5. Duality

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities
Lagrangian

Standard form problem (not necessarily convex)

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

variable \(x \in \mathbb{R}^n \), domain \(D \), optimal value \(p^* \)

Lagrangian: \(L : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \rightarrow \mathbb{R} \), with \(\text{dom } L = D \times \mathbb{R}^m \times \mathbb{R}^p \),

\[
L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)
\]

- weighted sum of objective and constraint functions
- \(\lambda_i \) is Lagrange multiplier associated with \(f_i(x) \leq 0 \)
- \(\nu_i \) is Lagrange multiplier associated with \(h_i(x) = 0 \)
Lagrange dual function

Lagrange dual function: \(g : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}, \)

\[
g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)
= \inf_{x \in \mathcal{D}} (f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x))
\]

• a concave function of \(\lambda, \nu \)
• can be \(-\infty\) for some \(\lambda, \nu \); this defines the domain of \(g \)

Lower bound property: if \(\lambda \geq 0 \), then \(g(\lambda, \nu) \leq p^* \)

proof: if \(x \) is feasible and \(\lambda \geq 0 \), then

\[
f_0(x) \geq L(x, \lambda, \nu) \geq \inf_{\tilde{x} \in \mathcal{D}} L(\tilde{x}, \lambda, \nu) = g(\lambda, \nu)
\]

minimizing over all feasible \(x \) gives \(p^* \geq g(\lambda, \nu) \)
Least norm solution of linear equations

minimize \(x^T x \)
subject to \(Ax = b \)

• Lagrangian is

\[
L(x, \nu) = x^T x + \nu^T (Ax - b)
\]

• to minimize \(L \) over \(x \), set gradient equal to zero:

\[
\nabla_x L(x, \nu) = 2x + A^T \nu = 0 \implies x = -\frac{1}{2}A^T \nu
\]

• plug in in \(L \) to obtain \(g \):

\[
g(\nu) = L\left(-\frac{1}{2}A^T \nu, \nu\right) = -\frac{1}{4}\nu^T AA^T \nu - b^T \nu
\]

a concave function of \(\nu \)

Lower bound property: \(p^* \geq -\frac{1}{4}\nu^T AA^T \nu - b^T \nu \) for all \(\nu \)
Standard form LP

minimize \quad c^T x
subject to \quad Ax = b
\quad x \geq 0

- Lagrangian is

\[L(x, \lambda, \nu) = \begin{align*}
 c^T x + \nu^T (Ax - b) - \lambda^T x \\
 = -b^T \nu + (c + A^T \nu - \lambda)^T x
\end{align*} \]

- \(L \) is affine in \(x \), hence

\[g(\lambda, \nu) = \inf_x L(x, \lambda, \nu) = \begin{cases}
 -b^T \nu & A^T \nu - \lambda + c = 0 \\
 -\infty & \text{otherwise}
\end{cases} \]

\(g \) is linear on affine domain \(\text{dom } g = \{(\lambda, \nu) \mid A^T \nu - \lambda + c = 0\} \), hence concave

Lower bound property: \(p^* \geq -b^T \nu \) if \(A^T \nu + c \geq 0 \)
Equality constrained norm minimization

minimize $\|x\|
subject to $Ax = b$

- $\| \cdot \|$ is any norm; dual norm is defined as

$$\|v\|_* = \sup_{\|u\| \leq 1} u^T v$$

- define Lagrangian $L(x, v) = \|x\| + v^T (b - Ax)$

- dual function (proof on next page):

$$g(v) = \inf_x (\|x\| - v^T Ax + b^T v)$$

$$= \begin{cases} b^T v & \|A^T v\|_* \leq 1 \\ -\infty & \text{otherwise} \end{cases}$$

Lower bound property: $p^* \geq b^T v$ if $\|A^T v\|_* \leq 1$
proof of expression for \(g \): follows from

\[
\begin{align*}
\inf_{x} (\|x\| - y^T x) &= \begin{cases}
0 & \|y\|_* \leq 1 \\
-\infty & \text{otherwise}
\end{cases}
\end{align*}
\] (1)

Case \(\|y\|_* \leq 1 \):

\[
\inf_{x} (\|x\| - y^T x) = 0
\]

- \(y^T x \leq \|x\|\|y\|_* \leq \|x\| \) for all \(x \) (by definition of dual norm)
- \(y^T x = \|x\| \) for \(x = 0 \)

