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e Lagrange dual problem
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e optimality conditions

e perturbation and sensitivity analysis
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e semidefinite optimization

e theorems of alternatives
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Lagrangian

Standard form problem (not necessarily convex)

minimize  fy(x)
subjectto  fi(x) <0, i=1,...,m
hi(x)z(), i=1,...,p

variable x € R”, domain D, optimal value p*

Lagrangian: L : R" X R”" xR?” — R, withdom L =D x R" x R?,
m P
L(x,4,v) = fo(x) + D i fi(x) + > vihi(x)
i=1 i=1

e weighted sum of objective and constraint functions
e J1; is Lagrange multiplier associated with f;(x) <0

e v; is Lagrange multiplier associated with /;(x) =0
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Lagrange dual function

Lagrange dual function: g : R” x R? — R,

g(A,v) = inf L(x,4,v)
x€D

m P
= in;f) (fo(x) + D] ifi(x) + > vihi(x))
*€ i=1 i=1

e a concave function of 4, v

e can be —oo for some 4, v; this defines the domain of g

Lower bound property: if 1 = 0, then g(1,v) < p*

proof: if x is feasible and A = 0, then

fo(x) > L(x,A,v) > inf L(X,4,v) =g(4,v)
xXePD

minimizing over all feasible x gives p* > g(A, v)
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Least norm solution of linear equations

minimize x'x

subjectto Ax =05

e Lagrangianis
L(x,v) =x'x+ v (Ax = b)

e to minimize L over x, set gradient equal to zero:
ViL(x,v)=2x+Alv=0 = «x-= —%ATV
e pluginin L to obtain g:
g(v) = L(—%ATV, V) = —%VTAATV —bly
a concave function of v

Lower bound property: p* > —1vT AATy — by for all v

Duality

54



Standard form LP

minimize c¢!x

subjectto Ax =05
x=0

e |Lagrangian is

Lix,,v) = cIx+v(Ax=b)-2Tx

= —blyv+(c+ATy -1
e L is affine in x, hence

: by ATy —A+¢=0
g(4,v) = lgfL(x’/l’ v) = { —oo  otherwise
g is linear on affine domain domg = {(1,v) | ATy — 1 + ¢ = 0}, hence concave

Lower bound property: p* > —-blvifAlv+c =0
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Equality constrained norm minimization

minimize  ||x||
subjectto Ax =05

e || - || is any norm; dual norm is defined as
lolls = sup u'v
Jull<1

e define Lagrangian L(x,v) = ||x|| + v/ (b — Ax)

e dual function (proof on next page):

g(v) = inf(||x]| = v Ax+bv)
X
_ [ by QAT <1
B —oo  otherwise

Lower bound property: p* > by if [|[Alv|. < 1
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proof of expression for g: follows from

0 iyl <1

. T _
1rx1f(||x|| y'x) _{ _co otherwise

Case ||y||. < 1:
inf ([l = y"x) = 0

o yix < |Ix|lllyll« < ||x]| for all x (by definition of dual norm)

o yix=|x||forx=0

Case ||y||« > 1:
inf (flxf| - y'x) = —o0

e there exists an ¥ with ||| < 1 and y'% = ||y||« > 1; hence ||%]| - ||y]|« < O
e consider x = tx with t > O:

T -
x| = y"x = e([I%]| = [Iyll+) = —c0 @st — oo
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Two-way partitioning

minimize  x! Wx
subjectto x7=1, i=1,...,n

e a nonconvex problem; feasible set {—1, 1}" contains 2" discrete points
e interpretation: partition {1, ...,n} in two sets, x; € {—1, 1} is assignment for i

e cost function is

xTWx

n
Z Wi + 2 Z W,-J-x,-xj
i=1

i>j
= ITWI + ZZ W,-j(x,-xj — 1)

i>7j

cost of assigning i, j to different sets is —4W;;
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Lagrange dual of two-way partitioning problem

