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Lagrangian

Standard form problem (not necessarily convex)

minimize 50(G)

subject to 58 (G) ≤ 0, 8 = 1, . . . , <

ℎ8 (G) = 0, 8 = 1, . . . , ?

variable G ∈ R=, domain D, optimal value ?★

Lagrangian: ! : R= × R< × R? → R, with dom ! = D × R< × R?,

! (G, _, a) = 50(G) +
<∑

8=1

_8 58 (G) +
?∑

8=1

a8ℎ8 (G)

• weighted sum of objective and constraint functions

• _8 is Lagrange multiplier associated with 58 (G) ≤ 0

• a8 is Lagrange multiplier associated with ℎ8 (G) = 0
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Lagrange dual function

Lagrange dual function: 6 : R< × R? → R,

6(_, a) = inf
G∈D

! (G, _, a)

= inf
G∈D

( 50(G) +
<∑

8=1

_8 58 (G) +
?∑

8=1

a8ℎ8 (G))

• a concave function of _, a

• can be −∞ for some _, a; this defines the domain of 6

Lower bound property: if _ � 0, then 6(_, a) ≤ ?★

proof: if G is feasible and _ � 0, then

50(G) ≥ ! (G, _, a) ≥ inf
G̃∈D

! (G̃, _, a) = 6(_, a)

minimizing over all feasible G gives ?★ ≥ 6(_, a)
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Least norm solution of linear equations

minimize G)G

subject to �G = 1

• Lagrangian is

! (G, a) = G)G + a) (�G − 1)

• to minimize ! over G, set gradient equal to zero:

∇G! (G, a) = 2G + �)a = 0 =⇒ G = −1
2
�)a

• plug in in ! to obtain 6:

6(a) = ! (−1
2
�)a, a) = −1

4
a)��)a − 1)a

a concave function of a

Lower bound property: ?★ ≥ −1
4
a)��)a − 1)a for all a
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Standard form LP

minimize 2)G

subject to �G = 1

G � 0

• Lagrangian is

! (G, _, a) = 2)G + a) (�G − 1) − _)G

= −1)a + (2 + �)a − _))G

• ! is affine in G, hence

6(_, a) = inf
G
! (G, _, a) =

{
−1)a �)a − _ + 2 = 0

−∞ otherwise

6 is linear on affine domain dom 6 = {(_, a) | �)a − _ + 2 = 0}, hence concave

Lower bound property: ?★ ≥ −1)a if �)a + 2 � 0
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Equality constrained norm minimization

minimize ‖G‖

subject to �G = 1

• ‖ · ‖ is any norm; dual norm is defined as

‖{‖∗ = sup
‖D‖≤1

D){

• define Lagrangian ! (G, a) = ‖G‖ + a) (1 − �G)

• dual function (proof on next page):

6(a) = inf
G
(‖G‖ − a)�G + 1)a)

=

{
1)a ‖�)a‖∗ ≤ 1

−∞ otherwise

Lower bound property: ?★ ≥ 1)a if ‖�)a‖∗ ≤ 1

Duality 5.6



proof of expression for 6: follows from

inf
G
(‖G‖ − H)G) =

{
0 ‖H‖∗ ≤ 1

−∞ otherwise
(1)

Case ‖H‖∗ ≤ 1:

inf
G
(‖G‖ − H)G) = 0

• H)G ≤ ‖G‖‖H‖∗ ≤ ‖G‖ for all G (by definition of dual norm)

• H)G = ‖G‖ for G = 0

Case ‖H‖∗ > 1:

inf
G
(‖G‖ − H)G) = −∞

• there exists an G̃ with ‖G̃‖ ≤ 1 and H) G̃ = ‖H‖∗ > 1; hence ‖G̃‖ − ‖H‖∗ < 0

• consider G = CG̃ with C > 0:

‖G‖ − H)G = C (‖G̃‖ − ‖H‖∗) → −∞ as C → ∞
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Two-way partitioning

minimize G),G

subject to G2
8
= 1, 8 = 1, . . . , =

• a nonconvex problem; feasible set {−1, 1}= contains 2= discrete points

• interpretation: partition {1, . . . , =} in two sets, G8 ∈ {−1, 1} is assignment for 8

• cost function is

G),G =

=∑

8=1

,88 + 2
∑

8> 9

,8 9G8G 9

= 1),1 + 2
∑

8> 9

,8 9 (G8G 9 − 1)

cost of assigning 8, 9 to different sets is −4,8 9
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Lagrange dual of two-way partitioning problem

