5. Duality

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions
- perturbation and sensitivity analysis
- examples
- semidefinite optimization
- theorems of alternatives

Lagrangian

Standard form problem (not necessarily convex)

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

variable $x \in \mathbf{R}^{n}$, domain \mathcal{D}, optimal value p^{\star}
Lagrangian: $L: \mathbf{R}^{n} \times \mathbf{R}^{m} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$, with $\operatorname{dom} L=\mathcal{D} \times \mathbf{R}^{m} \times \mathbf{R}^{p}$,

$$
L(x, \lambda, v)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} v_{i} h_{i}(x)
$$

- weighted sum of objective and constraint functions
- λ_{i} is Lagrange multiplier associated with $f_{i}(x) \leq 0$
- v_{i} is Lagrange multiplier associated with $h_{i}(x)=0$

Lagrange dual function

Lagrange dual function: $g: \mathbf{R}^{m} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$,

$$
\begin{aligned}
g(\lambda, v) & =\inf _{x \in \mathcal{D}} L(x, \lambda, v) \\
& =\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} v_{i} h_{i}(x)\right)
\end{aligned}
$$

- a concave function of λ, v
- can be $-\infty$ for some λ, v; this defines the domain of g

Lower bound property: if $\lambda \geq 0$, then $g(\lambda, v) \leq p^{\star}$ proof: if x is feasible and $\lambda \geq 0$, then

$$
f_{0}(x) \geq L(x, \lambda, v) \geq \inf _{\tilde{x} \in \mathcal{D}} L(\tilde{x}, \lambda, v)=g(\lambda, v)
$$

minimizing over all feasible x gives $p^{\star} \geq g(\lambda, v)$

Least norm solution of linear equations

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} x \\
\text { subject to } & A x=b
\end{array}
$$

- Lagrangian is

$$
L(x, v)=x^{T} x+v^{T}(A x-b)
$$

- to minimize L over x, set gradient equal to zero:

$$
\nabla_{x} L(x, v)=2 x+A^{T} v=0 \quad \Longrightarrow \quad x=-\frac{1}{2} A^{T} v
$$

- plug in in L to obtain g :

$$
g(v)=L\left(-\frac{1}{2} A^{T} v, v\right)=-\frac{1}{4} v^{T} A A^{T} v-b^{T} v
$$

a concave function of v

Lower bound property: $p^{\star} \geq-\frac{1}{4} \nu^{T} A A^{T} v-b^{T} v$ for all v

Standard form LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

- Lagrangian is

$$
\begin{aligned}
L(x, \lambda, v) & =c^{T} x+v^{T}(A x-b)-\lambda^{T} x \\
& =-b^{T} v+\left(c+A^{T} v-\lambda\right)^{T} x
\end{aligned}
$$

- L is affine in x, hence

$$
g(\lambda, v)=\inf _{x} L(x, \lambda, v)= \begin{cases}-b^{T} v & A^{T} v-\lambda+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

g is linear on affine domain dom $g=\left\{(\lambda, v) \mid A^{T} v-\lambda+c=0\right\}$, hence concave

Lower bound property: $p^{\star} \geq-b^{T} v$ if $A^{T} v+c \geq 0$

Equality constrained norm minimization

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\| \\
\text { subject to } & A x=b
\end{array}
$$

- || $\cdot \|$ is any norm; dual norm is defined as

$$
\|v\|_{*}=\sup _{\|u\| \leq 1} u^{T} v
$$

- define Lagrangian $L(x, v)=\|x\|+v^{T}(b-A x)$
- dual function (proof on next page):

$$
\begin{aligned}
g(v) & =\inf _{x}\left(\|x\|-v^{T} A x+b^{T} v\right) \\
& =\left\{\begin{array}{cl}
b^{T} v & \left\|A^{T} v\right\|_{*} \leq 1 \\
-\infty & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Lower bound property: $p^{\star} \geq b^{T} v$ if $\left\|A^{T} v\right\|_{*} \leq 1$
proof of expression for g : follows from

$$
\inf _{x}\left(\|x\|-y^{T} x\right)= \begin{cases}0 & \|y\|_{*} \leq 1 \tag{1}\\ -\infty & \text { otherwise }\end{cases}
$$

Case $\|y\|_{*} \leq 1$:

$$
\inf _{x}\left(\|x\|-y^{T} x\right)=0
$$

- $y^{T} x \leq\|x\|\|y\|_{*} \leq\|x\|$ for all x (by definition of dual norm)
- $y^{T} x=\|x\|$ for $x=0$