Dual function

n

g(v) = inf (x"Wx+ Z vi(xi2 - 1))
* i=1

= infx! (W + diag(v))x — 17v
X
B { -1y W +diag(v) = 0

—00 otherwise

Lower bound property

p* > -1y if W +diag(v) = 0

example: v = —A,in(W)1 proves bound p* > ndgi, (W)
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Lagrange dual and conjugate function

minimize  fy(x)
subjectto Ax < b
Cx=d

Dual function

inf  (fo(x)+A"Aa+cTwx-bpla-dy)

xedom f

= —fi(=ATa-c'v)y-b'a-d"v

g(4,v)

e recall definition of conjugate f*(y) = sup, (y'x — f(x))

e simplifies derivation of dual if conjugate of f; is known

Example: entropy maximization

fox) = 2 xilogxi,  fy(y) = > e
=1 i=1
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The dual problem

Lagrange dual problem
maximize g(4,v)
subjectto A4 =0

e finds best lower bound on p*, obtained from Lagrange dual function
e a convex optimization problem; optimal value denoted by d*

e often simplified by making implicit constraint (41, v) € dom g explicit
e A, v are dual feasible if 1 = 0, (4,v) € domg

e d* = —o if problem is infeasible; d* = +oo if unbounded above

Example: standard form LP and its dual (page 5.5)

minimize c¢lx maximize -blv
subjectto Ax =b subjectto Alv+c =0
x>0
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Weak and strong duality

Weak duality: 4* < p*

e always holds (for convex and nonconvex problems)

e can be used to find nontrivial lower bounds for difficult problems
for example, solving the SDP

maximize —-17v
subjectto W +diag(v) = 0

gives a lower bound for the two-way partitioning problem on page 5.8

Strong duality: d* = p*
e does not hold in general
e (usually) holds for convex problems

e sufficient conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s constraint qualification

Convex problem

minimize  fy(x)
subjectto  fi(x) <0, i=1,...,m
Ax=0>b

Slater’s constraint qualification: the problem is strictly feasible, i.e.,
dx €intD ; filx) <0, i=1,...,m, Ax=b

e guarantees strong duality: p* = d*
e also guarantees that the dual optimum is attained if p* > —o

e can be sharpened: e.g., can replace int D with relint O (interior relative to
affine hull); linear inequalities do not need to hold with strict inequality, . ..

e there exist many other types of constraint qualifications
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Inequality form LP

Primal problem

minimize c¢!x

subjectto Ax < b
Dual function

~bfa ATd+c¢=0

_ TN _ 1Ty —
g(A) —1561f((c+A A)'x—=b"Q) { o otherwise

Dual problem
maximize -b2
subjectto ATA+c=0
A=0

e from Slater’s condition: p* = d* if AX < b for some x

e in fact, p* = d* except when primal and dual are infeasible (p* = oo, d* = —c0)
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Quadpratic program

Primal problem (assume P € S% )

minimize  x! Px
subjectto Ax < b

Dual function

1
g(A) = inf (X' Px + AT (Ax = b)) = —Z/lTAP_lAT/l —bT2
X

Dual problem
P maximize —1ATAP~1ATA - b7

subjectto A1 =0

e from Slater’s condition: p* = d* if Ax < b for some x

e infact, p* = d* always
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A nonconvex problem with strong duality

minimize x! Ax +2bTx
subjectto x'x < 1

we allow A # 0, hence problem may be nonconvex

Dual function (derivation on next page)

g(Q) inf (xT (A +ADx +2bTx = Q)
X

[ =pTA+aADTh-A2 A+AI=0andb € R(A + )
B —00 otherwise

Dual problem and equivalent SDP:

maximize —bT(A+AI)'b -2 maximize —r—A

subjectto A+ Al =0 . A+Al b
beR(A+AI) subject to T , ] =0
1>0 1>0

strong duality holds although primal problem is not convex (not easy to show)