Dual function

6(a) = inf
G
(G),G +

=∑

8=1

a8 (G
2
8 − 1))

= inf
G
G) (, + diag(a))G − 1)a

=

{
−1)a , + diag(a) � 0

−∞ otherwise

Lower bound property

?★ ≥ −1)a if , + diag(a) � 0

example: a = −_min(,)1 proves bound ?★ ≥ =_min(,)
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Lagrange dual and conjugate function

minimize 50(G)

subject to �G � 1

�G = 3

Dual function

6(_, a) = inf
G∈dom 50

( 50(G) + (�)_ + �)a))G − 1)_ − 3)a)

= − 5 ∗0 (−�
)_ − �)a) − 1)_ − 3)a

• recall definition of conjugate 5 ∗(H) = supG (H
)G − 5 (G))

• simplifies derivation of dual if conjugate of 50 is known

Example: entropy maximization

50(G) =
=∑

8=1

G8 log G8, 5 ∗0 (H) =
=∑

8=1

4H8−1
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The dual problem

Lagrange dual problem
maximize 6(_, a)

subject to _ � 0

• finds best lower bound on ?★, obtained from Lagrange dual function

• a convex optimization problem; optimal value denoted by 3★

• often simplified by making implicit constraint (_, a) ∈ dom 6 explicit

• _, a are dual feasible if _ � 0, (_, a) ∈ dom 6

• 3★ = −∞ if problem is infeasible; 3★ = +∞ if unbounded above

Example: standard form LP and its dual (page 5.5)

minimize 2)G

subject to �G = 1

G � 0

maximize −1)a

subject to �)a + 2 � 0
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Weak and strong duality

Weak duality: 3★ ≤ ?★

• always holds (for convex and nonconvex problems)

• can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize −1)a

subject to , + diag(a) � 0

gives a lower bound for the two-way partitioning problem on page 5.8

Strong duality: 3★ = ?★

• does not hold in general

• (usually) holds for convex problems

• sufficient conditions that guarantee strong duality in convex problems are called

constraint qualifications
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Slater’s constraint qualification

Convex problem

minimize 50(G)

subject to 58 (G) ≤ 0, 8 = 1, . . . , <

�G = 1

Slater’s constraint qualification: the problem is strictly feasible, i.e.,

∃G ∈ intD : 58 (G) < 0, 8 = 1, . . . , <, �G = 1

• guarantees strong duality: ?★ = 3★

• also guarantees that the dual optimum is attained if ?★ > −∞

• can be sharpened: e.g., can replace intD with relintD (interior relative to

affine hull); linear inequalities do not need to hold with strict inequality, . . .

• there exist many other types of constraint qualifications
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Inequality form LP

Primal problem
minimize 2)G

subject to �G � 1

Dual function

6(_) = inf
G
((2 + �)_))G − 1)_) =

{
−1)_ �)_ + 2 = 0

−∞ otherwise

Dual problem
maximize −1)_

subject to �)_ + 2 = 0

_ � 0

• from Slater’s condition: ?★ = 3★ if �G̃ ≺ 1 for some G̃

• in fact, ?★ = 3★ except when primal and dual are infeasible (?★ = ∞, 3★ = −∞)
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Quadratic program

Primal problem (assume % ∈ S=
++)

minimize G)%G

subject to �G � 1

Dual function

6(_) = inf
G
(G)%G + _) (�G − 1)) = −

1

4
_)�%−1�)_ − 1)_

Dual problem
maximize −1

4
_)�%−1�)_ − 1)_

subject to _ � 0

• from Slater’s condition: ?★ = 3★ if �G̃ ≺ 1 for some G̃

• in fact, ?★ = 3★ always
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A nonconvex problem with strong duality

minimize G)�G + 21)G

subject to G)G ≤ 1

we allow � � 0, hence problem may be nonconvex

Dual function (derivation on next page)

6(_) = inf
G
(G) (� + _�)G + 21)G − _)

=

{
−1) (� + _�)†1 − _ � + _� � 0 and 1 ∈ R(� + _�)

−∞ otherwise

Dual problem and equivalent SDP:

maximize −1) (� + _�)†1 − _

subject to � + _� � 0

1 ∈ R(� + _�)

