L. Vandenberghe ECE236B (Winter 2024)

6. Approximation and fitting

- norm approximation
- least-norm problems
- regularized approximation
- robust approximation

Norm approximation

minimize
$$||Ax - b||$$

 $(A \in \mathbf{R}^{m \times n} \text{ with } m \geq n, \|\cdot\| \text{ is a norm on } \mathbf{R}^m)$

Interpretations of solution $x^* = \operatorname{argmin}_x ||Ax - b||$

- geometric: Ax^* is point in $\mathcal{R}(A)$ closest to b
- estimation: linear measurement model

$$y = Ax + v$$

y are measurements, x is unknown, v is measurement error given y = b, best guess of x is x^*

optimal design: x are design variables (input), Ax is result (output)
 x* is design that best approximates desired result b

Examples

• least-squares approximation ($\|\cdot\|_2$): solution satisfies normal equations

$$A^T A x = A^T b$$

$$(x^* = (A^T A)^{-1} A^T b \text{ if } \mathbf{rank} A = n)$$

• Chebyshev approximation ($\|\cdot\|_{\infty}$): can be solved as an LP

minimize
$$t$$
 subject to $-t\mathbf{1} \le Ax - b \le t\mathbf{1}$

• sum of absolute residuals approximation ($\|\cdot\|_1$): can be solved as an LP

minimize
$$\mathbf{1}^T y$$

subject to $-y \le Ax - b \le y$

Penalty function approximation

minimize
$$\phi(r_1) + \cdots + \phi(r_m)$$

subject to $r = Ax - b$

 $(A \in \mathbf{R}^{m \times n}, \phi : \mathbf{R} \to \mathbf{R} \text{ is a convex penalty function})$

Examples

- quadratic: $\phi(u) = u^2$
- deadzone-linear with width *a*:

$$\phi(u) = \max\{0, |u| - a\}$$

• log-barrier with limit *a*:

$$\phi(u) = \begin{cases} -a^2 \log(1 - (u/a)^2) & |u| < a \\ \infty & \text{otherwise} \end{cases}$$

Comparison

Example (m = 100, n = 30): histogram of residuals for penalties

$$\phi(u) = |u|, \qquad \phi(u) = u^2, \qquad \phi(u) = \max\{0, |u| - a\}, \qquad \phi(u) = -\log(1 - u^2)$$

shape of penalty function has large effect on distribution of residuals

Huber penalty

Huber penalty function (with parameter M)

$$\phi_{\text{hub}}(u) = \begin{cases} u^2 & |u| \le M \\ M(2|u| - M) & |u| > M \end{cases}$$

linear growth for large u makes approximation less sensitive to outliers

- left: Huber penalty for M = 1
- right: affine function $f(t) = \alpha + \beta t$ fitted to 42 points t_i , y_i (circles) using quadratic (dashed) and Huber (solid) penalty

Least-norm problems

minimize
$$||x||$$
 subject to $Ax = b$

 $(A \in \mathbf{R}^{m \times n} \text{ with } m \leq n, \|\cdot\| \text{ is a norm on } \mathbf{R}^n)$

Interpretations of solution $x^* = \operatorname{argmin}_{Ax=b} ||x||$

- geometric: x^* is point in affine set $\{x \mid Ax = b\}$ with minimum distance to 0
- estimation: b = Ax are (perfect) measurements of x; x^* is smallest ('most plausible') estimate consistent with measurements
- design: x are design variables (inputs); b are required results (outputs) x^* is smallest ('most efficient') design that satisfies requirements

Examples

• least-squares solution of linear equations ($\|\cdot\|_2$): can be solved via optimality conditions

$$2x + A^T v = 0, \qquad Ax = b$$

• minimum sum of absolute values ($\|\cdot\|_1$): can be solved as an LP

minimize
$$\mathbf{1}^T y$$

subject to $-y \le x \le y$, $Ax = b$

tends to produce sparse solution x^*

Extension: least-penalty problem

minimize
$$\phi(x_1) + \cdots + \phi(x_n)$$

subject to $Ax = b$

 $\phi: \mathbf{R} \to \mathbf{R}$ is convex penalty function

Regularized approximation

minimize (w.r.t.
$$\mathbf{R}_{+}^{2}$$
) ($||Ax - b||, ||x||$)

 $A \in \mathbf{R}^{m \times n}$, norms on \mathbf{R}^m and \mathbf{R}^n can be different

Interpretation: find good approximation $Ax \approx b$ with small x

- estimation: linear measurement model y = Ax + v, with prior knowledge that ||x|| is small
- optimal design: small x is cheaper or more efficient, or the linear model y = Ax is only valid for small x
- robust approximation: good approximation $Ax \approx b$ with small x is less sensitive to errors in A than good approximation with large x

Scalarized problem

minimize
$$||Ax - b|| + \gamma ||x||$$

- solution for $\gamma > 0$ traces out optimal trade-off curve
- other common method: minimize $||Ax b||^2 + \delta ||x||^2$ with $\delta > 0$