Duality 5.16



proof of expression for g: unconstrained minimum of f(x) = x’ Px + 2¢'x +r is

—g'Plg+r P>0

—q"PTg+r P¥0,P=0, gecR(P)
—00 P=0, g¢&R(P)

—00 P*O0

igclff(x) =4

e if P % 0, function f is unbounded below: choose y with y! Py < 0 and x =ty
F(x)=2(GTPY) +2t(¢gTy) +r > —0  ift > +o0
e if P = 0, decompose g as ¢ = Pu+v withu = P'gandv = (I — PP)gq

Pu is projection of g on R(P), v is projection on nullspace of P

o ifo#0(ie., qg¢ R(P)), the function f is unbounded below: for x = —tv,

f(x) =2 Po) = 2t(gTv) +r = =2t||v]|* +r = -0 if t > o0

e if v =0, x* = —u is optimal since f is convex and V f(x*) = 2Px* + 2q = 0;

fO*) =—q"PTg+r
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Geometric interpretation of duality

for simplicity, consider problem with one constraint fi(x) < 0

Interpretation of dual function

g(1) = (uiggg (r+Au),  where G ={(fi(x),fo(x))|xe D}

e Au+t=g(A)is (non-vertical) supporting hyperplane to G

e hyperplane intersects r-axis at t = g(A)
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Geometric interpretation of duality

Epigraph variation: same interpretation if G is replaced with

A={(u,t) | fi(x) <u, fo(x) <tforsomex e D}

4

Au+t = g(/l)\p*
g(4)

Strong duality

e holds if there is a non-vertical supporting hyperplane to A at (0, p*)

e for convex problem, A is convex, hence has supporting hyperplane at (0, p*)

e Slater’s condition: if there exist (i1, r) € A with i < 0, then supporting
hyperplanes at (0, p*) must be non-vertical
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Optimality conditions

if strong duality holds, x is primal optimal, and (4, v) is dual optimal, then:

1. fikx) <0fori=1,...,mand hj(x) =0fori=1,...,p
2. 120

3. fo(x) =g(4,v)
conversely, these three conditions imply optimality of x, (4, v), and strong duality

next, we replace condition 3 with two equivalent conditions that are easier to use
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Complementary slackness

assume x satisfies the primal constraints and 4 = 0
m p
g v) = inf (fo(F)+ 2 Aifi(%) + 2 vihi(%))
i=1 i=1

m P

< folx)+ Z Aifi(x) + Z vihi(x)
i=1 i=1

< Jfo(x)

equality fo(x) = g(4, v) holds if and only if the two inequalities hold with equality:

e first inequality: x minimizes L(X,A,v) overx € D

e 2nd inequality: A;f;(x) =0fori=1,...,m,ie.,
;>0 = fi(x)=0, fix) <0 = 4;=0

this is known as complementary slackness
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Optimality conditions

if strong duality holds, x is primal optimal, and (4, v) is dual optimal, then:

1. fikx) <O0fori=1,...,mand hj(x) =0fori=1,...,p
2. 1=0
3. A;ifi(x)=0fori=1,...,m

4. x is a minimizer of L(-, 4, V)

conversely, these four conditions imply optimality of x, (4, v), and strong duality

if problem is convex and the functions f;, h; are differentiable, #4 can written as

4’. the gradient of the Lagrangian with respect to x vanishes:
m P
Vio(x) + D A4V fi(x) + > viVhi(x) =0
i=1 i=1

conditions 1,2,3,4" are known as Karush—Kuhn—Tucker (KKT) conditions
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Convex problem with Slater constraint qualification

recall the two implications of Slater’s condition for a convex problem

e strong duality: p* = d*

e if optimal value is finite, dual optimum is attained: there exist dual optimal A, v
hence, if problem is convex and Slater’s constraint qualification holds:

e x is optimal if and only if there exist A, v such that 1—4 on p. 5.22 are satisfied

e if functions are differentiable, condition 4 can be replaced with 4
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Example: water-filling

n
minimize - > log(x; + ;)
i=1
subjectto x =0
11x =1
e we assume that a; > 0

e Lagrangianis L(%,A,v) = - X, log(Z + @) =AU F+v(1Ix - 1)