Case \(\|y\|_* > 1 \):

\[
\inf_{x} (\|x\| - y^T x) = -\infty
\]

- there exists an \(\tilde{x} \) with \(\|\tilde{x}\| \leq 1 \) and \(y^T \tilde{x} = \|y\|_* > 1 \); hence \(\|\tilde{x}\| - \|y\|_* < 0 \)
- consider \(x = t\tilde{x} \) with \(t > 0 \):

\[
\|x\| - y^T x = t(\|\tilde{x}\| - \|y\|_*) \to -\infty \quad \text{as } t \to \infty
\]
Two-way partitioning

minimize $x^T W x$
subject to $x_i^2 = 1, \quad i = 1, \ldots, n$

- a nonconvex problem; feasible set $\{-1, 1\}^n$ contains 2^n discrete points
- interpretation: partition $\{1, \ldots, n\}$ in two sets, $x_i \in \{-1, 1\}$ is assignment for i
- cost function is

$$x^T W x = \sum_{i=1}^{n} W_{ii} + 2 \sum_{i>j} W_{ij} x_i x_j$$

$$= 1^T W 1 + 2 \sum_{i>j} W_{ij} (x_i x_j - 1)$$

cost of assigning i, j to different sets is $-4 W_{ij}$
Lagrange dual of two-way partitioning problem

Dual function

\[
g(\nu) = \inf_x (x^T W x + \sum_{i=1}^n \nu_i (x_i^2 - 1))
\]

\[
= \inf_x x^T (W + \text{diag}(\nu)) x - 1^T \nu
\]

\[
= \begin{cases}
-1^T \nu & W + \text{diag}(\nu) \succeq 0 \\
-\infty & \text{otherwise}
\end{cases}
\]

Lower bound property

\[
p^* \geq -1^T \nu \quad \text{if } W + \text{diag}(\nu) \succeq 0
\]

example: \(\nu = -\lambda_{\text{min}}(W) \mathbf{1}\) proves bound \(p^* \geq n\lambda_{\text{min}}(W)\)
Lagrange dual and conjugate function

minimize \(f_0(x) \)
subject to \(Ax \leq b \)
\(Cx = d \)

Dual function

\[
g(\lambda, \nu) = \inf_{x \in \text{dom } f_0} (f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu) \\
= -f^*_0(-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu
\]

- recall definition of conjugate \(f^*(y) = \sup_x (y^T x - f(x)) \)
- simplifies derivation of dual if conjugate of \(f_0 \) is known

Example: entropy maximization

\[
f_0(x) = \sum_{i=1}^{n} x_i \log x_i, \quad f_0^*(y) = \sum_{i=1}^{n} e^{y_i-1}
\]
The dual problem

Lagrange dual problem

\[
\begin{align*}
\text{maximize} & \quad g(\lambda, \nu) \\
\text{subject to} & \quad \lambda \geq 0
\end{align*}
\]

- finds best lower bound on \(p^* \), obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted by \(d^* \)
- often simplified by making implicit constraint \((\lambda, \nu) \in \text{dom} \ g \) explicit
- \(\lambda, \nu \) are dual feasible if \(\lambda \geq 0, (\lambda, \nu) \in \text{dom} \ g \)
- \(d^* = -\infty \) if problem is infeasible; \(d^* = +\infty \) if unbounded above

Example: standard form LP and its dual (page 5.5)

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad x \geq 0 \\
\text{maximize} & \quad -b^T \nu \\
\text{subject to} & \quad A^T \nu + c \geq 0
\end{align*}
\]
Weak and strong duality

Weak duality: $d^* \leq p^*$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems
 for example, solving the SDP

\[
\begin{align*}
\text{maximize} & \quad -1^T \nu \\
\text{subject to} & \quad W + \text{diag}(\nu) \succeq 0
\end{align*}
\]

gives a lower bound for the two-way partitioning problem on page 5.8

Strong duality: $d^* = p^*$

- does not hold in general
- (usually) holds for convex problems
- sufficient conditions that guarantee strong duality in convex problems are called constraint qualifications
Slater’s constraint qualification

Convex problem

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

Slater’s constraint qualification: the problem is strictly feasible, \(i.e.,\)

\[
\exists x \in \text{int} \ D : \quad f_i(x) < 0, \quad i = 1, \ldots, m, \quad Ax = b
\]