_ ≥ 0

maximize −C − _

subject to

[
� + _� 1

1) C

]
� 0

_ ≥ 0

strong duality holds although primal problem is not convex (not easy to show)
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proof of expression for 6: unconstrained minimum of 5 (G) = G)%G + 2@)G + A is

inf
G

5 (G) =





−@)%−1@ + A % ≻ 0

−@)%†@ + A % ⊁ 0, % � 0, @ ∈ R(%)

−∞ % � 0, @ ∉ R(%)

−∞ % � 0

• if % � 0, function 5 is unbounded below: choose H with H)%H < 0 and G = CH

5 (G) = C2(H)%H) + 2C (@) H) + A → −∞ if C → ±∞

• if % � 0, decompose @ as @ = %D + { with D = %†@ and { = (� − %%†)@

%D is projection of @ on R(%), { is projection on nullspace of %

• if { ≠ 0 (i.e., @ ∉ R(%)), the function 5 is unbounded below: for G = −C{,

5 (G) = C2({)%{) − 2C (@){) + A = −2C‖{‖2 + A → −∞ if C → ∞

• if { = 0, G★ = −D is optimal since 5 is convex and ∇ 5 (G★) = 2%G★ + 2@ = 0;

5 (G★) = −@)%†@ + A
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Geometric interpretation of duality

for simplicity, consider problem with one constraint 51(G) ≤ 0

Interpretation of dual function

6(_) = inf
(D,C)∈G

(C + _D), where G = {( 51(G), 50(G)) | G ∈ D}

G

?★

6(_)
_D + C = 6(_)

C

D

G

?★

3★

C

D

• _D + C = 6(_) is (non-vertical) supporting hyperplane to G

• hyperplane intersects C-axis at C = 6(_)
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Geometric interpretation of duality

Epigraph variation: same interpretation if G is replaced with

A = {(D, C) | 51(G) ≤ D, 50(G) ≤ C for some G ∈ D}

A

?★

6(_)

_D + C = 6(_)

C

D

Strong duality

• holds if there is a non-vertical supporting hyperplane to A at (0, ?★)

• for convex problem, A is convex, hence has supporting hyperplane at (0, ?★)

• Slater’s condition: if there exist (D̃, C̃) ∈ A with D̃ < 0, then supporting

hyperplanes at (0, ?★) must be non-vertical
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Optimality conditions

if strong duality holds, G is primal optimal, and (_, a) is dual optimal, then:

1. 58 (G) ≤ 0 for 8 = 1, . . . , < and ℎ8 (G) = 0 for 8 = 1, . . . , ?

2. _ � 0

3. 50(G) = 6(_, a)

conversely, these three conditions imply optimality of G, (_, a), and strong duality

next, we replace condition 3 with two equivalent conditions that are easier to use
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Complementary slackness

assume G satisfies the primal constraints and _ � 0

6(_, a) = inf
G̃∈D

( 50(G̃) +
<∑

8=1

_8 58 (G̃) +
?∑

8=1

a8ℎ8 (G̃))

≤ 50(G) +
<∑

8=1

_8 58 (G) +
?∑

8=1

a8ℎ8 (G)

≤ 50(G)

equality 50(G) = 6(_, a) holds if and only if the two inequalities hold with equality:

• first inequality: G minimizes ! (G̃, _, a) over G̃ ∈ D

• 2nd inequality: _8 58 (G) = 0 for 8 = 1, . . . , <, i.e.,

_8 > 0 =⇒ 58 (G) = 0, 58 (G) < 0 =⇒ _8 = 0

this is known as complementary slackness
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Optimality conditions

if strong duality holds, G is primal optimal, and (_, a) is dual optimal, then:

1. 58 (G) ≤ 0 for 8 = 1, . . . , < and ℎ8 (G) = 0 for 8 = 1, . . . , ?

2. _ � 0

3. _8 58 (G) = 0 for 8 = 1, . . . , <

4. G is a minimizer of ! (·, _, a)

conversely, these four conditions imply optimality of G, (_, a), and strong duality

if problem is convex and the functions 58, ℎ8 are differentiable, #4 can written as

4’. the gradient of the Lagrangian with respect to G vanishes:

∇ 50(G) +
<∑

8=1

_8∇ 58 (G) +
?∑

8=1

a8∇ℎ8 (G) = 0

conditions 1,2,3,4’ are known as Karush–Kuhn–Tucker (KKT) conditions
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Convex problem with Slater constraint qualification

recall the two implications of Slater’s condition for a convex problem

• strong duality: ?★ = 3★

• if optimal value is finite, dual optimum is attained: there exist dual optimal _, a

hence, if problem is convex and Slater’s constraint qualification holds:

• G is optimal if and only if there exist _, a such that 1–4 on p. 5.22 are satisfied

• if functions are differentiable, condition 4 can be replaced with 4’
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Example: water-filling

minimize −
=∑
8=1

log(G8 + U8)

subject to G � 0

1)G = 1

• we assume that U8 > 0

• Lagrangian is ! (G̃, _, a) = −
∑

8 log(G̃8 + U8) − _) G̃ + a(1) G̃ − 1)

Optimality conditions: G is optimal iff there exist _ ∈ R=, a ∈ R such that

1. G � 0, 1)G = 1

2. _ � 0

3. _8G8 = 0 for 8 = 1, . . . , =

4. G minimizes Lagrangian:

1

G8 + U8
+ _8 = a, 8 = 1, . . . , =
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Example: water-filling

Solution

• if a ≤ 1/U8: _8 = 0 and G8 = 1/a − U8

• if a ≥ 1/U8: G8 = 0 and _8 = a − 1/U8

• two cases may be combined as

G8 = max{0,
1

a
− U8}, _8 = max{0, a −

1

U8
}

• determine a from condition 1)G = 1:

=∑

8=1

max{0,
1

a
− U8} = 1

Interpretation

• = patches; level of patch 8 is at height U8

• flood area with unit amount of water

• resulting level is 1/a★

8

1/a★
G8

U8
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Example: projection on 1-norm ball

minimize 1
2
‖G − 0‖2

2

subject to ‖G‖1 ≤ 1

Optimality conditions

1. ‖G‖1 ≤ 1

2. _ ≥ 0

3. _(1 − ‖G‖1) = 0

4. G minimizes Lagrangian

! (G̃, _) =
1
2
‖G̃ − 0‖2

2 + _(‖G̃‖1 − 1)

=

=∑

:=1

(1
2
(G̃: − 0:)

2 + _ |G̃: |) − _
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Example: projection on 1-norm ball

Solution

• optimization problem in condition 4 is separable; solution for _ ≥ 0 is

G: =





0: − _ 0: ≥ _

0 −_ ≤ 0: ≤ _

0: + _ 0: ≤ −_

• therefore ‖G‖1 =
∑

: |G: | =
∑

: max {0, |0: | − _}

• if ‖0‖1 ≤ 1, solution is _ = 0, G = 0

• otherwise, solve piecewise-linear equation in _:

=∑

:=1

max {0, |0: | − _} = 1
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Perturbation and sensitivity analysis

(Unperturbed) optimization problem and its dual

minimize 50(G)

subject to 58 (G) ≤ 0, 8 = 1, . . . , <

ℎ8 (G) = 0, 8 = 1, . . . , ?

maximize 6(_, a)

subject to _ � 0

Perturbed problem and its dual

minimize 50(G)

subject to 58 (G) ≤ D8, 8 = 1, . . . , <

ℎ8 (G) = {8, 8 = 1, . . . , ?

maximize 6(_, a) − D)_ − {)a

subject to _ � 0

• G is primal variable; D, { are parameters

• ?★(D, {) is optimal value as a function of D, {

• we are interested in information about ?★(D, {), obtained from the solution of

the unperturbed problem and its dual
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Global sensitivity result

• assume strong duality holds for unperturbed problem, and that (_★, a★) is dual

optimal for unperturbed problem

• apply weak duality to perturbed problem: for all D, {,

?★(D, {) ≥ 6(_★, a★) − D)_★ − {)a★

= ?★(0, 0) − D)_★ − {)a★

Sensitivity interpretation

• if _★
8

is large: ?★ increases greatly if we tighten constraint 8 (D8 < 0)

• if _★
8

is small: ?★ does not decrease much if we loosen constraint 8 (D8 > 0)

• if a★
8

is large and positive: ?★ increases greatly if we take {8 < 0;

if a★
8

is large and negative: ?★ increases greatly if we take {8 > 0

• if a★
8

is small and positive: ?★ does not decrease much if we take {8 > 0;

if a★
8

is small and negative: ?★ does not decrease much if we take {8 < 0
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Local sensitivity result

if (in addition) ?★(D, {) is differentiable at (0, 0), then

_★8 = −
m?★(0, 0)

mD8
, a★8 = −

m?★(0, 0)

m{8

proof (for _★
8
): from global sensitivity result,

m?★(0, 0)

mD8
= lim

Cց0

?★(C48, 0) − ?★(0, 0)

