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e Lagrange dual problem
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e geometric interpretation

e optimality conditions

e perturbation and sensitivity analysis
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e semidefinite optimization

e theorems of alternatives
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Lagrangian

Standard form problem (not necessarily convex)

minimize  fy(x)
subjectto fi(x) <0, i=1,...,m
hi(x)=0, i=1,...,p

variable x € R”, domain D, optimal value p*

Lagrangian: L : R" X R”" xR?” — R, withdom L =D X R" x R?,
m 14
L(x,A,v) = fo(x) + Z A fi(x) + Z vihi(x)
i=1 i=1

e weighted sum of objective and constraint functions
e J1; is Lagrange multiplier associated with f;(x) <0

e v; is Lagrange multiplier associated with /;(x) =0
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Lagrange dual function

Lagrange dual function: g : R”" x R” — R,

inf L(x,A4,v)
xeD

m P
- inzf) (fo(x) + D Aifi(x) + D vihi(x))
X€ i=1 i=1

g(4,v)

e a concave function of 4, v

e can be —oo for some A4, v; this defines the domain of g

Lower bound property: if 1 > 0, then g(1,v) < p*

proof: if x is feasible and A > 0, then

fol) = L(x.4.v) = inf L(E4) = g(1.v)
Xe

minimizing over all feasible x gives p* > g(A, v)
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Least norm solution of linear equations

minimize x'x

subjectto Ax =05

e Lagrangian is
L(x,v) =x"x+ v (Ax = b)

e to minimize L over x, set gradient equal to zero:

ViL(x,v) =2x+Alv=0 = x= —%ATV

e pluginin L to obtain g:
g(v) = L(—%ATV, V) = —%VTAATV ~bly
a concave function of v

Lower bound property: p* > —1vT AATy — by for all v
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Standard form LP

minimize c¢!x

subjectto Ax =05
x>0

e Lagrangianis

Lix,2,v) = cx+v(Ax-b) -2

= —blyv+(c+ATy -1
e [ is affine in x, hence

. by Aly-A+c¢=0
g(d.v) = HxlfL(x’/l’ V) = { —oco  otherwise
g is linear on affine domain domg = {(1,v) | A’y — 1 + ¢ = 0}, hence concave

Lower bound property: p* > —-blvifAlv+c >0

Duality 5.5



Equality constrained norm minimization

minimize  ||x||
subjectto Ax =5

e || - || is any norm; dual norm is defined as
loll = sup u'v
Jull<1

e define Lagrangian L(x,v) = ||x|| + v/ (b — Ax)

e dual function (proof on next page):

g(v) = inf(||x]| - v Ax+bv)
X
_ ety ATyl <1
B —oo  otherwise

Lower bound property: p* > by if ||[Alv|. < 1
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proof of expression for g: follows from

0 liyllk=1

. Ty _
H;f(||x|| y'x) —{ —oco otherwise

Case ||y||« < I:
inf (Jlx]| - y'x) =0

o yIix < |lx|||[y]l« < ||x]| for all x (by definition of dual norm)
o ylx=|x| forx=0

Case ||y||« > 1:
inf (|lx]| = y"x) = —oo

e there exists an ¥ with ||| < 1 and y'% = |||« > 1; hence ||Z|| — ||y]|« < O
e consider x = tx with t > O:

T -
x| = y"x = e((I%]| = [Iyll+) = —c0 a@st — oo
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Two-way partitioning

minimize x! Wx
subjectto x7=1, i=1,...,n

e a nonconvex problem; feasible set {—1, 1}" contains 2" discrete points
e interpretation: partition {1, ...,n} in two sets, x; € {—1, 1} is assignment for i

e cost function is

xTWx

n
Zl Wii + 2 Z Wijx,-xj
=

i>]

1TW1 + ZZ W,-j(x,-xj — 1)

i>]

cost of assigning i, j to different sets is —4W;;
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Lagrange dual of two-way partitioning problem

Dual function

n

g(v) = inf (x"Wx+ Z vl-(xi2 - 1))
* i=1

= infx! (W + diag(v))x — 17v
X
B { -1y W +diag(v) = 0

—00 otherwise

Lower bound property

p* > 11y ifw+ diag(v) > 0

example: v = —A,in(W)1 proves bound p* > ndyi, (W)
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Lagrange dual and conjugate function

minimize  fy(x)
subjectto Ax < b
Cx=d

Dual function

inf  (fo(x)+ATA+T W x=bTa-d"y)

xedom f()