Case $\|y\|_{*}>1$:

$$
\inf _{x}\left(\|x\|-y^{T} x\right)=-\infty
$$

- there exists an \tilde{x} with $\|\tilde{x}\| \leq 1$ and $y^{T} \tilde{x}=\|y\|_{*}>1$; hence $\|\tilde{x}\|-\|y\|_{*}<0$
- consider $x=t \tilde{x}$ with $t>0$:

$$
\|x\|-y^{T} x=t\left(\|\tilde{x}\|-\|y\|_{*}\right) \rightarrow-\infty \quad \text { as } t \rightarrow \infty
$$

Two-way partitioning

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} W x \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

- a nonconvex problem; feasible set $\{-1,1\}^{n}$ contains 2^{n} discrete points
- interpretation: partition $\{1, \ldots, n\}$ in two sets, $x_{i} \in\{-1,1\}$ is assignment for i
- cost function is

$$
\begin{aligned}
x^{T} W x & =\sum_{i=1}^{n} W_{i i}+2 \sum_{i>j} W_{i j} x_{i} x_{j} \\
& =\mathbf{1}^{T} W \mathbf{1}+2 \sum_{i>j} W_{i j}\left(x_{i} x_{j}-1\right)
\end{aligned}
$$

cost of assigning i, j to different sets is $-4 W_{i j}$

Lagrange dual of two-way partitioning problem

Dual function

$$
\begin{aligned}
g(v) & =\inf _{x}\left(x^{T} W x+\sum_{i=1}^{n} v_{i}\left(x_{i}^{2}-1\right)\right) \\
& =\inf _{x} x^{T}(W+\boldsymbol{\operatorname { d i a g }}(v)) x-\mathbf{1}^{T} v \\
& = \begin{cases}-\mathbf{1}^{T} v & W+\operatorname{diag}(v) \geq 0 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

Lower bound property

$$
p^{\star} \geq-\mathbf{1}^{T} v \quad \text { if } W+\operatorname{diag}(v) \geq 0
$$

example: $v=-\lambda_{\min }(W) \mathbf{1}$ proves bound $p^{\star} \geq n \lambda_{\min }(W)$

Lagrange dual and conjugate function

$$
\begin{array}{ll}
\text { minimize } & f_{0}(x) \\
\text { subject to } & A x \leq b \\
& C x=d
\end{array}
$$

Dual function

$$
\begin{aligned}
g(\lambda, v) & =\inf _{x \in \operatorname{dom} f_{0}}\left(f_{0}(x)+\left(A^{T} \lambda+C^{T} v\right)^{T} x-b^{T} \lambda-d^{T} v\right) \\
& =-f_{0}^{*}\left(-A^{T} \lambda-C^{T} v\right)-b^{T} \lambda-d^{T} v
\end{aligned}
$$

- recall definition of conjugate $f^{*}(y)=\sup _{x}\left(y^{T} x-f(x)\right)$
- simplifies derivation of dual if conjugate of f_{0} is known

Example: entropy maximization

$$
f_{0}(x)=\sum_{i=1}^{n} x_{i} \log x_{i}, \quad f_{0}^{*}(y)=\sum_{i=1}^{n} e^{y_{i}-1}
$$

The dual problem

Lagrange dual problem

$$
\begin{array}{ll}
\text { maximize } & g(\lambda, v) \\
\text { subject to } & \lambda \geq 0
\end{array}
$$

- finds best lower bound on p^{\star}, obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted by d^{\star}
- often simplified by making implicit constraint $(\lambda, v) \in \operatorname{dom} g$ explicit
- λ, v are dual feasible if $\lambda \geq 0,(\lambda, v) \in \operatorname{dom} g$
- $d^{\star}=-\infty$ if problem is infeasible; $d^{\star}=+\infty$ if unbounded above

Example: standard form LP and its dual (page 5.5)

$$
\begin{array}{lll}
\text { minimize } & c^{T} x & \text { maximize }
\end{array}-b^{T} v .
$$

Weak and strong duality

Weak duality: $d^{\star} \leq p^{\star}$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

$$
\begin{array}{ll}
\operatorname{maximize} & -\mathbf{1}^{T} v \\
\text { subject to } & W+\boldsymbol{\operatorname { d i a g }}(v) \geq 0
\end{array}
$$

gives a lower bound for the two-way partitioning problem on page 5.8
Strong duality: $d^{\star}=p^{\star}$

- does not hold in general
- (usually) holds for convex problems
- sufficient conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's constraint qualification

Convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

Slater's constraint qualification: the problem is strictly feasible, i.e.,

$$
\exists x \in \operatorname{int} \mathcal{D}: \quad f_{i}(x)<0, \quad i=1, \ldots, m, \quad A x=b
$$

- guarantees strong duality: $p^{\star}=d^{\star}$
- also guarantees that the dual optimum is attained if $p^{\star}>-\infty$
- can be sharpened: e.g., can replace int \mathcal{D} with relint \mathcal{D} (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, ...
- there exist many other types of constraint qualifications