Tikhonov regularization

minimize
$$||Ax - b||_2^2 + \delta ||x||_2^2$$

can be solved as a least-squares problem

minimize
$$\left\| \begin{bmatrix} A \\ \sqrt{\delta}I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|_{2}^{2}$$

solution
$$x^* = (A^T A + \delta I)^{-1} A^T b$$

Optimal input design

Linear dynamical system with impulse response *h*:

$$y(t) = \sum_{\tau=0}^{t} h(\tau)u(t-\tau), \quad t = 0, 1, \dots, N$$

Input design problem: multicriterion problem with 3 objectives

- 1. tracking error with desired output y_{des} : $J_{\text{track}} = \sum_{t=0}^{N} (y(t) y_{\text{des}}(t))^2$
- 2. input magnitude: $J_{\text{mag}} = \sum_{t=0}^{N} u(t)^2$
- 3. input variation: $J_{\text{der}} = \sum_{t=0}^{N-1} (u(t+1) u(t))^2$

track desired output using a small and slowly varying input signal

Regularized least-squares formulation

minimize
$$J_{\text{track}} + \delta J_{\text{der}} + \eta J_{\text{mag}}$$

for fixed δ , η , a least-squares problem in $u(0), \ldots, u(N)$

Example

3 solutions on optimal trade-off surface

(top) $\delta = 0$, small η ; (middle) $\delta = 0$, larger η ; (bottom) large δ

Signal reconstruction

minimize (w.r.t.
$$\mathbf{R}_{+}^{2}$$
) $(\|\hat{x} - x_{cor}\|_{2}, \phi(\hat{x}))$

- $x \in \mathbf{R}^n$ is unknown signal
- $x_{cor} = x + v$ is (known) corrupted version of x, with additive noise v
- variable \hat{x} (reconstructed signal) is estimate of x
- $\phi: \mathbb{R}^n \to \mathbb{R}$ is regularization function or smoothing objective

Examples: quadratic smoothing, total variation smoothing:

$$\phi_{\text{quad}}(\hat{x}) = \sum_{i=1}^{n-1} (\hat{x}_{i+1} - \hat{x}_i)^2, \qquad \phi_{\text{tv}}(\hat{x}) = \sum_{i=1}^{n-1} |\hat{x}_{i+1} - \hat{x}_i|$$

Quadratic smoothing example

Approximation and fitting

Total variation reconstruction example

original signal x and noisy signal x_{cor}

three solutions on trade-off curve $\|\hat{x} - x_{\text{cor}}\|_2$ versus $\phi_{\text{quad}}(\hat{x})$

quadratic smoothing smooths out noise and sharp transitions in signal

original signal x and noisy signal x_{cor}

three solutions on trade-off curve $\|\hat{x} - x_{\text{cor}}\|_2$ versus $\phi_{\text{tv}}(\hat{x})$

total variation smoothing preserves sharp transitions in signal

Approximation and fitting

Robust approximation

minimize ||Ax - b|| with uncertain A two approaches:

- **stochastic**: assume *A* is random, minimize $\mathbf{E} \|Ax b\|$
- worst-case: set \mathcal{A} of possible values of A, minimize $\sup_{A \in \mathcal{A}} ||Ax b||$ tractable only in special cases (certain norms $||\cdot||$, distributions, sets \mathcal{A})

Example: $A(u) = A_0 + uA_1$

- x_{nom} minimizes $||A_0x b||_2^2$
- x_{stoch} minimizes $\mathbf{E} ||A(u)x b||_2^2$ with u uniform on [-1, 1]
- x_{wc} minimizes $\sup_{-1 \le u \le 1} \|A(u)x b\|_2^2$ figure shows $r(u) = \|A(u)x b\|_2$

Stochastic robust LS

with $A = \bar{A} + U$, U random, $\mathbf{E} U = 0$, $\mathbf{E} U^T U = P$

minimize
$$\mathbf{E} \| (\bar{A} + U)x - b \|_2^2$$

explicit expression for objective:

$$\mathbf{E} \|Ax - b\|_{2}^{2} = \mathbf{E} \|\bar{A}x - b + Ux\|_{2}^{2}$$

$$= \|\bar{A}x - b\|_{2}^{2} + \mathbf{E}x^{T}U^{T}Ux$$

$$= \|\bar{A}x - b\|_{2}^{2} + x^{T}Px$$

• hence, robust LS problem is equivalent to LS problem

minimize
$$\|\bar{A}x - b\|_2^2 + \|P^{1/2}x\|_2^2$$

• for $P = \delta I$, get Tikhonov regularized problem

minimize
$$\|\bar{A}x - b\|_2^2 + \delta \|x\|_2^2$$

Worst-case robust LS

with
$$\mathcal{A} = \{ \bar{A} + u_1 A_1 + \dots + u_p A_p \mid ||u||_2 \le 1 \}$$

minimize
$$\sup_{A \in \mathcal{A}} ||Ax - b||_2^2 = \sup_{\|u\|_2 \le 1} ||P(x)u + q(x)||_2^2$$

where
$$P(x) = \begin{bmatrix} A_1x & A_2x & \cdots & A_px \end{bmatrix}$$
, $q(x) = \bar{A}x - b$

• from page 5.16, strong duality holds between the following problems

maximize
$$\|Pu + q\|_2^2$$
 minimize $t + \lambda$ subject to $\|u\|_2^2 \le 1$ subject to $\begin{bmatrix} I & P & q \\ P^T & \lambda I & 0 \\ q^T & 0 & t \end{bmatrix} \ge 0$

hence, robust LS problem is equivalent to SDP

minimize
$$t + \lambda$$

$$\begin{cases} I & P(x) & q(x) \\ P(x)^T & \lambda I & 0 \\ q(x)^T & 0 & t \end{cases} \geq 0$$
 subject to

Example: histogram of residuals

$$r(u) = \|(A_0 + u_1A_1 + u_2A_2)x - b\|_2$$

with u uniformly distributed on unit disk, for three values of x

- x_{ls} minimizes $||A_0x b||_2$
- x_{tik} minimizes $||A_0x b||_2^2 + \delta ||x||_2^2$ (Tikhonov solution)
- x_{rls} minimizes $\sup_{A \in \mathcal{A}} ||Ax b||_2^2 + ||x||_2^2$