- guarantees strong duality: \(p^* = d^*\)
- also guarantees that the dual optimum is attained if \(p^* > -\infty\)
- can be sharpened: \(e.g.,\) can replace \(\text{int} \ D\) with \(\text{relint} \ D\) (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, \(\ldots\)
- there exist many other types of constraint qualifications
Inequality form LP

Primal problem

minimize \(c^T x \)

subject to \(Ax \leq b \)

Dual function

\[
 g(\lambda) = \inf_x \left((c + A^T \lambda)^T x - b^T \lambda \right) = \begin{cases}
 -b^T \lambda & A^T \lambda + c = 0 \\
 -\infty & \text{otherwise}
 \end{cases}
\]

Dual problem

maximize \(-b^T \lambda \)

subject to \(A^T \lambda + c = 0 \)

\(\lambda \geq 0 \)

• from Slater’s condition: \(p^* = d^* \) if \(A\tilde{x} < b \) for some \(\tilde{x} \)

• in fact, \(p^* = d^* \) except when primal and dual are infeasible (\(p^* = \infty, d^* = -\infty \))
Quadratic program

Primal problem (assume \(P \in S^n_{++} \))

\[
\begin{align*}
\text{minimize} & \quad x^T P x \\
\text{subject to} & \quad Ax \leq b
\end{align*}
\]

Dual function

\[
g(\lambda) = \inf_x (x^T P x + \lambda^T (Ax - b)) = -\frac{1}{4} \lambda^T AP^{-1} A^T \lambda - b^T \lambda
\]

Dual problem

\[
\begin{align*}
\text{maximize} & \quad -\frac{1}{4} \lambda^T AP^{-1} A^T \lambda - b^T \lambda \\
\text{subject to} & \quad \lambda \geq 0
\end{align*}
\]

- from Slater’s condition: \(p^* = d^* \) if \(A\tilde{x} < b \) for some \(\tilde{x} \)
- in fact, \(p^* = d^* \) always
A nonconvex problem with strong duality

\[
\begin{align*}
\text{minimize} & \quad x^T A x + 2b^T x \\
\text{subject to} & \quad x^T x \leq 1
\end{align*}
\]

we allow \(A \not\preceq 0 \), hence problem may be nonconvex

Dual function (derivation on next page)

\[
g(\lambda) = \inf_x \left(x^T (A + \lambda I)x + 2b^T x - \lambda \right)
\]

\[
= \begin{cases}
-b^T (A + \lambda I)^\dagger b - \lambda & A + \lambda I \succeq 0 \text{ and } b \in \mathcal{R}(A + \lambda I) \\
-\infty & \text{otherwise}
\end{cases}
\]

Dual problem and equivalent SDP:

\[
\begin{align*}
\text{maximize} & \quad -b^T (A + \lambda I)^\dagger b - \lambda \\
\text{subject to} & \quad A + \lambda I \succeq 0 \\
& \quad b \in \mathcal{R}(A + \lambda I) \\
& \quad \lambda \geq 0 \\
\text{maximize} & \quad -t - \lambda \\
\text{subject to} & \quad \begin{bmatrix} A + \lambda I & b \\ b^T & t \end{bmatrix} \succeq 0 \\
& \quad \lambda \geq 0
\end{align*}
\]

strong duality holds although primal problem is not convex (not easy to show)
proof of expression for g: unconstrained minimum of $f(x) = x^TPx + 2q^Tx + r$ is

$$\inf_x f(x) = \begin{cases} -q^TP^{-1}q + r & P > 0 \\ -q^TP^\dagger q + r & P \neq 0, P \geq 0, q \in \mathcal{R}(P) \\ -\infty & P \geq 0, q \notin \mathcal{R}(P) \\ -\infty & P \neq 0 \end{cases}$$

- if $P \neq 0$, function f is unbounded below: choose y with $y^TPy < 0$ and $x = ty$

$$f(x) = t^2(y^TPy) + 2t(q^Ty) + r \to -\infty \quad \text{if } t \to \pm\infty$$

- if $P \geq 0$, decompose q as $q = Pu + v$ with $u = P^\dagger q$ and $v = (I - PP^\dagger)q$