Inequality form LP

Primal problem

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \leq b
\end{array}
$$

Dual function

$$
g(\lambda)=\inf _{x}\left(\left(c+A^{T} \lambda\right)^{T} x-b^{T} \lambda\right)= \begin{cases}-b^{T} \lambda & A^{T} \lambda+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

Dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & -b^{T} \lambda \\
\text { subject to } & A^{T} \lambda+c=0 \\
& \lambda \geq 0
\end{array}
$$

- from Slater's condition: $p^{\star}=d^{\star}$ if $A \tilde{x}<b$ for some \tilde{x}
- in fact, $p^{\star}=d^{\star}$ except when primal and dual are infeasible ($p^{\star}=\infty, d^{\star}=-\infty$)

Quadratic program

Primal problem (assume $P \in \mathbf{S}_{++}^{n}$)

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} P x \\
\text { subject to } & A x \leq b
\end{array}
$$

Dual function

$$
g(\lambda)=\inf _{x}\left(x^{T} P x+\lambda^{T}(A x-b)\right)=-\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda-b^{T} \lambda
$$

Dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & -\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda-b^{T} \lambda \\
\text { subject to } & \lambda \geq 0
\end{array}
$$

- from Slater's condition: $p^{\star}=d^{\star}$ if $A \tilde{x}<b$ for some \tilde{x}
- in fact, $p^{\star}=d^{\star}$ always

A nonconvex problem with strong duality

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} A x+2 b^{T} x \\
\text { subject to } & x^{T} x \leq 1
\end{array}
$$

we allow $A \nsucceq 0$, hence problem may be nonconvex
Dual function (derivation on next page)

$$
\begin{aligned}
g(\lambda) & =\inf _{x}\left(x^{T}(A+\lambda I) x+2 b^{T} x-\lambda\right) \\
& = \begin{cases}-b^{T}(A+\lambda I)^{\dagger} b-\lambda & A+\lambda I \geq 0 \text { and } b \in \mathcal{R}(A+\lambda I) \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

Dual problem and equivalent SDP:

$$
\begin{array}{llll}
\text { maximize } & -b^{T}(A+\lambda I)^{\dagger} b-\lambda & \text { maximize } & -t-\lambda \\
\text { subject to } & A+\lambda I \geq 0 & \text { subject to } & {\left[\begin{array}{cc}
A+\lambda I & b \\
b^{T} & t
\end{array}\right] \geq 0} \\
& b \in \mathcal{R}(A+\lambda I) & & \lambda \geq 0
\end{array}
$$

strong duality holds although primal problem is not convex (not easy to show)
proof of expression for g : unconstrained minimum of $f(x)=x^{T} P x+2 q^{T} x+r$ is

$$
\inf _{x} f(x)= \begin{cases}-q^{T} P^{-1} q+r & P>0 \\ -q^{T} P^{\dagger} q+r & P \nsucc 0, P \geq 0, q \in \mathcal{R}(P) \\ -\infty & P \geq 0, q \notin \mathcal{R}(P) \\ -\infty & P \nsucceq 0\end{cases}
$$

- if $P \nsucceq 0$, function f is unbounded below: choose y with $y^{T} P y<0$ and $x=t y$

$$
f(x)=t^{2}\left(y^{T} P y\right)+2 t\left(q^{T} y\right)+r \rightarrow-\infty \quad \text { if } t \rightarrow \pm \infty
$$

- if $P \geq 0$, decompose q as $q=P u+v$ with $u=P^{\dagger} q$ and $v=\left(I-P P^{\dagger}\right) q$
$P u$ is projection of q on $\mathcal{R}(P), v$ is projection on nullspace of P
- if $v \neq 0$ (i.e., $q \notin \mathcal{R}(P)$), the function f is unbounded below: for $x=-t v$,

$$
f(x)=t^{2}\left(v^{T} P v\right)-2 t\left(q^{T} v\right)+r=-2 t\|v\|^{2}+r \rightarrow-\infty \quad \text { if } t \rightarrow \infty
$$

- if $v=0, x^{\star}=-u$ is optimal since f is convex and $\nabla f\left(x^{\star}\right)=2 P x^{\star}+2 q=0$;

$$
f\left(x^{\star}\right)=-q^{T} P^{\dagger} q+r
$$

Geometric interpretation of duality

for simplicity, consider problem with one constraint $f_{1}(x) \leq 0$
Interpretation of dual function

$$
g(\lambda)=\inf _{(u, t) \in \mathcal{G}}(t+\lambda u), \quad \text { where } \quad \mathcal{G}=\left\{\left(f_{1}(x), f_{0}(x)\right) \mid x \in \mathcal{D}\right\}
$$

- $\lambda u+t=g(\lambda)$ is (non-vertical) supporting hyperplane to \mathcal{G}
- hyperplane intersects t-axis at $t=g(\lambda)$