C
≥ −_★8

m?★(0, 0)

mD8
= lim

Cր0

?★(C48, 0) − ?★(0, 0)

C
≤ −_★8

hence, equality

?★(D) for a problem with

one (inequality) constraint: D
?★(D)

?★(0) − _★D

D = 0
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Duality and problem reformulations

• equivalent formulations of a problem can lead to very different duals

• reformulating the primal problem can be useful when the dual is difficult to

derive, or uninteresting

Common reformulations

• introduce new variables and equality constraints

• make explicit constraints implicit or vice versa

• transform objective or constraint functions

e.g., replace 50(G) by q( 50(G)) with q convex, increasing
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Introducing new variables and equality constraints

minimize 50(�G + 1)

• dual function is constant: 6 = infG ! (G) = infG 50(�G + 1) = ?★

• we have strong duality, but dual is quite useless

Reformulated problem and its dual

minimize 50(H)

subject to �G + 1 − H = 0

maximize 1)a − 5 ∗
0
(a)

subject to �)a = 0

dual function follows from

6(a) = inf
G,H

( 50(H) − a) H + a)�G + 1)a)

=

{
− 5 ∗

0
(a) + 1)a �)a = 0

−∞ otherwise
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Example: norm approximation

minimize ‖�G − 1‖ −→ minimize ‖H‖

subject to H = �G − 1

Dual function

6(a) = inf
G,H

(‖H‖ + a) H − a)�G + 1)a)

=

{
1)a + infH (‖H‖ + a) H) �)a = 0

−∞ otherwise

=

{
1)a �)a = 0, ‖a‖∗ ≤ 1

−∞ otherwise

(last step follows from (1))

Dual of norm approximation problem

maximize 1)a

subject to �)a = 0

‖a‖∗ ≤ 1
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Implicit constraints

Linear program with box constraints: primal and dual problem

minimize 2)G

subject to �G = 1

−1 � G � 1

maximize −1)a − 1)_1 − 1)_2

subject to 2 + �)a + _1 − _2 = 0

_1 � 0, _2 � 0

Reformulation with box constraints made implicit

minimize 50(G) =

{
2)G −1 � G � 1

∞ otherwise

subject to �G = 1

• dual function

6(a) = inf
−1�G�1

(2)G + a) (�G − 1)) = −1)a − ‖�)a + 2‖1

• dual problem

maximize −1)a − ‖�)a + 2‖1
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Semidefinite program

minimize 2)G

subject to G1�1 + · · · + G=�= � �

matrices �1, . . . , �=, � are symmetric < × < matrices

Lagrangian and dual function

• we associate with the constraint a Lagrange multiplier / ∈ S<

• define Lagrangian as

! (G, /) = 2)G + tr (/ (G1�1 + · · · + G=�= − �))

=

=∑

8=1

(tr(�8/) + 28)G8 − tr(�/)

• dual function

6(/) = inf
G
! (G, /) =

{
− tr(�/) tr(�8/) + 28 = 0, 8 = 1, . . . , =

−∞ otherwise
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Dual semidefinite program

maximize − tr(�/)

subject to tr(�8/) + 28 = 0, 8 = 1, . . . , =

/ � 0

Weak duality: ?★ ≥ 3★ always

proof: for primal feasible G, dual feasible / ,

2)G = −
=∑

8=1

tr(�8/)G8

= − tr(�/) + tr(/ (� −
=∑

8=1

G8�8))

≥ − tr(�/)

inequality follows from tr(-/) ≥ 0 for - � 0, / � 0

Strong duality: ?★ = 3★ if primal SDP or dual SDP is strictly feasible
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Complementary slackness

(P) minimize 2)G

subject to
=∑
8=1

G8�8 � �

(D) maximize − tr(�/)

subject to tr(�8/) + 28 = 0, 8 = 1, . . . , =

/ � 0

the primal and dual objective values at feasible G, / are equal if

0 = 2)G + tr(�/)

= −
=∑

8=1

G8 tr(�8/) + tr(�/)

= tr(-/) where - = � − G1�1 − · · · − G=�=

for - � 0, / � 0, each of the following statements is equivalent to tr(-/) = 0:

• /- = 0: columns of - are in the nullspace of /

• -/ = 0: columns of / are in the nullspace of -

(see next page)

Duality 5.37



proof: factorize - , / as

- = **) , / = ++)