Pu is projection of q on $\mathcal{R}(P)$, v is projection on nullspace of P

- if $v \neq 0$ (i.e. $q \notin \mathcal{R}(P)$), the function f is unbounded below: for $x = -tv$,

$$f(x) = t^2(v^TPv) - 2t(q^Tv) + r = -2t\|v\|^2 + r \to -\infty \quad \text{if } t \to \infty$$

- if $v = 0$, $x^* = -u$ is optimal since f is convex and $\nabla f(x^*) = 2Px^* + 2q = 0$;

$$f(x^*) = -q^TP^\dagger q + r$$

Duality 5.17
Geometric interpretation of duality

for simplicity, consider problem with one constraint $f_1(x) \leq 0$

Interpretation of dual function

$$g(\lambda) = \inf_{(u,t) \in \mathcal{G}} (t + \lambda u), \quad \text{where } \mathcal{G} = \{(f_1(x), f_0(x)) \mid x \in \mathcal{D}\}$$

- $\lambda u + t = g(\lambda)$ is (non-vertical) supporting hyperplane to \mathcal{G}
- hyperplane intersects t-axis at $t = g(\lambda)$
Geometric interpretation of duality

Epigraph variation: same interpretation if \mathcal{G} is replaced with

$\mathcal{A} = \{(u, t) \mid f_1(x) \leq u, f_0(x) \leq t \text{ for some } x \in \mathcal{D}\}$

\[\lambda u + t = g(\lambda)\]

Strong duality

- holds if there is a non-vertical supporting hyperplane to \mathcal{A} at $(0, p^*)$
- for convex problem, \mathcal{A} is convex, hence has supporting hyperplane at $(0, p^*)$
- Slater’s condition: if there exist $(\tilde{u}, \tilde{t}) \in \mathcal{A}$ with $\tilde{u} < 0$, then supporting hyperplanes at $(0, p^*)$ must be non-vertical
Optimality conditions

if strong duality holds, then x is primal optimal and (λ, ν) is dual optimal if:

1. $f_i(x) \leq 0$ for $i = 1, \ldots, m$ and $h_i(x) = 0$ for $i = 1, \ldots, p$

2. $\lambda \geq 0$

3. $f_0(x) = g(\lambda, \nu)$

conversely, these three conditions imply optimality of x, (λ, ν), and strong duality

next, we replace condition 3 with two equivalent conditions that are easier to use
Complementary slackness

assume x satisfies the primal constraints and $\lambda \geq 0$

$$g(\lambda, \nu) = \inf_{\tilde{x} \in \mathcal{D}} (f_0(\tilde{x}) + \sum_{i=1}^{m} \lambda_i f_i(\tilde{x}) + \sum_{i=1}^{p} \nu_i^* h_i(\tilde{x}))$$

$$\leq f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

$$\leq f_0(x)$$

equality $f_0(x) = g(\lambda, \nu)$ holds if and only if the two inequalities hold with equality:

• first inequality: x minimizes $L(\tilde{x}, \lambda, \nu)$ over $\tilde{x} \in \mathcal{D}$
• 2nd inequality: $\lambda_i f_i(x) = 0$ for $i = 1, \ldots, m$, i.e.,

$$\lambda_i > 0 \implies f_i(x) = 0, \quad f_i(x) < 0 \implies \lambda_i = 0$$

this is known as complementary slackness
Optimality conditions

if strong duality holds, then x is primal optimal and (λ, ν) is dual optimal if:

1. $f_i(x) \leq 0$ for $i = 1, \ldots, m$ and $h_i(x) = 0$ for $i = 1, \ldots, p$
2. $\lambda \geq 0$
3. $\lambda_i f_i(x) = 0$ for $i = 1, \ldots, m$
4. x is a minimizer of $L(\cdot, \lambda, \nu)$

conversely, these four conditions imply optimality of x, (λ, ν), and strong duality if problem is convex and the functions f_i, h_i are differentiable, #4 can written as

$4'$. the gradient of the Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

conditions 1,2,3,4’ are known as Karush–Kuhn–Tucker (KKT) conditions
Convex problem with Slater constraint qualification

recall the two implications of Slater’s condition for a convex problem

- strong duality: \(p^* = d^* \)
- if optimal value is finite, dual optimum is attained: there exist dual optimal \(\lambda, \nu \)

hence, if problem is convex and Slater’s constraint qualification holds:

- \(x \) is optimal if and only if there exist \(\lambda, \nu \) such that 1–4 on p. 5.22 are satisfied
- if functions are differentiable, condition 4 can be replaced with 4’
Example: water-filling

\[
\begin{align*}
\text{minimize} & \quad - \sum_{i=1}^{n} \log(x_i + \alpha_i) \\
\text{subject to} & \quad x \geq 0 \\
& \quad 1^T x = 1
\end{align*}
\]

• we assume that \(\alpha_i > 0 \)
• Lagrangian is \(L(x, \lambda, \nu) = - \sum_i \log(\tilde{x}_i + \alpha_i) - \lambda^T \tilde{x} + \nu(1^T \tilde{x} - 1) \)

Optimality conditions: \(x \) is optimal iff there exist \(\lambda \in \mathbb{R}^n, \nu \in \mathbb{R} \) such that

1. \(x \geq 0, 1^T x = 1 \)
2. \(\lambda \geq 0 \)
3. \(\lambda_i x_i = 0 \) for \(i = 1, \ldots, n \)
4. \(x \) minimizes Lagrangian:

\[
\frac{1}{x_i + \alpha_i} + \lambda_i = \nu, \quad i = 1, \ldots, n
\]
Example: water-filling

Solution

• if $\nu \leq 1/\alpha_i$: $\lambda_i = 0$ and $x_i = 1/\nu - \alpha_i$
• if $\nu \geq 1/\alpha_i$: $x_i = 0$ and $\lambda_i = \nu - 1/\alpha_i$
• two cases may be combined as

$$x_i = \max\{0, \frac{1}{\nu} - \alpha_i\}, \quad \lambda_i = \max\{0, \nu - \frac{1}{\alpha_i}\}$$

• determine ν from condition $\mathbf{1}^T x = 1$:

$$\sum_{i=1}^{n} \max\{0, \frac{1}{\nu} - \alpha_i\} = 1$$

Interpretation

• n patches; level of patch i is at height α_i
• flood area with unit amount of water
• resulting level is $1/\nu^*$
Example: projection on 1-norm ball

minimize $\frac{1}{2}||x - a||_2^2$

subject to $||x||_1 \leq 1$

Optimality conditions

1. $||x||_1 \leq 1$
2. $\lambda \geq 0$
3. $\lambda (1 - ||x||_1) = 0$
4. x minimizes Lagrangian

$$L(\tilde{x}, \lambda) = \frac{1}{2}||\tilde{x} - a||_2^2 + \lambda (||\tilde{x}||_1 - 1)$$

$$= \sum_{k=1}^{n} \left(\frac{1}{2}(\tilde{x}_k - a_k)^2 + \lambda |\tilde{x}_k| \right) - \lambda$$
Example: projection on 1-norm ball

Solution

• optimization problem in 4 is separable; solution for \(\lambda \geq 0 \) is

\[
x_k = \begin{cases}
 a_k - \lambda & a_k \geq \lambda \\
 0 & -\lambda \leq a_k \leq \lambda \\
 a_k + \lambda & a_k \leq -\lambda
\end{cases}
\]

• therefore \(\|x\|_1 = \sum_k |x_k| = \sum_k \max \{0, |a_k| - \lambda\} \)

• if \(\|a\|_1 \leq 1 \), solution is \(\lambda = 0, x = a \)

• otherwise, solve piecewise-linear equation in \(\lambda \):

\[
\sum_{k=1}^{n} \max \{0, |a_k| - \lambda\} = 1
\]
Perturbation and sensitivity analysis

(Unperturbed) optimization problem and its dual

\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}

\begin{align*}
\text{maximize} & \quad g(\lambda, \nu) \\
\text{subject to} & \quad \lambda \geq 0
\end{align*}

Perturbed problem and its dual

\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq u_i, \quad i = 1, \ldots, m \\
& \quad h_i(x) = v_i, \quad i = 1, \ldots, p
\end{align*}

\begin{align*}
\text{maximize} & \quad g(\lambda, \nu) - u^T \lambda - v^T \nu \\
\text{subject to} & \quad \lambda \geq 0
\end{align*}

• x is primal variable; u, v are parameters

• $p^*(u, v)$ is optimal value as a function of u, v

• we are interested in information about $p^*(u, v)$ that we can obtain from the solution of the unperturbed problem and its dual
Global sensitivity result