Geometric interpretation of duality

Epigraph variation: same interpretation if \mathcal{G} is replaced with

$$
\mathcal{A}=\left\{(u, t) \mid f_{1}(x) \leq u, f_{0}(x) \leq t \text { for some } x \in \mathcal{D}\right\}
$$

Strong duality

- holds if there is a non-vertical supporting hyperplane to \mathcal{A} at $\left(0, p^{\star}\right)$
- for convex problem, \mathcal{A} is convex, hence has supporting hyperplane at ($0, p^{\star}$)
- Slater's condition: if there exist $(\tilde{u}, \tilde{t}) \in \mathcal{A}$ with $\tilde{u}<0$, then supporting hyperplanes at $\left(0, p^{\star}\right)$ must be non-vertical

Optimality conditions

if strong duality holds, x is primal optimal, and (λ, v) is dual optimal, then:

1. $f_{i}(x) \leq 0$ for $i=1, \ldots, m$ and $h_{i}(x)=0$ for $i=1, \ldots, p$
2. $\lambda \geq 0$
3. $f_{0}(x)=g(\lambda, v)$
conversely, these three conditions imply optimality of $x,(\lambda, v)$, and strong duality
next, we replace condition 3 with two equivalent conditions that are easier to use

Complementary slackness

assume x satisfies the primal constraints and $\lambda \geq 0$

$$
\begin{aligned}
g(\lambda, v) & =\inf _{\tilde{x} \in \mathcal{D}}\left(f_{0}(\tilde{x})+\sum_{i=1}^{m} \lambda_{i} f_{i}(\tilde{x})+\sum_{i=1}^{p} v_{i} h_{i}(\tilde{x})\right) \\
& \leq f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} v_{i} h_{i}(x) \\
& \leq f_{0}(x)
\end{aligned}
$$

equality $f_{0}(x)=g(\lambda, v)$ holds if and only if the two inequalities hold with equality:

- first inequality: x minimizes $L(\tilde{x}, \lambda, v)$ over $\tilde{x} \in \mathcal{D}$
- 2nd inequality: $\lambda_{i} f_{i}(x)=0$ for $i=1, \ldots, m$, i.e.,

$$
\lambda_{i}>0 \quad \Longrightarrow \quad f_{i}(x)=0, \quad f_{i}(x)<0 \quad \Longrightarrow \quad \lambda_{i}=0
$$

this is known as complementary slackness

Optimality conditions

if strong duality holds, x is primal optimal, and (λ, v) is dual optimal, then:

1. $f_{i}(x) \leq 0$ for $i=1, \ldots, m$ and $h_{i}(x)=0$ for $i=1, \ldots, p$
2. $\lambda \geq 0$
3. $\lambda_{i} f_{i}(x)=0$ for $i=1, \ldots, m$
4. x is a minimizer of $L(\cdot, \lambda, v)$
conversely, these four conditions imply optimality of $x,(\lambda, v)$, and strong duality
if problem is convex and the functions f_{i}, h_{i} are differentiable, \#4 can written as
4'. the gradient of the Lagrangian with respect to x vanishes:

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+\sum_{i=1}^{p} v_{i} \nabla h_{i}(x)=0
$$

conditions 1,2,3,4' are known as Karush-Kuhn-Tucker (KKT) conditions

Convex problem with Slater constraint qualification

recall the two implications of Slater's condition for a convex problem

- strong duality: $p^{\star}=d^{\star}$
- if optimal value is finite, dual optimum is attained: there exist dual optimal λ, v
hence, if problem is convex and Slater's constraint qualification holds:
- x is optimal if and only if there exist λ, v such that $1-4$ on p. 5.22 are satisfied
- if functions are differentiable, condition 4 can be replaced with 4'

Example: water-filling

$$
\begin{array}{ll}
\operatorname{minimize} & -\sum_{i=1}^{n} \log \left(x_{i}+\alpha_{i}\right) \\
\text { subject to } & x \geq 0 \\
& \mathbf{1}^{T} x=1
\end{array}
$$

- we assume that $\alpha_{i}>0$
- Lagrangian is $L(\tilde{x}, \lambda, v)=-\sum_{i} \log \left(\tilde{x}_{i}+\alpha_{i}\right)-\lambda^{T} \tilde{x}+v\left(\mathbf{1}^{T} \tilde{x}-1\right)$

Optimality conditions: x is optimal iff there exist $\lambda \in \mathbf{R}^{n}, v \in \mathbf{R}$ such that

