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11. Interior-point methods

e inequality constrained minimization

e logarithmic barrier function and central path
e barrier method

e feasibility and phase | methods

e complexity analysis via self-concordance

e second-order cone and semidefinite programming



Inequality constrained minimization

minimize  fy(x)
subjectto  f;(x) <0, i=1,...,m
Ax =b
e f; convex, twice continuously differentiable

o A e RP withrank A = p

e we assume p* is finite and attained

e we assume the problem is strictly feasible: there exists X with

X € dom fy, () <0, i=1,...,m,

hence, strong duality holds and dual optimum is attained
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Unconstrained (or equality-constrained) approximation

e write (1) as problem without inequality constraints:

minimize  fo(x) + 3 h(f(x))
=1
subjectto Ax =05

where # is indicator function of R_: h(u) = 0if u < 0 and h(u) = oo otherwise

e approximate indicator function by logarithmic barrier:

minimize  fo(x) — (1/) 3 log(~f(x))
=1

subjectto Ax=0> 0

e an equality constrained problem

e 1 > (0, approximation improves as t — o 0
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Logarithmic barrier function

#(x) = = > log(=fi(x)),  dom¢={x]|fi(x) <O0,...
i=1

e a convex function (follows from composition rules)

e twice continuously differentiable, with derivatives

Vo) = S V()
px lzf*—fl() Jilx
) I T
V) = 2 VAT +Z_ﬁ()
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Central path

e fort > 0, define x*(¢) as the solution of the centering problem

minimize tfy(x) + ¢(x)
subjectto Ax =05
(for now, assume x*(¢) exists and is unique for each 7 > 0)

e the set {x*(¢) | t > 0} is called the central path

Example: central path for an LP

minimize c¢x

subjectto alx <b;, i=1,...,6

i

T

hyperplane ¢/ x = ¢! x*(¢) is tangent to level curve of ¢ through x*(¢)
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Dual points on central path

e optimality condition for centering problem: Ax = b and there exists a w such that
0 = tVfi(x)+ V¢(x) + Alw

tV fo(x) + Z Viix)+Alw

_fz( )

e point on central path x*(z) minimizes the Lagrangian of the original problem
m
L(x, 4, v) = fo(x) + > Aifi(x) + V" (Ax = b)
i=1

for A, v given by

* (N 1 . * (0 _
/li(t)_—tfi(x*(t))’ i=1,...,m, vi(t) = w/t

centering gives a strictly primal feasible x*(¢) and a dual feasible A*(¢), v*(¢)
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Duality gap on central path

e value of dual objective function at A*(¢), v*(¢) is

g(*(1),v*(1)) = inf L(x, 2*(1), v*(1))

= L(x*(1), A%(t), v* (1))

= fola®) + DK@ [(K () +v* (Ax* = b)
i=1

= A (0)-=

e this confirms the intuitive idea that fy(x*(¢)) — p* if t — oo:

fole*(1) = p* < =
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Interpretation via KKT conditions

x =x*(t), A = A*(¢t), v = v*(¢) satisfy

1. primal constraints: fi(x) <0,i=1,...,m,Ax=b
2. dual inequality: 1 = 0

3. approximate complementary slackness:

1
/l,-f,-(x):—;, i=1,...,m

4. gradient of Lagrangian with respect to x vanishes:

Vfo(x) + ﬁ] LV Hx)+ATv =0
i=1

difference with KKT conditions is that condition 3 replaces 4; f;(x) = 0
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Force field interpretation

Centering problem (for problem with no equality constraints)

minimize 1 fy(x) — 3 log(—f;(x))
=1

Force field interpretation

e 1fo(x) is potential of force field
Fo(x) = =1V fo(x)
e —log(—f;(x)) is potential of force field

Fi(x) = (1/ fi(x)V fi(x)

e the forces balance at x*(¢):

Fo(x*(1)) + D Fi(x*(1)) = 0
i=1
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Example

minimize c¢!x

subjectto ajx <b;, i=1,....,m

e objective force field is constant: Fy(x) = —tc

e constraint force field decays as inverse distance to constraint hyperplane:

—a; 1
: | Fi(x)|[2 =

Fi(x) = —— -
() b; — al.Tx d(x, H;)

where d(x, H;) is distance of x to hyperplane H; = {x | al.Tx = b;}
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Barrier method

given: strictly feasible x, # := (%) > 0, u > 1, tolerance € > 0
repeat
1. centering step: compute x*(¢) by minimizing ¢ fo(x) + ¢(x) subjectto Ax = b
2. update: x := x*(1)
3. stopping criterion: quitif m/t < €
4. increaset: t ;= ut

e terminates with strictly feasible point that satisfies fy(x) — p* < m/t < €

e centering is usually done using Newton’s method, starting at current x

e an outer iteration loop (steps 1—4) and an inner (Newton) iteration loop (step 1)
e choice of u involves trade-off between number of outer and inner iterations

e typical values of u are 10-20

e several heuristics exist for choosing (%
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Convergence analysis

Number of outer (centering) iterations: exactly

log(m/(et'?))
log u

plus the initial centering step (to compute x*(+(?))

Centering problem: see convergence analysis of Newton’s method

e 7 fy+ ¢ must have closed sublevel sets for ¢ > (0

e classical analysis requires strong convexity, Lipschitz continuity of Hessian
e analysis via self-concordance requires self-concordance of ¢ fo + ¢

e the additional assumptions also guarantee that solution exists and is unique
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Example: inequality form LP

LP with m = 100 inequalities, n = 50 variables
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e starts with x on central path (+(9 = 1, duality gap 100)

e terminates when ¢ = 108 (gap 10_6)
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e centering uses Newton's method with backtracking
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e total number of Newton iterations not very sensitive for u > 10
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Example: geometric program

GP with m = 100 inequalities and n = 50 variables

5
minimize  log( X exp(a,x + bok))
k=1

5
subject to log(kz_]1 exp(aj,x +by)) <0, i=1,...,m

duality gap

Newton iterations
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Example: family of standard LPs

minimize c¢!x

subjectto Ax=bH, x =0

o A € R™2M with m = 10, ...,1000

e for each m, solve 100 randomly generated instances

35

Newton iterations

10! 102 103
m

number of iterations grows very slowly as m ranges over a 100 : 1 ratio
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Feasibility and phase | methods

Phase |: computes a strictly feasible starting point, i.e., x that satisfies

filx) <0, i=1,...,m, Ax =b (2)

Basic phase | method

minimize (over x,s) s
subject to fix)<s, i=1,...,m (3)
Ax=0>b

e problem (3) is strictly feasible: take any x, s that satisfies
xedomf;, i=1,...,m, Ax = b, s > max fi(x)
l

e if x, s are feasible for (3) with s < 0, then x is strictly feasible for (2)
e if optimal value p* of (3) is positive, then problem (2) is infeasible
e if p* = 0 and attained, then problem (2) is feasible (but not strictly)

e if p* = 0 and not attained, then problem (2) is infeasible
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Sum of infeasibilities phase | method
minimize 1's
subjectto s >0, fi(x)<s; i=1,...,m
Ax=b

for infeasible problem, will find x that satisfies many more inequalities than (3)

Example (infeasible set of 100 linear inequalities in 50 variables)
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e left: basic phase | solution; satisfies 39 inequalities
e right: sum of infeasibilities phase | solution; satisfies 79 inequalities
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Complexity analysis via self-concordance

same assumptions as on page 11.2, plus:

e sublevel sets (of fy, on the feasible set) are bounded

e 1 fo+ ¢ is self-concordant with closed sublevel sets

e second condition holds for LP, QP, QCQP

e may require reformulating the problem, e.g.,

n n
minimize > x;logx; —> minimize > x;logx;
i=1 i=1
subjectto Fx < g subjectto Fx<g, x=0

e assumptions are needed for complexity analysis, not to run the barrier method
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Newton iterations per centering step

bound on effort of computing x* = x*(ur) starting at x = x*(¢):

ut fo(x) + ¢(x) — ut fo(x¥) — ¢(x™) e
Y

#Newton iterations <

e v, c are constants (depend only on algorithm parameters); see page ??

e upper bound on first term follows from duality:

pt fo(x) + ¢(x) — pt fo(x™) — ¢(x™)

m

= utfo(x) — pt fo(x*) + D log(—utdi fi(x*)) — mlog u
i=1

pt fo(x) — pt fo(x*) — ut D Aifi(x*) —m —mlog u
i=1

pt fo(x) — ptg(A,v) —m —mlog

= m(u—1-logpu)

