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11. Interior-point methods

• inequality constrained minimization

• logarithmic barrier function and central path

• barrier method

• feasibility and phase I methods

• complexity analysis via self-concordance

• second-order cone and semidefinite programming
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Inequality constrained minimization

minimize 50(G)
subject to 58 (G) ≤ 0, 8 = 1, . . . , <

�G = 1

(1)

• 58 convex, twice continuously differentiable

• � ∈ R?×= with rank � = ?

• we assume ?★ is finite and attained

• we assume the problem is strictly feasible: there exists G̃ with

G̃ ∈ dom 50, 58 (G̃) < 0, 8 = 1, . . . , <, �G̃ = 1

hence, strong duality holds and dual optimum is attained
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Unconstrained (or equality-constrained) approximation

• write (1) as problem without inequality constraints:

minimize 50(G) +
<
∑

8=1
ℎ( 58 (G))

subject to �G = 1

where ℎ is indicator function of R−: ℎ(D) = 0 if D ≤ 0 and ℎ(D) = ∞ otherwise

• approximate indicator function by logarithmic barrier:

minimize 50(G) − (1/C)
<
∑

8=1
log(− 58 (G))

subject to �G = 1

• an equality constrained problem

• C > 0, approximation improves as C → ∞
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Logarithmic barrier function

q(G) = −
<
∑

8=1

log(− 58 (G)), dom q = {G | 51(G) < 0, . . . , 5< (G) < 0}

• a convex function (follows from composition rules)

• twice continuously differentiable, with derivatives

∇q(G) =

<
∑

8=1

1

− 58 (G)
∇ 58 (G)

∇2q(G) =

<
∑

8=1

1

58 (G)2
∇ 58 (G)∇ 58 (G)) +

<
∑

8=1

1

− 58 (G)
∇2 58 (G)
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Central path

• for C > 0, define G★(C) as the solution of the centering problem

minimize C 50(G) + q(G)
subject to �G = 1

(for now, assume G★(C) exists and is unique for each C > 0)

• the set {G★(C) | C > 0} is called the central path

Example: central path for an LP

minimize 2)G

subject to 0)
8
G ≤ 18, 8 = 1, . . . , 6

2

G★
G★(10)

hyperplane 2)G = 2)G★(C) is tangent to level curve of q through G★(C)
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Dual points on central path

• optimality condition for centering problem: �G = 1 and there exists a | such that

0 = C∇ 50(G) + ∇q(G) + �)|

= C∇ 50(G) +
<
∑

8=1

1

− 58 (G)
∇ 58 (G) + �)|

• point on central path G★(C) minimizes the Lagrangian of the original problem

! (G, _, a) = 50(G) +
<
∑

8=1

_8 58 (G) + a) (�G − 1)

for _, a given by

_★8 (C) =
1

−C 58 (G★(C))
, 8 = 1, . . . , <, a★(C) = |/C

centering gives a strictly primal feasible G★(C) and a dual feasible _★(C), a★(C)
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Duality gap on central path

• value of dual objective function at _★(C), a★(C) is

6(_★(C), a★(C)) = inf
G
! (G, _★(C), a★(C))

= ! (G★(C), _★(C), a★(C))

= 50(G★) +
<
∑

8=1

_★8 (C) 58 (G
★(C)) + a★

) (�G★ − 1)

= 50(G★(C)) −
<

C

• this confirms the intuitive idea that 50(G★(C)) → ?★ if C → ∞:

50(G★(C)) − ?★ ≤ <

C
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Interpretation via KKT conditions

G = G★(C), _ = _★(C), a = a★(C) satisfy

1. primal constraints: 58 (G) ≤ 0, 8 = 1, . . . , <, �G = 1

2. dual inequality: _ � 0

3. approximate complementary slackness:

_8 58 (G) = −1

C
, 8 = 1, . . . , <

4. gradient of Lagrangian with respect to G vanishes:

∇ 50(G) +
<
∑

8=1

_8∇ 58 (G) + �)a = 0

difference with KKT conditions is that condition 3 replaces _8 58 (G) = 0
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Force field interpretation

Centering problem (for problem with no equality constraints)

minimize C 50(G) −
<
∑

8=1
log(− 58 (G))

Force field interpretation

• C 50(G) is potential of force field

�0(G) = −C∇ 50(G)

• − log(− 58 (G)) is potential of force field

�8 (G) = (1/ 58 (G))∇ 58 (G)

• the forces balance at G★(C):