Optimality conditions: x is optimal iff there exist 1 € R", v € R such that

1.x=0,1"Tx=1
2. 1 =0
3. /lixiZOfOI’iZL...,n

4. x minimizes Lagrangian:

+/ll'

1
=
[
[
S

X+ Q;
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Example: water-filling

Solution
o ifv<l/a;:A;=0andx;=1/v—q;
o ifv>1/a;:x;=0and A; =v —1/q;

e two cases may be combined as

1 1
x; = max{0, — — a;}, A; = max{0,v — —}
14 a;

e determine v from condition 11x = 1:

i 1
Z max{0,— —q;} =1
i=1 Id

Interpretation

e 1 patches; level of patch i is at height «;

e flood area with unit amount of water

e resulting level is 1/v*
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Example: projection on 1-norm ball

Optimality conditions
1. |lx]l; =1

2.1>0

3. A1 —|lx]l1) =0

4. x minimizes Lagrangian

L(%, 1)

Duality
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minimize  3|lx — al|3

subjectto ||x]|; <1

= Mg -als+a(%ll - 1)

n
= > (3(F —ap)? + AF]) - 2
k=1
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Example: projection on 1-norm ball

Solution

e optimization problem in condition 4 is separable; solution for 4 > 0 is
a,—A ap =>4

xp =4 0 —-A<ar <A
arp+4 ap <-4

e therefore |lx||; = 2 |xx| = Xk max {0, [ag| — 1}
o if |lal|; <1, solutionisA=0,x=a

e otherwise, solve piecewise-linear equation in A:

n
Zmax {0, |ax| — A} =1
k=1
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Perturbation and sensitivity analysis

(Unperturbed) optimization problem and its dual

minimize  fo(x) maximize g(A4,v)
subjectto  fi(x) <0, i=1,...,m subjectto 1 =0
h,-(x)zO, i=1,...,p

Perturbed problem and its dual

minimize  fy(x) maximize g(A,v) —ulA—vlvy
subjectto fi(x) <wu;, i=1,...,m subjectto 4 =0
hi(x)=v;, i=1,...,p
e x is primal variable; u, v are parameters

e p*(u,v) is optimal value as a function of u, v

e we are interested in information about p*(u, v), obtained from the solution of
the unperturbed problem and its dual
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Global sensitivity result

e assume strong duality holds for unperturbed problem, and that (1*, v*) is dual
optimal for unperturbed problem

e apply weak duality to perturbed problem: for all u, v,

p*(u,0) = g V) —ular—olv*

— p*(o’ O) _ l/tT/l* _ UTV*

Sensitivity interpretation

o |f /l;* is large: p* increases greatly if we tighten constraint i (z; < 0)
o if /l;* is small: p* does not decrease much if we loosen constraint i (1; > 0)

o if vl* is large and positive: p* increases greatly if we take v; < 0;
if vl?* is large and negative: p* increases greatly if we take v; > 0

o if vl?“ is small and positive: p* does not decrease much if we take v; > 0;
if vl* is small and negative: p* does not decrease much if we take v; < 0
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Local sensitivity result
if (in addition) p*(u, v) is differentiable at (0, 0), then

Opr(0.0) ,__9p*(0.0)

A = .
! (9u,- ! (9vl-

proof (for /l;"): from global sensitivity result,

* *(4,. — p*

0p™(0.0) _ . p~(tei.0) = p™(0.0) 1«
ou; N\0 l :
* * (15, — p*x

0p™(0.0) _ . pP"(ter.0) = p7(0.0)
Ou; t /0 t l

hence, equality

p*(u) for a problem with
one (inequality) constraint:

u
p*(u)

p*(0) — *u
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Duality and problem reformulations

e equivalent formulations of a problem can lead to very different duals

e reformulating the primal problem can be useful when the dual is difficult to
derive, or uninteresting