= —fi(=ATa-c'v)y-b"a-d"v

g(4,v)

e recall definition of conjugate f*(y) = sup, (y'x — f(x))

e simplifies derivation of dual if conjugate of f; is known

Example: entropy maximization

folx) = > xilogx;, i) = > e¥!
i=1 i=1
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The dual problem

Lagrange dual problem
maximize g(4,v)
subjectto A4 >0

e finds best lower bound on p*, obtained from Lagrange dual function
e a convex optimization problem; optimal value denoted by d*

e often simplified by making implicit constraint (41, v) € dom g explicit
e A, v are dual feasibleif 4 > 0, (1,v) € domg

e d* = —o if problem is infeasible; d* = +oo if unbounded above

Example: standard form LP and its dual (page 5.5)

minimize c¢lx maximize -blv
subjectto Ax = b subjectto Alv+c¢ >0
x>0
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Weak and strong duality

Weak duality: d* < p*

e always holds (for convex and nonconvex problems)

e can be used to find nontrivial lower bounds for difficult problems
for example, solving the SDP

maximize —11v
subjectto W +diag(v) > 0

gives a lower bound for the two-way partitioning problem on page 5.8

Strong duality: d* = p*
e does not hold in general
e (usually) holds for convex problems

e sufficient conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s constraint qualification

Convex problem

minimize  fy(x)
subjectto fi(x) <0, i=1,...,m
Ax=0>b

Slater’s constraint qualification: the problem is strictly feasible, i.e.,
dx € int D : filx) <0, i=1,...,m, Ax=b

e guarantees strong duality: p* = d*
e also guarantees that the dual optimum is attained if p* > —o

e can be sharpened: e.g., can replace int 9 with relint D (interior relative to
affine hull); linear inequalities do not need to hold with strict inequality, . ..

e there exist many other types of constraint qualifications
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Inequality form LP

Primal problem

minimize c¢!x

subjectto Ax <b
Dual function

~bIa ATAl+c¢=0

_ . TN\, _ 1T —
g() _H%f((“_A ) x =574 { —co  otherwise

Dual problem
maximize -b2
subjectto ATA+c=0
A=0

e from Slater’s condition: p* = d* if AX < b for some x

e infact, p* = d* except when primal and dual are infeasible (p* = o0, d* = —)
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Quadpratic program

Primal problem (assume P € S'.)

minimize  x! Px
subjectto Ax <b
Dual function
1
g(A) = inf (xT Px + AT (Ax — b)) = —Z/lTAP‘lAT/l — bl
X

Dual problem
P maximize —%/lTAP‘lAT/l—bT/l

subjectto A1 >0

e from Slater’s condition: p* = d* if AX < b for some *

e infact, p* = d* always
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A nonconvex problem with strong duality

minimize  x! Ax +2bTx
subjectto x'x <1

we allow A * 0, hence problem may be nonconvex

Dual function (derivation on next page)

g(Q) inf (x" (A +ADx +2b"x = Q)
X

[ =bT(A+AD)Th -2 A+AI=0andb c R(A+ )
B —00 otherwise

Dual problem and equivalent SDP:

maximize -bT(A+A) b -2 maximize —t- 2

subjectto A+ Al >0 : A+Al b
beR(A+AI) subject to T , ] >0
120 420

strong duality holds although primal problem is not convex (not easy to show)
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proof of expression for g: unconstrained minimum of f(x) = x' Px + 2¢'x +r is

—g'Plg+r P>0

—q"PTg+r P#0,P>0, gecR(P)
—00 P>0, g¢&R(P)

—00 P*0

igclff(x) = 1

e if P # 0, function f is unbounded below: choose y with y/ Py < 0 and x =ty
F(x)=2(GTPY) +2t(¢gTy) +r > —0  iff — +o0
o if P > 0, decompose g as ¢ = Pu+vwithu = P'gandv = (I — PP')q

Pu is projection of g on R(P), v is projection on nullspace of P

o ifo#0(ie., qg¢ R(P)), the function f is unbounded below: for x = —tv,

f(x) =2 Po) = 2t(gTv) +r = =2t||v]|* +r = -0 if t > o0

e if v =0, x* = —u is optimal since f is convex and V f(x*) = 2Px* + 2q = 0;

fO*) =—q"PTg+r
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Geometric interpretation of duality

for simplicity, consider problem with one constraint fj(x) < 0

Interpretation of dual function

g(A) = ( infg (t+4u),  where G={(fi(x),fo(x))|xe D}

u,t)e

e Au+t=g(A)is (non-vertical) supporting hyperplane to G

e hyperplane intersects r-axis at t = g(A)
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Geometric interpretation of duality

Epigraph variation: same interpretation if G is replaced with

A={(u,t) | fi(x) <u, fo(x) <tforsomex € D}

4

Adu+t= g(ﬂ)\l’
g()