• columns of * span the range of - , columns of + span the range of /

• tr(-/) can be expressed as

tr(-/) = tr(**)++)) = tr((*)+) (+)*)) = ‖*)+ ‖2
�

• hence, tr(-/) = 0 if and only if

*)+ = 0

the range of - and the range of / are orthogonal subspaces
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Example: two-way partitioning

recall the two-way partitioning problem and its dual (page 5.8)

(P) minimize G),G

subject to G2
8
= 1, 8 = 1, . . . , =

(D) maximize −1)a

subject to , + diag(a) � 0

• by weak duality, ?★ ≥ 3★

• the dual problem (D) is an SDP; we derive the dual SDP and compare it with (P)

• to derive the dual of (D), we first write (D) as a minimization problem:

minimize 1) H

subject to , + diag(H) � 0
(2)

the optimal value of (2) is −3★
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Example: two-way partitioning

Lagrangian

! (H, /) = 1) H − tr(/ (, + diag(H)))

= − tr(,/) +
=∑

8=1

H8 (1 − /88)

Dual function

6(/) = inf
H
! (H, /) =

{
− tr(,/) /88 = 1, 8 = 1, . . . , =

−∞ otherwise

Dual problem: the dual of (2) is

maximize − tr(,/)

subject to /88 = 1, 8 = 1, . . . , =

/ � 0

by strong duality with (2), optimal value is equal to −3★
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Example: two-way partitioning

replace (D) on page 5.39 by its dual

(P) minimize G),G

subject to G2
8
= 1, 8 = 1, . . . , =

(P’) minimize tr(,/)

subject to diag(/) = 1

/ � 0

optimal value of (P’) is equal to optimal value 3★ of (D)

Interpretation as relaxation

• reformulate (P) by introducing a new variable / = GG) :

minimize tr(,/)

subject to diag(/) = 1

/ = GG)

• replace the constraint / = GG) with a weaker convex constraint / � 0
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Theorems of alternative

theorems of alternative make statements about two related feasibility problems

• the two problems are weak alternatives if at most one is feasible

• the two systems are strong alternatives if exactly one is feasible

Examples of strong alternatives

• linear equations:

problem 1: �G = 1

problem 2: �) H = 0, 1) H = 1

• Farkas lemma:

problem 1: �G = 1, G � 0

problem 2: �) H � 0, 1) H = 1
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Nonlinear inequalities

Problem 1 (variables G ∈ R=)

58 (G) < 0, 8 = 1, . . . , < (3)

this includes an implicit constraint G ∈ D = dom 51 ∩ · · · ∩ dom 5<

Problem 2 (variables _ ∈ R<)

0 ≠ _ � 0, 6(_) ≥ 0 (4)

where

6(_) = inf
G̃∈D

<∑

8=1

_8 58 (G̃)

• problem 2 is a convex feasibility problem (6 is concave), even if problem 1 is not

• 1 and 2 are weak alternatives

• 1 and 2 are strong alternatives if 51, . . . , 5< are convex (and intD is nonempty)

proof on next page
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Proof

(weak alternatives) if G satisfies (3) and _ satisfies (4), there is a contradiction

0 ≤ 6(_) ≤
<∑

8=1

_8 58 (G) < 0

(strong alternatives) consider the pair of primal and dual problems

(P) minimize C

subject to 58 (G) ≤ C, 8 = 1, . . . , <

(D) maximize 6(_)

subject to _ � 0

1)_ = 1

• (P) is convex if the functions 58 are convex

• Slater’s condition holds for (P): take any G ∈ intD and C > max8 58 (G)

• hence strong duality holds (?★ = 3★), and dual optimum is attained if 3★ is finite

• (3) is infeasible if and only if ?★ ≥ 0

• hence, (3) is infeasible if and only if there exists a _ that satisfies (4)
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Theorem of alternatives for linear matrix inequality

Problem 1 (variables G ∈ R=)
=∑

8=1

G8�8 ≺ �

�1, . . . , �=, � are symmetric < × < matrices

Problem 2 (variable / ∈ R<)

tr(�8/) = 0, 8 = 1, . . . , =, tr(�/) ≤ 0, 0 ≠ / � 0

• 1 and 2 are strong alternatives

• proof follows from strong duality between the SDPs

minimize C

subject to
=∑
8=1

G8�8 � � + C �

maximize − tr(�/)

subject to tr(�8/) = 0, 8 = 1, . . . , =

tr / = 1

/ � 0
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