1. $x \geq 0, \mathbf{1}^{T} x=1$
2. $\lambda \geq 0$
3. $\lambda_{i} x_{i}=0$ for $i=1, \ldots, n$
4. x minimizes Lagrangian:

$$
\frac{1}{x_{i}+\alpha_{i}}+\lambda_{i}=v, \quad i=1, \ldots, n
$$

Example: water-filling

Solution

- if $v \leq 1 / \alpha_{i}: \lambda_{i}=0$ and $x_{i}=1 / v-\alpha_{i}$
- if $v \geq 1 / \alpha_{i}: x_{i}=0$ and $\lambda_{i}=v-1 / \alpha_{i}$
- two cases may be combined as

$$
x_{i}=\max \left\{0, \frac{1}{v}-\alpha_{i}\right\}, \quad \lambda_{i}=\max \left\{0, v-\frac{1}{\alpha_{i}}\right\}
$$

- determine v from condition $\mathbf{1}^{T} x=1$:

$$
\sum_{i=1}^{n} \max \left\{0, \frac{1}{v}-\alpha_{i}\right\}=1
$$

Interpretation

- n patches; level of patch i is at height α_{i}
- flood area with unit amount of water
- resulting level is $1 / v^{\star}$

Example: projection on 1-norm ball

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2}\|x-a\|_{2}^{2} \\
\text { subject to } & \|x\|_{1} \leq 1
\end{array}
$$

Optimality conditions

1. $\|x\|_{1} \leq 1$
2. $\lambda \geq 0$
3. $\lambda\left(1-\|x\|_{1}\right)=0$
4. x minimizes Lagrangian

$$
\begin{aligned}
L(\tilde{x}, \lambda) & =\frac{1}{2}\|\tilde{x}-a\|_{2}^{2}+\lambda\left(\|\tilde{x}\|_{1}-1\right) \\
& =\sum_{k=1}^{n}\left(\frac{1}{2}\left(\tilde{x}_{k}-a_{k}\right)^{2}+\lambda\left|\tilde{x}_{k}\right|\right)-\lambda
\end{aligned}
$$

Example: projection on 1-norm ball

Solution

- optimization problem in condition 4 is separable; solution for $\lambda \geq 0$ is

$$
x_{k}= \begin{cases}a_{k}-\lambda & a_{k} \geq \lambda \\ 0 & -\lambda \leq a_{k} \leq \lambda \\ a_{k}+\lambda & a_{k} \leq-\lambda\end{cases}
$$

- therefore $\|x\|_{1}=\sum_{k}\left|x_{k}\right|=\sum_{k} \max \left\{0,\left|a_{k}\right|-\lambda\right\}$
- if $\|a\|_{1} \leq 1$, solution is $\lambda=0, x=a$
- otherwise, solve piecewise-linear equation in λ :

$$
\sum_{k=1}^{n} \max \left\{0,\left|a_{k}\right|-\lambda\right\}=1
$$

Perturbation and sensitivity analysis

(Unperturbed) optimization problem and its dual

$$
\begin{array}{llll}
\operatorname{minimize} & f_{0}(x) & \text { maximize } & g(\lambda, v) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m & \text { subject to } \lambda \geq 0 \\
& h_{i}(x)=0, \quad i=1, \ldots, p & &
\end{array}
$$

Perturbed problem and its dual

```
minimize }\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{i}{}(x)\leq\mp@subsup{u}{i}{},\quadi=1,\ldots,m\quad\mathrm{ subject to }\lambda\geq
    hi}(x)=\mp@subsup{v}{i}{},\quadi=1,\ldots,
```

- x is primal variable; u, v are parameters
- $p^{\star}(u, v)$ is optimal value as a function of u, v
- we are interested in information about $p^{\star}(u, v)$, obtained from the solution of the unperturbed problem and its dual

Global sensitivity result

- assume strong duality holds for unperturbed problem, and that ($\lambda^{\star}, v^{\star}$) is dual optimal for unperturbed problem
- apply weak duality to perturbed problem: for all u, v,

$$
\begin{aligned}
p^{\star}(u, v) & \geq g\left(\lambda^{\star}, v^{\star}\right)-u^{T} \lambda^{\star}-v^{T} v^{\star} \\
& =p^{\star}(0,0)-u^{T} \lambda^{\star}-v^{T} v^{\star}
\end{aligned}
$$

Sensitivity interpretation

- if λ_{i}^{\star} is large: p^{\star} increases greatly if we tighten constraint $i\left(u_{i}<0\right)$
- if λ_{i}^{\star} is small: p^{\star} does not decrease much if we loosen constraint $i\left(u_{i}>0\right)$
- if v_{i}^{\star} is large and positive: p^{\star} increases greatly if we take $v_{i}<0$; if v_{i}^{\star} is large and negative: p^{\star} increases greatly if we take $v_{i}>0$
- if v_{i}^{\star} is small and positive: p^{\star} does not decrease much if we take $v_{i}>0$; if v_{i}^{\star} is small and negative: p^{\star} does not decrease much if we take $v_{i}<0$