Strong duality

e holds if there is a non-vertical supporting hyperplane to A at (0, p*)

e for convex problem, A is convex, hence has supporting hyperplane at (0, p*)

e Slater’s condition: if there exist (i1, ) € A with & < 0, then supporting
hyperplanes at (0, p*) must be non-vertical
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Optimality conditions

if strong duality holds, x is primal optimal, and (4, v) is dual optimal, then:

1. fitkx) <0fori=1,...,mand h;(x) =0fori=1,...,p
2. 1 >0

3. folx) =g(4,v)
conversely, these three conditions imply optimality of x, (4, v), and strong duality

next, we replace condition 3 with two equivalent conditions that are easier to use
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Complementary slackness

assume x satisfies the primal constraints and 1 > 0
m p
g(d,v) = ilgéf) (So(®) + D Aifi(X) + D> vihi(%))
i=1 i=1

m p
< fox) + D Aifi(x) + D vihi(x)
i=1 i=1
< Jfo(x)
equality fo(x) = g(4, v) holds if and only if the two inequalities hold with equality:

e first inequality: x minimizes L(X,A,v) over X € D

e 2nd inequality: A;fi(x) =0fori=1,...,m,ie.,
4;>0 = fi(x)=0, fix) <0 = 4;=0

this is known as complementary slackness
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Optimality conditions

if strong duality holds, x is primal optimal, and (A, v) is dual optimal, then:

1. fitkx) <0fori=1,...,mand h;(x) =0fori=1,...,p
2. 1>0
3. 4;ifi(x)=0fori=1,...,m

4. x is a minimizer of L(-,A,v)

conversely, these four conditions imply optimality of x, (4, v), and strong duality

if problem is convex and the functions f;, h; are differentiable, #4 can written as

4’. the gradient of the Lagrangian with respect to x vanishes:

Vfo(x) + i A4V fi(x) + i viVhi(x) =0
i=1 i=1

conditions 1,2,3,4" are known as Karush—Kuhn—Tucker (KKT) conditions
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Convex problem with Slater constraint qualification

recall the two implications of Slater’s condition for a convex problem

e strong duality: p* = d*

e if optimal value is finite, dual optimum is attained: there exist dual optimal 4, v
hence, if problem is convex and Slater’s constraint qualification holds:

e x is optimal if and only if there exist A, v such that 1—4 on p. 5.22 are satisfied

e if functions are differentiable, condition 4 can be replaced with 4
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Example: water-filling

n
minimize - > log(x; + ;)
i=1
subjectto x >0
11x =1
e we assume that a; > 0

e Lagrangianis L(X,4,v) = = X;log(% + ) - A% +v(1Tx - 1)

Optimality conditions: x is optimal iff there exist 1 € R”, v € R such that

1.x>0,1"Tx=1
2. 1 >0
3. /liXiZOfOFiZL...,n

4. x minimizes Lagrangian:

+/ll'

|
=
1
[
S

X; +
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Example: water-filling

Solution
o ifv<1l/a;:A4;=0andx; =1/v—q;
o ifv>1/a;:x;=0and A; =v —1/q;

e two cases may be combined as

1 1
x; = max{0, — — a;}, A; = max{0,v — —}
\ 4 ;

e determine v from condition 11 x = 1:

i 1
Z max{0,— —q;} =1
i=1 Id

Interpretation

e n patches; level of patch i is at height «;

e flood area with unit amount of water

e resulting level is 1/v*
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Example: projection on 1-norm bali

Optimality conditions
1. [lx]l; <1

2. 1>20

3. A1 —|ix]l1) =0

4. x minimizes Lagrangian

L(%, 1)

Duality
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subjectto ||x]|; <1

= Mg -als+a(F]l; - 1)

n
= > GE—ap)’+ %K) -2
k=1
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Example: projection on 1-norm bali

Solution

e optimization problem in condition 4 is separable; solution for A > 0 is
a,—A ap =>4

xp=44 0 A< ap A
arp+4 ap <-4

o therefore |[x||; = X |xx| = Xk max {0, |ai| — A}
o if ||all; £ 1, solutionis1=0,x=a

e otherwise, solve piecewise-linear equation in A:

n
Zmax {0, |lag| — A} =1
k=1
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Perturbation and sensitivity analysis

(Unperturbed) optimization problem and its dual

minimize  fy(x) maximize g(4,v)
subjectto  fi(x) <0, i=1,...,m subjectto 4 >0
hi(x)=0, i=1,...,p