�0(G★(C)) +
<
∑

8=1

�8 (G★(C)) = 0
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Example

minimize 2)G

subject to 0)
8
G ≤ 18, 8 = 1, . . . , <

• objective force field is constant: �0(G) = −C2

• constraint force field decays as inverse distance to constraint hyperplane:

�8 (G) =
−08

18 − 0)
8
G
, ‖�8 (G)‖2 =

1

3 (G,H8)

where 3 (G,H8) is distance of G to hyperplane H8 = {G | 0)
8
G = 18}

−2

−32
C = 1 C = 3
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Barrier method

given: strictly feasible G, C := C (0) > 0, ` > 1, tolerance n > 0

repeat

1. centering step: compute G★(C) by minimizing C 50(G) + q(G) subject to �G = 1

2. update: G := G★(C)
3. stopping criterion: quit if </C < n

4. increase C: C := `C

• terminates with strictly feasible point that satisfies 50(G) − ?★ ≤ </C < n

• centering is usually done using Newton’s method, starting at current G

• an outer iteration loop (steps 1–4) and an inner (Newton) iteration loop (step 1)

• choice of ` involves trade-off between number of outer and inner iterations

• typical values of ` are 10–20

• several heuristics exist for choosing C (0)
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Convergence analysis

Number of outer (centering) iterations: exactly

⌈

log(</(nC (0)))
log `

⌉

plus the initial centering step (to compute G★(C (0)))

Centering problem: see convergence analysis of Newton’s method

• C 50 + q must have closed sublevel sets for C ≥ C (0)

• classical analysis requires strong convexity, Lipschitz continuity of Hessian

• analysis via self-concordance requires self-concordance of C 50 + q

• the additional assumptions also guarantee that solution exists and is unique
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Example: inequality form LP

LP with < = 100 inequalities, = = 50 variables

Newton iterations
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• starts with G on central path (C (0) = 1, duality gap 100)

• terminates when C = 108 (gap 10−6)

• centering uses Newton’s method with backtracking

• total number of Newton iterations not very sensitive for ` ≥ 10
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Example: geometric program

GP with < = 100 inequalities and = = 50 variables

minimize log(
5
∑

:=1
exp(0)

0:
G + 10:))

subject to log(
5
∑

:=1
exp(0)

8:
G + 18:)) ≤ 0, 8 = 1, . . . , <

Newton iterations
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Example: family of standard LPs

minimize 2)G

subject to �G = 1, G � 0

• � ∈ R<×2< with < = 10, . . . , 1000

• for each <, solve 100 randomly generated instances
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number of iterations grows very slowly as < ranges over a 100 : 1 ratio
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Feasibility and phase I methods

Phase I: computes a strictly feasible starting point, i.e., G that satisfies

58 (G) ≤ 0, 8 = 1, . . . , <, �G = 1 (2)

Basic phase I method

minimize (over G, B) B

subject to 58 (G) ≤ B, 8 = 1, . . . , <

�G = 1

(3)

• problem (3) is strictly feasible: take any G, B that satisfies

G ∈ dom 58, 8 = 1, . . . , <, �G = 1, B > max
8

58 (G)

• if G, B are feasible for (3) with B < 0, then G is strictly feasible for (2)

• if optimal value ?̄★ of (3) is positive, then problem (2) is infeasible

• if ?̄★ = 0 and attained, then problem (2) is feasible (but not strictly)

• if ?̄★ = 0 and not attained, then problem (2) is infeasible
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Sum of infeasibilities phase I method

minimize 1) B

subject to B � 0, 58 (G) ≤ B8, 8 = 1, . . . , <

�G = 1

for infeasible problem, will find G that satisfies many more inequalities than (3)

Example (infeasible set of 100 linear inequalities in 50 variables)
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• left: basic phase I solution; satisfies 39 inequalities

• right: sum of infeasibilities phase I solution; satisfies 79 inequalities
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Complexity analysis via self-concordance

same assumptions as on page 11.2, plus:

• sublevel sets (of 50, on the feasible set) are bounded

• C 50 + q is self-concordant with closed sublevel sets

• second condition holds for LP, QP, QCQP

• may require reformulating the problem, e.g.,

minimize
=
∑

8=1
G8 log G8

subject to �G � 6

−→ minimize
=
∑

8=1
G8 log G8

subject to �G � 6, G � 0

• assumptions are needed for complexity analysis, not to run the barrier method
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Newton iterations per centering step

bound on effort of computing G+ = G★(`C) starting at G = G★(C):

#Newton iterations ≤ `C 50(G) + q(G) − `C 50(G+) − q(G+)
W

+ 2 (4)

• W, 2 are constants (depend only on algorithm parameters); see page ??