Local sensitivity result

if (in addition) $p^{\star}(u, v)$ is differentiable at $(0,0)$, then

$$
\lambda_{i}^{\star}=-\frac{\partial p^{\star}(0,0)}{\partial u_{i}}, \quad v_{i}^{\star}=-\frac{\partial p^{\star}(0,0)}{\partial v_{i}}
$$

proof (for λ_{i}^{\star}): from global sensitivity result,

$$
\begin{aligned}
& \frac{\partial p^{\star}(0,0)}{\partial u_{i}}=\lim _{t \searrow 0} \frac{p^{\star}\left(t e_{i}, 0\right)-p^{\star}(0,0)}{t} \geq-\lambda_{i}^{\star} \\
& \frac{\partial p^{\star}(0,0)}{\partial u_{i}}=\lim _{t \nearrow 0} \frac{p^{\star}\left(t e_{i}, 0\right)-p^{\star}(0,0)}{t} \leq-\lambda_{i}^{\star}
\end{aligned}
$$

hence, equality
$p^{\star}(u)$ for a problem with one (inequality) constraint:

Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

Common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice versa
- transform objective or constraint functions
e.g., replace $f_{0}(x)$ by $\phi\left(f_{0}(x)\right)$ with ϕ convex, increasing

Introducing new variables and equality constraints

$$
\text { minimize } \quad f_{0}(A x+b)
$$

- dual function is constant: $g=\inf _{x} L(x)=\inf _{x} f_{0}(A x+b)=p^{\star}$
- we have strong duality, but dual is quite useless

Reformulated problem and its dual

$$
\begin{array}{llll}
\operatorname{minimize} & f_{0}(y) & \text { maximize } & b^{T} v-f_{0}^{*}(v) \\
\text { subject to } & A x+b-y=0 & \text { subject to } & A^{T} v=0
\end{array}
$$

dual function follows from

$$
\begin{aligned}
g(v) & =\inf _{x, y}\left(f_{0}(y)-v^{T} y+v^{T} A x+b^{T} v\right) \\
& = \begin{cases}-f_{0}^{*}(v)+b^{T} v & A^{T} v=0 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

Example: norm approximation

$$
\begin{array}{lll}
\text { minimize }
\end{array}\|A x-b\| \quad \longrightarrow \quad \begin{aligned}
& \text { minimize } \\
& \text { subject to }
\end{aligned}\|y\|=A x-b
$$

Dual function

$$
\begin{aligned}
g(v) & =\inf _{x, y}\left(\|y\|+v^{T} y-v^{T} A x+b^{T} v\right) \\
& = \begin{cases}b^{T} v+\inf _{y}\left(\|y\|+v^{T} y\right) & A^{T} v=0 \\
-\infty & \text { otherwise }\end{cases} \\
& = \begin{cases}b^{T} v & A^{T} v=0, \quad\|v\|_{*} \leq 1 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

(last step follows from (1))
Dual of norm approximation problem

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} v \\
\text { subject to } & A^{T} v=0 \\
& \|v\|_{*} \leq 1
\end{array}
$$

Implicit constraints

Linear program with box constraints: primal and dual problem

$$
\begin{array}{llll}
\operatorname{minimize} & c^{T} x & \text { maximize } & -b^{T} v-\mathbf{1}^{T} \lambda_{1}-\mathbf{1}^{T} \lambda_{2} \\
\text { subject to } & A x=b & \text { subject to } & c+A^{T} v+\lambda_{1}-\lambda_{2}=0 \\
& -\mathbf{1} \leq x \leq \mathbf{1} & & \lambda_{1} \geq 0, \lambda_{2} \geq 0
\end{array}
$$

Reformulation with box constraints made implicit

$$
\begin{array}{ll}
\text { minimize } & f_{0}(x)= \begin{cases}c^{T} x & -\mathbf{1} \leq x \leq \mathbf{1} \\
\infty & \text { otherwise }\end{cases} \\
\text { subject to } & A x=b
\end{array}
$$

- dual function

$$
g(v)=\inf _{-\mathbf{1} \leq x \leq \mathbf{1}}\left(c^{T} x+v^{T}(A x-b)\right)=-b^{T} v-\left\|A^{T} v+c\right\|_{1}
$$

- dual problem

$$
\operatorname{maximize}-b^{T} v-\left\|A^{T} v+c\right\|_{1}
$$

Semidefinite program

$$
\begin{array}{ll}
\text { minimize } & c^{T} x \\
\text { subject to } & x_{1} F_{1}+\cdots+x_{n} F_{n} \leq G
\end{array}
$$

matrices F_{1}, \ldots, F_{n}, G are symmetric $m \times m$ matrices

Lagrangian and dual function

- we associate with the constraint a Lagrange multiplier $Z \in \mathbf{S}^{m}$
- define Lagrangian as

$$
\begin{aligned}
L(x, Z) & =c^{T} x+\operatorname{tr}\left(Z\left(x_{1} F_{1}+\cdots+x_{n} F_{n}-G\right)\right) \\
& =\sum_{i=1}^{n}\left(\operatorname{tr}\left(F_{i} Z\right)+c_{i}\right) x_{i}-\operatorname{tr}(G Z)
\end{aligned}
$$