Perturbed problem and its dual

minimize  fy(x) maximize g(A,v) —ulA—vlvy
subjectto fi(x) <u;, i=1,...,m subjectto 4 >0
hi(x)=v;, i=1,...,p
e x is primal variable; u, v are parameters

e p*(u,v) is optimal value as a function of u, v

e we are interested in information about p*(u, v), obtained from the solution of
the unperturbed problem and its dual
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Global sensitivity result

e assume strong duality holds for unperturbed problem, and that (1*, v*) is dual
optimal for unperturbed problem

e apply weak duality to perturbed problem: for all u, v,

p*(u,v) > g(A*v*) —ula* =l y*

= p*(0,0) —ul A* —oTV*

Sensitivity interpretation

o if /ll?‘ is large: p* increases greatly if we tighten constraint i (u; < 0)
e if ¥ is small: p* does not decrease much if we loosen constraint i (1; > 0)

o if vl* is large and positive: p* increases greatly if we take v; < 0;
if vl?‘ is large and negative: p* increases greatly if we take v; > 0

e if v is small and positive: p* does not decrease much if we take v; > 0;
if vl?‘ is small and negative: p* does not decrease much if we take v; < 0
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Local sensitivity result
if (in addition) p*(u, v) is differentiable at (0, 0), then

1 _9p7(0,0) o _9r7(0,0)
! au,- ’ ! (91)1'

proof (for /ll?‘): from global sensitivity result,

* * : _ p*x

Ou; 1\,0 t !

* * : — pXx

0p™(0.0) _ . P"(tei.0) = p(0.0) _

ou; t /0 t !
hence, equality
p*(u) for a problem with
one (inequality) constraint: u

p*(u)
p*(0) — *u
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Duality and problem reformulations

e equivalent formulations of a problem can lead to very different duals

e reformulating the primal problem can be useful when the dual is difficult to
derive, or uninteresting

Common reformulations

e introduce new variables and equality constraints
e make explicit constraints implicit or vice versa

e transform objective or constraint functions

e.g., replace fo(x) by ¢( fo(x)) with ¢ convex, increasing
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Introducing new variables and equality constraints

minimize  fy(Ax + D)

e dual function is constant: g = inf, L(x) = inf, fy(Ax + b) = p*

e we have strong duality, but dual is quite useless

Reformulated problem and its dual

minimize  fy(y) maximize b’y — f¥(v)
subjectto Ax+b—y=0 subjectto ATy =0

dual function follows from

g = inf (fo(y) —v'y+v Ax+b"y)
—fo (V) + by Aly =0
—00 otherwise
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Example: norm approximation
minimize ||Ax — b|| —> minimize  ||y||
subjectto y=Ax-b

Dual function
g(v) = inf (||y|| + va vl Ax + bTv)
X,y

by +inf, (Jly||+v'y) Alv =0
—00 otherwise

by Aly =0, |v|.<1
—oco otherwise

= 9

(last step follows from (1))

Dual of norm approximation problem
maximize blv

subjectto ATy =0
V]« <1
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Implicit constraints

Linear program with box constraints: primal and dual problem

minimize ¢! maximize -b'v-1T2;,-112,
subjectto Ax =b subjectto c+Alv+1;-1,=0
-1<x<x1 A1 =20, A, >0

Reformulation with box constraints made implicit

cI'x -1<x<1

minimize  fy(x) Z{ 0o otherwise

subjectto Ax =05
e dual function

g(v) = inf (Ix+vI(Ax=0))==b'v—|ATv+c|
—-1=<x<1

e dual problem
maximize —-blv - ||ATv +¢||;
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Semidefinite program

minimize c¢!x

subjectto x1F1+---+x,F, <G

matrices Iy, ..., F,, G are symmetric m X m matrices

Lagrangian and dual function

e we associate with the constraint a Lagrange multiplier Z € S™
e define Lagrangian as
L(x,Z) = cx+tw(Z(x1Fi+- +x,F, —G))

i(tr(FiZ) +ci)x; —tr(GZ)
i=1

e dual function

8(2) = H;fL(x’ Z) = { —00 otherwise

Duality
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Dual semidefinite program

maximize —tr(GZ)
subjectto tr(F;Z)+c; =0, i=1,...,n
Z >0

Weak duality: p* > d* always

proof: for primal feasible x, dual feasible Z,
n
dx = - Z tr(F;Z)x;
i=1

= —(GZ) +tr(Z(G - Zn]xiFi))
i=1
> —tr(GZ)

inequality follows from tr(XZ) >0for X > 0,Z >0

Strong duality: p* = d* if primal SDP or dual SDP is strictly feasible
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Complementary slackness