• assume strong duality holds for unperturbed problem, and that λ^*, ν^* are dual optimal for unperturbed problem

• apply weak duality to perturbed problem:

\[
p^*(u, v) \geq g(\lambda^*, \nu^*) - u^T \lambda^* - v^T \nu^*
\]

\[
= p^*(0, 0) - u^T \lambda^* - v^T \nu^*
\]

Sensitivity interpretation

• if λ_i^* is large: p^* increases greatly if we tighten constraint i ($u_i < 0$)

• if λ_i^* is small: p^* does not decrease much if we loosen constraint i ($u_i > 0$)

• if ν_i^* is large and positive: p^* increases greatly if we take $v_i < 0$;
 if ν_i^* is large and negative: p^* increases greatly if we take $v_i > 0$

• if ν_i^* is small and positive: p^* does not decrease much if we take $v_i > 0$;
 if ν_i^* is small and negative: p^* does not decrease much if we take $v_i < 0$

Duality 5.29
Local sensitivity result

if (in addition) \(p^*(u, v) \) is differentiable at \((0, 0)\), then

\[
\lambda_i^* = -\frac{\partial p^*(0, 0)}{\partial u_i}, \quad \nu_i^* = -\frac{\partial p^*(0, 0)}{\partial v_i}
\]

proof (for \(\lambda_i^* \)): from global sensitivity result,

\[
\frac{\partial p^*(0, 0)}{\partial u_i} = \lim_{t \searrow 0} \frac{p^*(te_i, 0) - p^*(0, 0)}{t} \geq -\lambda_i^* \\
\frac{\partial p^*(0, 0)}{\partial u_i} = \lim_{t \nearrow 0} \frac{p^*(te_i, 0) - p^*(0, 0)}{t} \leq -\lambda_i^*
\]

hence, equality

\(p^*(u) \) for a problem with one (inequality) constraint:
Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

Common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions

 e.g., replace $f_0(x)$ by $\phi(f_0(x))$ with ϕ convex, increasing
Introducing new variables and equality constraints

\[
\text{minimize } \ f_0(Ax + b)
\]

- dual function is constant: \(g = \inf_x L(x) = \inf_x f_0(Ax + b) = p^* \)
- we have strong duality, but dual is quite useless

Reformulated problem and its dual

\[
\begin{align*}
\text{minimize } & \ f_0(y) & \text{maximize } & \ b^T \nu - f_0^*(\nu) \\
\text{subject to } & \ Ax + b - y = 0 & \text{subject to } & \ A^T \nu = 0
\end{align*}
\]

dual function follows from

\[
g(\nu) = \inf_{x,y} (f_0(y) - \nu^T y + \nu^T Ax + b^T \nu)
\]

\[
= \begin{cases}
- f_0^*(\nu) + b^T \nu & A^T \nu = 0 \\
- \infty & \text{otherwise}
\end{cases}
\]
Example: norm approximation

\[\text{minimize } \|Ax - b\| \quad \longrightarrow \quad \text{minimize } \|y\| \]
\[\text{subject to } y = Ax - b \]

Dual function

\[g(\nu) = \inf_{x,y} (\|y\| + \nu^T y - \nu^T Ax + b^T \nu) \]
\[= \begin{cases}
 b^T \nu + \inf_y (\|y\| + \nu^T y) & A^T \nu = 0 \\
 -\infty & \text{otherwise}
\end{cases} \]
\[= \begin{cases}
 b^T \nu & A^T \nu = 0, \quad \|\nu\|_* \leq 1 \\
 -\infty & \text{otherwise}
\end{cases} \]

(last step follows from (1))

Dual of norm approximation problem

\[\text{maximize } b^T \nu \]
\[\text{subject to } A^T \nu = 0 \]
\[\|\nu\|_* \leq 1 \]
Implicit constraints

LP with box constraints: primal and dual problem

\[
\begin{align*}
\text{minimize} & \quad c^T x & \text{maximize} & \quad -b^T \nu - \mathbf{1}^T \lambda_1 - \mathbf{1}^T \lambda_2 \\
\text{subject to} & \quad Ax = b & \text{subject to} & \quad c + A^T \nu + \lambda_1 - \lambda_2 = 0 \\
-\mathbf{1} & \leq x \leq \mathbf{1} & \lambda_1 & \geq 0, \quad \lambda_2 \geq 0
\end{align*}
\]