• upper bound on first term follows from duality:

`C 50(G) + q(G) − `C 50(G+) − q(G+)

= `C 50(G) − `C 50(G+) +
<
∑

8=1

log(−`C_8 58 (G+)) − < log `

≤ `C 50(G) − `C 50(G+) − `C
<
∑

8=1

_8 58 (G+) − < − < log `

≤ `C 50(G) − `C6(_, a) − < − < log `

= <(` − 1 − log `)

where _8 = _★
8
(C) = −1/(C 58 (G★(C)))
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Total number of Newton iterations

• we exclude first centering step on page 11.11, assume we start at G★(C (0))
• bound on Newton iterations is number of outer iterations times (4)

#Newton iterations ≤ # =

⌈

log(</(C (0)n))
log `

⌉

(

<(` − 1 − log `)
W

+ 2

)

`

#

1 1.1 1.2
0

1 104

2 104

3 104

4 104

5 104

figure shows # for typical values of W, 2,

< = 100,
<

C (0)n
= 105

• confirms trade-off in choice of `

• in practice, #iterations is in the tens and not very sensitive for ` ≥ 10
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Polynomial-time complexity of barrier method

• for ` = 1 + 1/√<:

# = $

(

√
< log

(

</C (0)
n

))

• number of Newton iterations for fixed gap reduction is $ (√<)

• multiply with cost of one Newton iteration to get bound on number of flops

• this choice of ` optimizes worst-case complexity

• in practice we choose ` fixed (` = 10, . . . , 20)
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Second-order cone programming

minimize 5 )G

subject to ‖�8G + 18‖2 ≤ 2)
8
G + 38, 8 = 1, . . . , <

• constraint functions are not differentiable

• barrier method for second-order cone programming uses barrier function

q(G) = −
<
∑

8=1

log((2)8 G + 38)2 − ‖�8G + 18‖2
2)

= −
<
∑

8=1

log(2)8 G + 38) −
<
∑

8=1

log(2)8 G + 38 −
‖�8G + 18‖2

2

2)
8
G + 38

)

• equivalent to standard barrier method for reformulation with 2< inequalities

minimize 5 )G

subject to
‖�8G + 18‖2

2

2)
8
G + 38

≤ 2)8 G + 38, 8 = 1, . . . , <

2)
8
G + 38 ≥ 0, 8 = 1, . . . , <
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Semidefinite programming

Primal and dual SDP (with �1, . . . , �=, � ∈ S<)

minimize 2)G

subject to
=
∑

8=1
G8�8 � �

maximize − tr(�/)
subject to tr(�8/) + 28 = 0, 8 = 1, . . . , =

/ � 0

Logarithmic barrier

q(G) = − log det � (G), where � (G) = � −
=

∑

8=1

G8�8

• a convex differentiable function, with domain {G | � (G) ≻ 0}
• gradient and Hessian are

∇q(G)8 = tr(�8� (G)−1), ∇2q(G)8 9 = tr(�8 (� (G)−1�9� (G)−1),

for 8, 9 = 1, . . . , =
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Central path

points on central path G★(C) for C > 0 are minimizers of C2)G + q(G)

• optimality condition for centering problem:

0 = C28 + ∇q(G)8 = C28 + tr(�8� (G)−1), 8 = 1, . . . , =

• dual feasible point on central path:

/★(C) = 1

C
� (G★(C))−1

• corresponding duality gap:

2)G★(C) + tr(�/★(C)) = tr((−
=

∑

8=1

G★8 (C)�8 + �)/★(C))

= tr(� (G★(C))/★(C))
= </C
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Barrier method for semidefinite programming

given: strictly feasible G, C := C (0) > 0, ` > 1, tolerance n > 0

repeat

1. centering step: compute G★(C) by minimizing C2)G + q(G)
2. update: G := G★(C)
3. stopping criterion: quit if </C < n

4. increase C: C := `C

• number of outer iterations:
⌈

log(</(nC (0)))
log `

⌉

• complexity analysis via self-concordance also applies to SDP
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Examples

Second-order cone program (50 variables, 50 SOC constraints in R6

Newton iterations
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Semidefinite program (100 variables, constraint in S100)

Newton iterations
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Family of SDPs (� ∈ S=, G ∈ R=)

minimize 1)G

subject to � + diag(G) � 0

= = 10, . . . , 1000, for each = solve 100 randomly generated instances
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Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

• update primal and dual variables at each iteration

• no distinction between inner and outer iterations

• often exhibit superlinear asymptotic convergence

• steps can be interpreted as Newton iterates for modified KKT conditions

• can start at infeasible points

• cost per iteration same as barrier method
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