norm problems
e regularized approximation

e robust approximation
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Norm approximation

minimize ||Ax — b||

(A € R™" withm > n, || - || is @a norm on R™)

Interpretations of solution x* = argmin, ||Ax — b||

e geometric: Ax* is point in R(A) closest to b

e estimation: linear measurement model
y=Ax+v

y are measurements, x is unknown, v is measurement error
given y = b, best guess of x is x*
e optimal design: x are design variables (input), Ax is result (output)

x* is design that best approximates desired result b
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Examples

e least-squares approximation (|| - ||2): solution satisfies normal equations
ATAx = AT
(x* = (ATA)"'ATD if rank A = n)
e Chebyshev approximation (|| - ||c): can be solved as an LP
minimize ¢
subjectto -1 K Ax—-b =<1l
e sum of absolute residuals approximation (|| - ||;): can be solved as an LP

minimize 17y
subjectto -y X Ax-b =Xy
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Penalty function approximation

minimize  ¢(r)) +---+ o(ry)
subjectto r=Ax-b>b

(A € R™" ¢ : R — Ris a convex penalty function)

Examples

e quadratic: ¢(u) = u® Ls|

e deadzone-linear with width a:

¢(u) = max {0, |u| —a}

0.5¢

e log-barrier with limit a: 0
-1.5
b(1) = —a’log(1 — (u/a)?) |u| <a
] o0 otherwise
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Comparison

Example (m = 100, n = 30): histogram of residuals for penalties

ou) =lul, o) =u®,  ¢(u)=max{0,|u| —a},  $(u)=—log(l —u?)
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shape of penalty function has large effect on distribution of residuals
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Huber penalty
Huber penalty function (with parameter M)

[ w? lu| <M
P (1) ‘{ MQu| = M) |u| > M

linear growth for large u makes approximation less sensitive to outliers
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e left: Huber penalty for M =1

e right: affine function f(r) = a + Bt fitted to 42 points ¢;, y; (circles) using
quadratic (dashed) and Huber (solid) penalty
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Least-norm problems

minimize  ||x||
subjectto Ax =05

(A € R™" withm < n, || - || is a norm on R")

Interpretations of solution x* = argmin, . ||x||

e geometric: x* is point in affine set {x | Ax = b} with minimum distance to 0

e estimation: b = Ax are (perfect) measurements of x; x* is smallest ('most
plausible’) estimate consistent with measurements

e design: x are design variables (inputs); b are required results (outputs)

x* is smallest (‘most efficient’) design that satisfies requirements
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Examples

e |least-squares solution of linear equations (|| - |[»):

can be solved via optimality conditions

2x+ATv:O, Ax=b

e minimum sum of absolute values (|| - ||;): can be solved as an LP

minimize 17y
subjectto -y <x=y, Ax=0b>

tends to produce sparse solution x*

Extension: least-penalty problem

minimize  ¢(x1) +-- -+ d(xy)
subjectto Ax =05

¢ : R — R is convex penalty function

Approximation and fitting
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Regularized approximation

minimize (w.r.t. R3)  (||Ax = ]|, ||x])

A € R™" norms on R™ and R”" can be different

Interpretation: find good approximation Ax ~ b with small x

e estimation: linear measurement model y = Ax + v, with prior knowledge that
||x|| is small

e optimal design: small x is cheaper or more efficient, or the linear model y = Ax
is only valid for small x

e robust approximation: good approximation Ax ~ b with small x is less sensitive
to errors in A than good approximation with large x
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Scalarized problem
minimize ||Ax — b|| + v||x||

e solution for y > 0 traces out optimal trade-off curve

e other common method: minimize ||Ax — b||* + §||x||* with § > 0
Tikhonov regularization
T 2) )
minimize [[Ax — b||5 + 6]|x]|3

can be solved as a least-squares problem

minimize '” \/%I ]x—l 8 ]

solution x* = (ATA +61)"1ATD
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Optimal input design

Linear dynamical system with impulse response #:

y(1) :ih(‘r)u(t—r), t=0,1,...,N
=0

Input design problem: multicriterion problem with 3 objectives

1. tracking error with desired output yges: Jirack = Zfi oy (?) — Vdes(1))?
2. input magnitude: Jmag = XY, (1)

3. input variation: Jger = SN M (u(r +1) — u(r))?

track desired output using a small and slowly varying input signal

Regularized least-squares formulation

for fixed 9, n, a least-squares problem in u(0), ..., u(N)

Approximation and fitting 6.11



Example

3 solutions on optimal trade-off surface

(top) 6 = 0, small n; (middle) 6 = 0, larger n; (bottom) large ¢
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Signal reconstruction
minimize (w.r.t. R3)  ([I% = xcorll2, (%))

e x € R" is unknown signal
® Xcor = X + v is (known) corrupted version of x, with additive noise v
e variable X (reconstructed signal) is estimate of x

e ¢ : R" — Ris regularization function or smoothing objective

Examples: quadratic smoothing, total variation smoothing:

n—1 n—1
A A A 2 A A A
¢quad(x) = Z(xi+1 - X)°, Prv(X) = Z |[Xiv1 — X

Approximation and fitting
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Quadratic smoothing example
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Total variation reconstruction example
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three solutions on trade-off curve
1X — xcorll2 versus ¢quad(£)

quadratic smoothing smooths out noise and sharp transitions in signal
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total variation smoothing preserves sharp transitions in signal
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Robust approximation

minimize ||Ax — b|| with uncertain A
two approaches:

e stochastic: assume A is random, minimize E ||Ax — b||

o worst-case: set A of possible values of A, minimize sup .4 ||Ax — b||

tractable only in special cases (certain norms || - ||, distributions, sets A)

12

Example: A(u) = Ag+uA;
e Xnom Minimizes ||Agx — b||3

® Xstoch Minimizes E ||A(u)x — b||3
with u uniform on [—1, 1]

® Xwc Minimizes sup_;<,<; |A(u)x — b||3

figure shows r(u) = ||A(u)x — b||»
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Stochastic robust LS
withA=A+U,Urandom, EU =0, EUTU =P
minimize E||(A + U)x - b||3
e explicit expression for objective:

E|Ax-b|5 = E|Ax-b+Ux|;
= ||Ax - b|5+Ex" U Ux

= ||Ax = b||5 +x" Px
e hence, robust LS problem is equivalent to LS problem
minimize  [|Ax — b||3 + ||P'/%x]|3
e for P =61, get Tikhonov regularized problem
minimize || Ax — b||5 + & ||x||3

Approximation and fitting
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Worst-case robust LS
with A = {A+uj A1+ +upA, | lull, < 1}

minimize  sup [|Ax = bl|3 = sup [|P(x)u+q(x)|3
AeA |ull.<1

where P(x) = [ Aix Axx - Apx ], g(x) =Ax—b

e from page 5.16, strong duality holds between the following problems

maximize ||Pu + q||3 minimize ¢+ A4
subjectto  |Jul|3 <1 ] P g
subjectto | PT Al 0 | =0
AU

e hence, robust LS problem is equivalent to SDP

minimize t+ A4

I Px) qx)
subjectto | P(x)! Al 0 [=0
_ q(x)T 0 t

Approximation and fitting
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Example: histogram of residuals
r(u) = [[(Ap+u1Ay +upAz)x — bl|>

with u uniformly distributed on unit disk, for three values of x

1 sl

0 1 2 3 4 5

r(u)
® Xig minimizes ||A0x — b”z
e xix minimizes [|Aox — b|5 + 6l|x||5 (Tikhonov solution)

® x;s Minimizes sup,c 4 ||Ax — b||% + ||X||%
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