Common reformulations

e introduce new variables and equality constraints
e make explicit constraints implicit or vice versa
e transform objective or constraint functions

e.g., replace fy(x) by ¢( fo(x)) with ¢ convex, increasing
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Introducing new variables and equality constraints

minimize fy(Ax + b)

e dual function is constant: g = inf, L(x) = inf, fy(Ax + b) = p*

e we have strong duality, but dual is quite useless

Reformulated problem and its dual

minimize  fy(y) maximize b’y — f¥(v)
subjectto Ax+b—-y=0 subjectto Alv =0

dual function follows from

) = inf (fo(y) = vy +v Ax+bly)
~fi() +bly Ay =0
—00 otherwise

Duality

5.32



Example: norm approximation
minimize ||Ax — b|| —> minimize  ||y||
subjectto y=Ax-b

Dual function
g(v) = inf(||y||+v'y =vIAx +b1v)
x,y

by +infy (|ly|| +vly) Alv=0
—00 otherwise

bly ATy =0, |v|.<1
—oco otherwise

= 9

(last step follows from (1))

Dual of norm approximation problem

maximize by
subjectto ATy =0
vl <1

Duality

5.33



Implicit constraints

Linear program with box constraints: primal and dual problem

minimize c¢!x maximize -blv-1T2;-1"2,
subjectto Ax =b subjectto c+Alv+1; -2, =0
-1<x=x1 A1 =0, =0

Reformulation with box constraints made implicit

cIx -1<x<1

minimize  fy(x) ={ 00 otherwise

subjectto Ax =05
e dual function

g(v) = inf (Ix+vI(Ax=0)) ==b"v—||ATv+¢|;
-1=x<1

e dual problem
maximize -blv—||ATv+c|;
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Semidefinite program

minimize c¢!x

subjectto xF1+---+x,F, 2 G

matrices Fi, ..., I, G are symmetric m X m matrices

Lagrangian and dual function

e we associate with the constraint a Lagrange multiplier Z € S™
e define Lagrangian as
L(x,Z) = cx+tw(ZxFi+- +x,F, —G))

i(tr(FiZ) +ci)x; —tr(GZ)
i=1

e dual function

8(2) = H;fL(x’ Z) = { —00 otherwise

Duality
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Dual semidefinite program

maximize —tr(GZ)
subjectto tr(F;Z)+c¢; =0, i=1,...,n
Z =0

Weak duality: p* > d* always

proof: for primal feasible x, dual feasible Z,

n
clx = —Ztr(F,-Z)x,-
i=1

—tr(GZ) +tr(Z(G — Zn]XiFi))
i=1

> —tr(GZ)

inequality follows from tr(XZ) > 0for X = 0,Z =0

Strong duality: p* = d* if primal SDP or dual SDP is strictly feasible
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Complementary slackness

(P) minimize ¢'x (D) maximize —tr(GZ)
n
subjectto > x;F; 2 G subjectto tr(F;Z)+c¢; =0, i=1,...
=1 Z =0

the primal and dual objective values at feasible x, Z are equal if

0 = dx+w(G2)
n
— > xitr(FZ) +tr(GZ2)
i=1

= tr(XZ) where X =G —x1F] — - - — x,Fy,

for X = 0, Z = 0, each of the following statements is equivalent to tr(XZ) = O:

e /X =0: columns of X are in the nullspace of Z

e XZ =0: columns of Z are in the nullspace of X

(see next page)

Duality
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proof: factorize X, Z as
x=vuUut, z=vvl

e columns of U span the range of X, columns of V span the range of Z

e tr(XZ) can be expressed as

tr(XZ) = (U vV = (U V)(VIU)) = UV

e hence, tr(XZ) = 0 if and only if
Ul'v=0

the range of X and the range of Z are orthogonal subspaces
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Example: two-way partitioning

recall the two-way partitioning problem and its dual (page 5.8)