Reformulation with box constraints made implicit

\[
\begin{align*}
\text{minimize} & \quad f_0(x) = \begin{cases} c^T x & -\mathbf{1} \leq x \leq \mathbf{1} \\
\infty & \text{otherwise} \end{cases} \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

dual function

\[
g(\nu) = \inf_{-\mathbf{1} \leq x \leq \mathbf{1}} (c^T x + \nu^T (Ax - b)) = -b^T \nu - \|A^T \nu + c\|_1
\]

Dual problem: maximize \(-b^T \nu - \|A^T \nu + c\|_1\)
Problems with generalized inequalities

minimize \(f_0(x) \)
subject to \(f_i(x) \leq K_i 0, \quad i = 1, \ldots, m \)
\(h_i(x) = 0, \quad i = 1, \ldots, p \)

\(\leq K_i \) is generalized inequality on \(\mathbb{R}^{k_i} \)

Lagrangian and dual function: definitions are parallel to scalar case

- Lagrange multiplier for \(f_i(x) \leq K_i 0 \) is vector \(\lambda_i \in \mathbb{R}^{k_i} \)
- Lagrangian \(L : \mathbb{R}^n \times \mathbb{R}^{k_1} \times \cdots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \to \mathbb{R} \), is defined as
 \[
 L(x, \lambda_1, \cdots, \lambda_m, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i^T f_i(x) + \sum_{i=1}^p \nu_i h_i(x)
 \]
- dual function \(g : \mathbb{R}^{k_1} \times \cdots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \to \mathbb{R} \), is defined as
 \[
 g(\lambda_1, \ldots, \lambda_m, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda_1, \cdots, \lambda_m, \nu)
 \]
Lagrange dual of problems with generalized inequalities

Lower bound property: if $\lambda_i \geq_{K^*_i} 0$, then $g(\lambda_1, \ldots, \lambda_m, \nu) \leq p^*$

proof: if x is feasible and $\lambda \geq_{K^*_i} 0$, then

\[
f_0(x) \geq f_0(x) + \sum_{i=1}^{m} \lambda_i^T f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) \\
\geq \inf_{\tilde{x} \in \mathcal{D}} L(\tilde{x}, \lambda_1, \ldots, \lambda_m, \nu) \\
= g(\lambda_1, \ldots, \lambda_m, \nu)
\]

minimizing over all feasible x gives $p^* \geq g(\lambda_1, \ldots, \lambda_m, \nu)$

Dual problem

maximize $\quad g(\lambda_1, \ldots, \lambda_m, \nu)$

subject to $\quad \lambda_i \geq_{K^*_i} 0, \quad i = 1, \ldots, m$

- weak duality: $p^* \geq d^*$ always

- strong duality: $p^* = d^*$ for convex problem with constraint qualification (for example, Slater’s: primal problem is strictly feasible)
Semidefinite program

minimize \(c^T x \)
subject to \(x_1 F_1 + \cdots + x_n F_n \leq G \)

matrices \(F_1, \ldots, F_n, G \) are symmetric \(k \times k \)

Lagrangian and dual function

• Lagrange multiplier is matrix \(Z \in S^k \); Lagrangian is

\[
L(x, Z) = c^T x + \text{tr} \left(Z(x_1 F_1 + \cdots + x_n F_n - G) \right)
\]

\[
= \sum_{i=1}^n (\text{tr}(F_i Z) + c_i) x_i - \text{tr}(G Z)
\]

• dual function

\[
g(Z) = \inf_x L(x, Z) = \begin{cases}
- \text{tr}(G Z) & \text{tr}(F_i Z) + c_i = 0, \ i = 1, \ldots, n \\
- \infty & \text{otherwise}
\end{cases}
\]
Dual semidefinite program

maximize \(- \text{tr}(GZ)\)
subject to \(\text{tr}(F_iZ) + c_i = 0, \ i = 1, \ldots, n\)
\(Z \succeq 0\)

Weak duality: \(p^* \geq d^*\) always

proof: for primal feasible \(x\), dual feasible \(Z\),
\[
c^T x = - \sum_{i=1}^{n} \text{tr}(F_iZ)x_i
\]
\[
= - \text{tr}(GZ) + \text{tr}(Z(G - \sum_{i=1}^{n} x_iF_i))
\]
\[
\geq - \text{tr}(GZ)
\]

inequality follows from \(\text{tr}(XZ) \geq 0\) for \(X \succeq 0, Z \succeq 0\)