- dual function

$$
g(Z)=\inf _{x} L(x, Z)= \begin{cases}-\operatorname{tr}(G Z) & \operatorname{tr}\left(F_{i} Z\right)+c_{i}=0, \quad i=1, \ldots, n \\ -\infty & \text { otherwise }\end{cases}
$$

Dual semidefinite program

$$
\begin{array}{ll}
\text { maximize } & -\operatorname{tr}(G Z) \\
\text { subject to } & \operatorname{tr}\left(F_{i} Z\right)+c_{i}=0, \quad i=1, \ldots, n \\
& Z \geq 0
\end{array}
$$

Weak duality: $p^{\star} \geq d^{\star}$ always
proof: for primal feasible x, dual feasible Z,

$$
\begin{aligned}
c^{T} x & =-\sum_{i=1}^{n} \operatorname{tr}\left(F_{i} Z\right) x_{i} \\
& =-\operatorname{tr}(G Z)+\operatorname{tr}\left(Z\left(G-\sum_{i=1}^{n} x_{i} F_{i}\right)\right) \\
& \geq-\operatorname{tr}(G Z)
\end{aligned}
$$

inequality follows from $\operatorname{tr}(X Z) \geq 0$ for $X \geq 0, Z \geq 0$

Strong duality: $p^{\star}=d^{\star}$ if primal SDP or dual SDP is strictly feasible

Complementary slackness

$\begin{array}{lll}\text { (P) } & \text { minimize } & c^{T} x \\ & \text { subject to } & \sum_{i=1}^{n} x_{i} F_{i} \leq G\end{array}$
(D) maximize $-\operatorname{tr}(G Z)$
$\begin{array}{ll}\text { subject to } & \operatorname{tr}\left(F_{i} Z\right)+c_{i}=0, \quad i=1, \ldots, n \\ & Z \geq 0\end{array}$ $Z \geq 0$
the primal and dual objective values at feasible x, Z are equal if

$$
\begin{aligned}
0 & =c^{T} x+\operatorname{tr}(G Z) \\
& =-\sum_{i=1}^{n} x_{i} \operatorname{tr}\left(F_{i} Z\right)+\operatorname{tr}(G Z) \\
& =\operatorname{tr}(X Z) \quad \text { where } X=G-x_{1} F_{1}-\cdots-x_{n} F_{n}
\end{aligned}
$$

for $X \geq 0, Z \geq 0$, each of the following statements is equivalent to $\operatorname{tr}(X Z)=0$:

- $Z X=0$: columns of X are in the nullspace of Z
- $X Z=0$: columns of Z are in the nullspace of X (see next page)
proof: factorize X, Z as

$$
X=U U^{T}, \quad Z=V V^{T}
$$

- columns of U span the range of X, columns of V span the range of Z
- $\operatorname{tr}(X Z)$ can be expressed as

$$
\operatorname{tr}(X Z)=\operatorname{tr}\left(U U^{T} V V^{T}\right)=\operatorname{tr}\left(\left(U^{T} V\right)\left(V^{T} U\right)\right)=\left\|U^{T} V\right\|_{F}^{2}
$$

- hence, $\operatorname{tr}(X Z)=0$ if and only if

$$
U^{T} V=0
$$

the range of X and the range of Z are orthogonal subspaces

Example: two-way partitioning

recall the two-way partitioning problem and its dual (page 5.8)
(P) minimize $x^{T} W x$
subject to $x_{i}^{2}=1, \quad i=1, \ldots, n$
(D) maximize $-\mathbf{1}^{T} v$
subject to $W+\boldsymbol{\operatorname { d i a g }}(v) \geq 0$

- by weak duality, $p^{\star} \geq d^{\star}$
- the dual problem (D) is an SDP; we derive the dual SDP and compare it with (P)
- to derive the dual of (D), we first write (D) as a minimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} y \tag{2}\\
\text { subject to } & W+\boldsymbol{\operatorname { d i a g }}(y) \geq 0
\end{array}
$$

the optimal value of (2) is $-d^{\star}$

Example: two-way partitioning

Lagrangian

$$
\begin{aligned}
L(y, Z) & =\mathbf{1}^{T} y-\operatorname{tr}(Z(W+\operatorname{diag}(y))) \\
& =-\operatorname{tr}(W Z)+\sum_{i=1}^{n} y_{i}\left(1-Z_{i i}\right)
\end{aligned}
$$

Dual function

$$
g(Z)=\inf _{y} L(y, Z)= \begin{cases}-\operatorname{tr}(W Z) & Z_{i i}=1, i=1, \ldots, n \\ -\infty & \text { otherwise }\end{cases}
$$