(P) minimize xTWx (D) maximize -1'v
subjectto x?=1, i=1,...,n subjectto W + diag(v) = 0

e by weak duality, p* > d*
e the dual problem (D) is an SDP; we derive the dual SDP and compare it with (P)

e to derive the dual of (D), we first write (D) as a minimization problem:

minimize 17y 2)
subjectto W + diag(y) = 0

the optimal value of (2) is —d*
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Example: two-way partitioning
Lagrangian
L(y.Z2) = 1'y—tw(Z(W +diag(y)))

= —tur(WZ)+ Zn: yi(l = Zii)
i=1

Dual function

—tI'(WZ) Zi=1,i=1,...,n

8(2) = HylfL(y’Z) - { — o0 otherwise

Dual problem: the dual of (2) is

maximize —tr(WZ)
subjectto Z; =1, i=1,...,n
Z =0
by strong duality with (2), optimal value is equal to —d*
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Example: two-way partitioning

replace (D) on page 5.39 by its dual

(P) minimize x!Wx (P) minimize tr(WZ)
subjectto x?=1, i=1,...,n subject to diag(Z) =1
Z =0

optimal value of (P’) is equal to optimal value d* of (D)

Interpretation as relaxation

e reformulate (P) by introducing a new variable Z = xx?:

minimize tr(WZ)
subjectto diag(Z) =1
Z = xx!

e replace the constraint Z = xx! with a weaker convex constraint Z > 0
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Theorems of alternative

theorems of alternative make statements about two related feasibility problems
e the two problems are weak alternatives if at most one is feasible

e the two problems are strong alternatives if exactly one is feasible

Examples of strong alternatives

e linear equations:

problem1: Ax =05
problem?2: Aly=0, bly=1

e Farkas lemma:;

problem1: Ax=b, x=0
problem?2: Ay <0, bly=1
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Nonlinear inequalities

Problem 1 (variables x € R")

filx) <0, i=1,...,m (3)
this includes an implicit constraint x € 9 = dom f; N --- N dom f,
Problem 2 (variables 4 € R"™)

0£1=0, gA)=0 (4)

where -
A) = inf DA fi(&
g() 3212@; ifi (%)

e problem 2 is a convex feasibility problem (g is concave), even if problem 1 is not
e 1 and 2 are weak alternatives
e 1 and 2 are strong alternatives if fi, ..., f;; are convex (and int 9 is nonempty)

proof on next page
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Proof

(weak alternatives) if x satisfies (3) and A satisfies (4), there is a contradiction

0<g(A) < i/l,-fi(x) <0
i=1

(strong alternatives) consider the pair of primal and dual problems

(P) minimize 1t (D) maximize g(A)
subjectto fi(x) <t,i=1,...,m subjectto A1 =0
17a=1

e (P) is convex if the functions f; are convex

e Slater’s condition holds for (P): take any x € int D and ¢ > max; f;(x)

e hence strong duality holds (p* = d*), and dual optimum is attained if 4* is finite
e (3) is infeasible if and only if p* > 0

e hence, (3) is infeasible if and only if there exists a A that satisfies (4)
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Theorem of alternatives for linear matrix inequality

Problem 1 (variables x € R")
n
ZX,‘F,‘ <G
i=1
Fi, ..., F,, G are symmetric m X m matrices
Problem 2 (variable Z € §™)
tr(F;Z2)=0, i=1,...,n, tr(GZ) <0, 0+#Z >0

e 1 and 2 are strong alternatives

e proof follows from strong duality between the SDPs

minimize ¢ maximize -—tr(GZ)
subject to S xiF; < G +11 subjectto tr(F;Z)=0, i=1,...
i=1 trZ =1
Z =0

Duality
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