Strong duality: \(p^* = d^*\) if primal SDP or dual SDP is strictly feasible
Complementary slackness

(P) minimize \(c^T x \) \(\quad \) (D) maximize \(- \text{tr}(GZ) \)
subject to \(\sum_{i=1}^{n} x_i F_i \leq G \) subject to \(\text{tr}(F_i Z) + c_i = 0, \quad i = 1, \ldots, n \)
\(Z \preceq 0 \)

the primal and dual objective values at feasible \(x, Z \) are equal if

\[
0 = c^T x + \text{tr}(GZ)
\]
\[
= - \sum_{i=1}^{n} x_i \text{tr}(F_i Z) + \text{tr}(GZ)
\]
\[
= \text{tr}(XZ) \quad \text{where} \ X = G - x_1 F_1 - \cdots - x_n F_n
\]

for \(X \succeq 0, Z \succeq 0 \), each of the following statements is equivalent to \(\text{tr}(XZ) = 0 \):

- \(ZX = 0 \): columns of \(X \) are in the nullspace of \(Z \)
- \(XZ = 0 \): columns of \(Z \) are in the nullspace of \(X \)

(see next page)
proof: factorize X, Z as

$$X = UU^T, \quad Z = VV^T$$

- columns of U span the range of X, columns of V span the range of Z
- $\text{tr}(XZ)$ can be expressed as

$$\text{tr}(XZ) = \text{tr}(UU^TVV^T) = \text{tr}((U^TV)(V^TU)) = \|U^TV\|_F^2$$

- hence, $\text{tr}(XZ) = 0$ if and only if

$$U^TV = 0$$

the range of X and the range of Z are orthogonal subspaces
Example: two-way partitioning

recall the two-way partitioning problem and its dual (page 5.8)

(P) minimize \(x^T W x \)
subject to \(x_i^2 = 1, \ i = 1, \ldots, n \)

(D) maximize \(-1^T \nu\)
subject to \(W + \text{diag}(\nu) \succeq 0\)

• by weak duality, \(p^* \geq d^* \)
• the dual problem (D) is an SDP; we derive the dual SDP and compare it with (P)
• to derive the dual of (D), we first write (D) as a minimization problem:

\[
\begin{align*}
\text{minimize} & \quad 1^T y \\
\text{subject to} & \quad W + \text{diag}(y) \succeq 0
\end{align*}
\]

(2)

the optimal value of (2) is \(-d^*\)
Example: two-way partitioning

Lagrangian

\[L(y, Z) = 1^T y - \text{tr}(Z(W + \text{diag}(y))) \]
\[= -\text{tr}(WZ) + \sum_{i=1}^{n} y_i (1 - Z_{ii}) \]

Dual function

\[g(Z) = \inf_y L(y, Z) = \begin{cases}
-\text{tr}(WZ) & Z_{ii} = 1, \ i = 1, \ldots, n \\
-\infty & \text{otherwise}
\end{cases} \]

Dual problem: the dual of (2) is

maximize \[-\text{tr}(WZ)\] subject to \[Z_{ii} = 1, \ i = 1, \ldots, n\] \[Z \geq 0\]

by strong duality with (2), optimal value is equal to \(-d^*\)
Example: two-way partitioning

replace (D) on page 5.41 by its dual

(P) \[\begin{align*} &\text{minimize} \quad x^T W x \\ &\text{subject to} \quad x_i^2 = 1, \quad i = 1, \ldots, n \end{align*} \]

(P’) \[\begin{align*} &\text{minimize} \quad \text{tr}(W Z) \\ &\text{subject to} \quad \text{diag}(Z) = 1 \\ &\quad Z \succeq 0 \end{align*} \]

optimal value of (P’) is equal to optimal value \(d^* \) of (D)

Interpretation as relaxation

- reformulate (P) by introducing a new variable \(Z = xx^T \):

\[\begin{align*} &\text{minimize} \quad \text{tr}(W Z) \\ &\text{subject to} \quad \text{diag}(Z) = 1 \\ &\quad Z = xx^T \end{align*} \]

- replace the constraint \(Z = xx^T \) with a weaker convex constraint \(Z \succeq 0 \)