Dual problem: the dual of (2) is

$$
\begin{array}{ll}
\operatorname{maximize} & -\operatorname{tr}(W Z) \\
\text { subject to } & Z_{i i}=1, \quad i=1, \ldots, n \\
& Z \geq 0
\end{array}
$$

by strong duality with (2), optimal value is equal to $-d^{\star}$

Example: two-way partitioning

replace (D) on page 5.39 by its dual
(P) minimize $x^{T} W x$
subject to $\quad x_{i}^{2}=1, \quad i=1, \ldots, n$
(P') minimize $\operatorname{tr}(W Z)$
subject to $\operatorname{diag}(Z)=\mathbf{1}$
$Z \geq 0$
optimal value of (P^{\prime}) is equal to optimal value d^{\star} of (D)

Interpretation as relaxation

- reformulate (P) by introducing a new variable $Z=x x^{T}$:

$$
\begin{array}{ll}
\text { minimize } & \operatorname{tr}(W Z) \\
\text { subject to } & \operatorname{diag}(Z)=\mathbf{1} \\
& Z=x x^{T}
\end{array}
$$

- replace the constraint $Z=x x^{T}$ with a weaker convex constraint $Z \geq 0$

Theorems of alternative

theorems of alternative make statements about two related feasibility problems

- the two problems are weak alternatives if at most one is feasible
- the two systems are strong alternatives if exactly one is feasible

Examples of strong alternatives

- linear equations:

$$
\begin{array}{ll}
\text { problem 1: } & A x=b \\
\text { problem 2: } & A^{T} y=0, \quad b^{T} y=1
\end{array}
$$

- Farkas lemma:
problem 1: $\quad A x=b, \quad x \geq 0$
problem 2: $\quad A^{T} y \leq 0, \quad b^{T} y=1$

Nonlinear inequalities

Problem 1 (variables $x \in \mathbf{R}^{n}$)

$$
\begin{equation*}
f_{i}(x)<0, \quad i=1, \ldots, m \tag{3}
\end{equation*}
$$

this includes an implicit constraint $x \in \mathcal{D}=\operatorname{dom} f_{1} \cap \cdots \cap \operatorname{dom} f_{m}$
Problem 2 (variables $\lambda \in \mathbf{R}^{m}$)

$$
\begin{equation*}
0 \neq \lambda \geq 0, \quad g(\lambda) \geq 0 \tag{4}
\end{equation*}
$$

where

$$
g(\lambda)=\inf _{\tilde{x} \in \mathcal{D}} \sum_{i=1}^{m} \lambda_{i} f_{i}(\tilde{x})
$$

- problem 2 is a convex feasibility problem (g is concave), even if problem 1 is not
- 1 and 2 are weak alternatives
- 1 and 2 are strong alternatives if f_{1}, \ldots, f_{m} are convex (and int \mathcal{D} is nonempty) proof on next page

Proof

(weak alternatives) if x satisfies (3) and λ satisfies (4), there is a contradiction

$$
0 \leq g(\lambda) \leq \sum_{i=1}^{m} \lambda_{i} f_{i}(x)<0
$$

(strong alternatives) consider the pair of primal and dual problems
(P) minimize t
subject to $f_{i}(x) \leq t, i=1, \ldots, m$
(D) maximize $g(\lambda)$
subject to $\lambda \geq 0$
$\mathbf{1}^{T} \lambda=1$

- (P) is convex if the functions f_{i} are convex
- Slater's condition holds for (P) : take any $x \in \operatorname{int} \mathcal{D}$ and $t>\max _{i} f_{i}(x)$
- hence strong duality holds $\left(p^{\star}=d^{\star}\right)$, and dual optimum is attained if d^{\star} is finite
- (3) is infeasible if and only if $p^{\star} \geq 0$
- hence, (3) is infeasible if and only if there exists a λ that satisfies (4)

Theorem of alternatives for linear matrix inequality

Problem 1 (variables $x \in \mathbf{R}^{n}$)

$$
\sum_{i=1}^{n} x_{i} F_{i}<G
$$

F_{1}, \ldots, F_{n}, G are symmetric $m \times m$ matrices
Problem 2 (variable $Z \in \mathbf{R}^{m}$)

$$
\operatorname{tr}\left(F_{i} Z\right)=0, \quad i=1, \ldots, n, \quad \operatorname{tr}(G Z) \leq 0, \quad 0 \neq Z \geq 0
$$

- 1 and 2 are strong alternatives
- proof follows from strong duality between the SDPs

minimize	t	maximize	$-\operatorname{tr}(G Z)$
subject to	$\sum_{i=1}^{n} x_{i} F_{i} \leq G+t I$	subject to	$\operatorname{tr}\left(F_{i} Z\right)=0, \quad i=1, \ldots, n$
		$\operatorname{tr} Z=1$	
		$Z \geq 0$	