(P) minimize c¢'x (D) maximize -tr(GZ)
n
subjectto > x;F; <G subjectto tr(F;Z)+c¢; =0, i=1,...
=1 Z >0

the primal and dual objective values at feasible x, Z are equal if

0 = dx+w(G2)
n

X te(FiZ) +tr(GZ)
i=1

= tr(XZ) where X =G —x1F] — - - — x,Fy,

for X > 0, Z > 0, each of the following statements is equivalent to tr(XZ) = O:

e ZX =0: columns of X are in the nullspace of Z

e XZ =0: columns of Z are in the nullspace of X

(see next page)
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proof: factorize X, Z as
x=vut, z=vv!

e columns of U span the range of X, columns of V span the range of Z

e tr(XZ) can be expressed as

tr(X2) = (U vV = (U V) (VI U)) = UV %

e hence, tr(XZ) = 0 if and only if
U'v =0

the range of X and the range of Z are orthogonal subspaces
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Example: two-way partitioning

recall the two-way partitioning problem and its dual (page 5.8)

(P) minimize x!Wx (D) maximize -11v
subjectto x?=1, i=1,...,n subjectto W + diag(v) = 0

o by weak duality, p* > d*
e the dual problem (D) is an SDP; we derive the dual SDP and compare it with (P)

e to derive the dual of (D), we first write (D) as a minimization problem:

minimize 17y 2)
subjectto W + diag(y) > 0

the optimal value of (2) is —d*
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Example: two-way partitioning
Lagrangian
L(y,Z) = 1'y-wu(Z(W +diag(y)))

n
= —tr(W2)+ D> yi(1 - Zy)
i=1

Dual function

—tl‘(WZ) Zi=1,1i=1,...,n

g(Z) = lfylfL(y’Z) = { — 00 otherwise

Dual problem: the dual of (2) is

maximize —tr(W2Z2)
subjectto Z;=1, i=1,...,n
Z>0
by strong duality with (2), optimal value is equal to —d*
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Example: two-way partitioning

replace (D) on page 5.39 by its dual

(P) minimize x!Wx (P) minimize tr(WZ)
subjectto x?=1, i=1,...,n subject to diag(Z) =1
Z >0

optimal value of (P’) is equal to optimal value d* of (D)

Interpretation as relaxation

e reformulate (P) by introducing a new variable Z = xx!:

minimize tr(WZ)
subjectto diag(Z) =1
Z = xx!

e replace the constraint Z = xx! with a weaker convex constraint Z > 0
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Theorems of alternative

theorems of alternative make statements about two related feasibility problems
e the two problems are weak alternatives if at most one is feasible

e the two systems are strong alternatives if exactly one is feasible

Examples of strong alternatives

e linear equations:

problem1: Ax =05
problem?2: Aly=0, bly=1

e Farkas lemma:;

problem1: Ax=b, x>0
problem2: Aly <0, bly=1
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Nonlinear inequalities

Problem 1 (variables x € R")

filx) <0, i=1,...,m (3)
this includes an implicit constraint x € 9 = dom f; N --- N dom f,
Problem 2 (variables 4 € R"™)

0£1>=0, g =0 (4)

where "
A) = inf A (X
g() flgﬂl; i /i (%)

e problem 2 is a convex feasibility problem (g is concave), even if problem 1 is not
e 1 and 2 are weak alternatives
e 1 and 2 are strong alternatives if fi, ..., f,; are convex (and int P is nonempty)

proof on next page
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Proof

(weak alternatives) if x satisfies (3) and A satisfies (4), there is a contradiction

0<g() < f}aifi(x) <0
i=1

(strong alternatives) consider the pair of primal and dual problems

(P) minimize 1t (D) maximize g(A)
subjectto fi(x) <t,i=1,...,m subjectto 1 >0
171 =1

e (P) is convex if the functions f; are convex

e Slater’s condition holds for (P): take any x € int D and ¢ > max; f;(x)

e hence strong duality holds (p* = d*), and dual optimum is attained if d* is finite
e (3) is infeasible if and only if p* > 0

e hence, (3) is infeasible if and only if there exists a A that satisfies (4)
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Theorem of alternatives for linear matrix inequality

Problem 1 (variables x € R")
n
le'Fi <G
i=1
Fy, ..., F,, G are symmetric m X m matrices
Problem 2 (variable Z € R™)
tr(F;Z2)=0, i=1,...,n, tr(GZ) <0, 0+#Z >0

e 1 and 2 are strong alternatives

e proof follows from strong duality between the SDPs

minimize ¢ maximize —tr(GZ)
subject to S xiF; < G +11 subjectto tr(F;Z)=0, i=1,...
i=1 trZ =1
Z >0

Duality
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