IA

IA

where A; = A (1) = =1/(t fi(x*(1)))
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Total number of Newton iterations

e we exclude first centering step on page 11.11, assume we start at x*(t(o))

e bound on Newton iterations is number of outer iterations times (4)

log(m/(tVe))
log

~1-1
(m(u ogH) ,

#Newton iterations < N = [
Y

m = 100, =10

t(0)¢

1 1.1 1.2
7

e confirms trade-off in choice of u

e in practice, #iterations is in the tens and not very sensitive for u > 10

Interior-point methods

figure shows N for typical values of vy, c,
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Polynomial-time complexity of barrier method

o foru=1+1/ym:

N=0
€

m /10
e[

e number of Newton iterations for fixed gap reduction is O (y/m)
e multiply with cost of one Newton iteration to get bound on number of flops
e this choice of u optimizes worst-case complexity

e in practice we choose u fixed (u = 10, ..., 20)

Interior-point methods 11.21



Second-order cone programming

minimize  flx
subjectto  [[Aix +billa < cjx+d;, i=1,...,m

e constraint functions are not differentiable

e barrier method for second-order cone programming uses barrier function

m
d(x) = — > log((clx+d)*—||Ax +bil|3)
=1

m m | Aix + b;||3
= — Z log(ciTx +d;) — Z IOg(ciTx +d; - lT il
i:l l:1

)

c: x+d;

i

e equivalent to standard barrier method for reformulation with 2m inequalities

minimize  flx

2
_ |Aix +bill; o .
subject to T <cix+d;, i=1,...,m
c; X +d;
cl.Tx+d,-20, i=1,...,m
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Semidefinite programming

Primal and dual SDP (with Fy, ..., F,,G € ™)

minimize  c¢!x maximize - tr(GZ)
subject to % x,Fi <G subjectto tr(FiZ)+c¢; =0, i=1,...
=1 Z=0

Logarithmic barrier

n
d(x) = —logdet F(x), where F(x) =G — Zx,-F,-
i=1

e a convex differentiable function, with domain {x | F(x) > 0}

e gradient and Hessian are

Vo(x); = tr(FF(x)™"),  V2p(x)y; = tr(Fi(F(x) " FiF(x)™),

fori,j=1,...,n

Interior-point methods
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Central path

points on central path x*(¢) for ¢ > 0 are minimizers of ¢! x + ¢(x)

e optimality condition for centering problem:
0=tc;+Vp(x); =tc;+tr(FiF(xX)™N), i=1,...,n
e dual feasible point on central path:

2*(1) = F (1))

e corresponding duality gap:

Ix* (1) +tr(GZ*(1)) = tr((= Z XX()F; + G)Z* (1))
=1

= tr(F(x*(1))Z*(1))

= m/t

Interior-point methods
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Barrier method for semidefinite programming

given: strictly feasible x, # := (%) > 0, u > 1, tolerance € > 0
repeat
1. centering step: compute x*(¢) by minimizing ¢! x + ¢(x)
2. update: x := x*(1)
3. stopping criterion: quitif m/t < €
4. increaset: t := ut

e number of outer iterations:
log(m/(et'?))
log u

e complexity analysis via self-concordance also applies to SDP

Interior-point methods
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Examples

Second-order cone program (50 variables, 50 SOC constraints in R®

10 "
‘ c 120
o 100 2
(4] 4y}
(@) —
> 102 2 80
'(—; c | i
- 10—4, 49
© . q;) 40+ |
1076 | (=50 =200 pf=2 Z f
0 20 40 60 30 O 0 60 100 140 180
Newton iterations u

Semidefinite program (100 variables, constraint in S'%)
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Family of SDPs (A € §", x € R")

minimize 17x
subjectto A + diag(x) = 0

n =10,...,1000, for each n solve 100 randomly generated instances

35

301

Newton iterations

154
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Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

e update primal and dual variables at each iteration

e no distinction between inner and outer iterations

e often exhibit superlinear asymptotic convergence

e steps can be interpreted as Newton iterates for modified KKT conditions
e can start at infeasible points

e cost per iteration same as barrier method
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