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10. Equality constrained minimization

• equality constrained minimization

• eliminating equality constraints

• Newton’s method with equality constraints

• infeasible start Newton method

• implementation
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Equality constrained minimization

minimize 5 (G)

subject to �G = 1

• 5 convex, twice continuously differentiable; hence, dom 5 is an open set

• � ∈ R?×= with rank � = ?

• we assume the optimal value ?★ is finite and attained

Optimality conditions: G is optimal if and only if

G ∈ dom 5 , �G = 1, ∇ 5 (G) + �)a = 0 (1)

for some a ∈ R?
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Equality constrained quadratic minimization

minimize 1
2G

)%G + @)G + A

subject to �G = 1

where % ∈ S=
+ and rank(�) = ?

• optimality conditions from previous page:

%G + @ + �)a = 0, �G = 1

• this is a set of = + ? linear equations in = + ? variables

[
% �)

� 0

] [
G

a

]
=

[
−@

1

]

coefficient matrix is called Karush–Kuhn–Tucker (KKT) matrix
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Nonsingular KKT matrix

each of the following three conditions is equivalent to nonsingularity of

[
% �)

� 0

]

(assuming % � 0 and rank(�) = ?)

1. the first block column has full column rank

rank(

[
%

�

]
) = = (2)

2. % is positive definite on the nullspace of �

�G = 0, G ≠ 0 =⇒ G)%G > 0 (3)

3. the matrix % + �)� is positive definite
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Exercise

show that the three conditions are equivalent to nonsingularity of the KKT matrix

Solution (condition 1)

• clearly, (2) is necessary (first = columns of KKT matrix must be independent)

• to show it is sufficient, we assume that (2) holds and show that

%G + �) H = 0, �G = 0 (4)

holds only if G = 0, H = 0

• inner product of G and first equation of (4) gives G)%G = G) (%G + �) H) = 0

• G)%G = 0 if and only if %G = 0 (for positive semidefinite %)

• hence (4) is equivalent to %G = 0, �G = 0, �) H = 0

• by the rank property (2) and rank(�) = ?, this holds only if G = 0, H = 0
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Exercise

Condition 2

• (3) means the same as

G)%G = 0, �G = 0 =⇒ G = 0

• for % � 0, can replace G)%G = 0 with %G = 0, so (3) is the same as (2)

Condition 3

• the matrix % + �)� is positive definite if

G) (% + �)�)G = G)%G + ‖�G‖2
2 > 0 for all G ≠ 0

• for % � 0, this is the same as condition 2 (G)%G > 0 for nonzero G with �G = 0)
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Eliminating equality constraints

minimize 5 (G)

subject to �G = 1

−→ minimize 5 (�I + Ĝ)

• the affine set defined by �G = 1 is represented as translate of range of �

{G | �G = 1} = {�I + Ĝ | I ∈ R=−?}

• Ĝ is (any) particular solution of the linear equation �G = 1

• � ∈ R=×(=−?) is a full-rank matrix with range equal to nullspace of �

• the reformulated problem is unconstrained with variable I ∈ R=−?

• from solution I★, solution of optimality conditions (1) is

G★ = �I★ + Ĝ, a★ = −(��))−1�∇ 5 (G★)

• elimination step can be expensive, obscure structure in � (e.g., sparsity)
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Newton step

we extend the definition of Newton step (p. 9.18) to equality-constrained problems

• assume G is feasible (G ∈ dom 5 and �G = 1)

• define Newton step ΔGnt at G as the solution { of

[
∇2 5 (G) �)

� 0

] [
{

|

]
=

[
−∇ 5 (G)

0

]

• G + ΔGnt solves problem if 5 is replaced with 2nd order approximation 5̂ at G

minimize (over {) 5̂ (G + {) = 5 (G) + ∇ 5 (G)){ + (1/2){)∇2 5 (G){

subject to �(G + {) = 1

• G + ΔGnt solves optimality conditions (1), linearized at G:

�(G + {) = 1, ∇ 5 (G + {) + �)| ≈ ∇ 5 (G) + ∇2 5 (G){ + �)| = 0
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Newton decrement

for the equality-constrained problem, we define the Newton decrement as

_(G) = (−∇ 5 (G))ΔGnt)
1/2

= (ΔG)nt∇
2 5 (G)ΔGnt)

1/2

• _(G)2 is directional derivative of 5 at G in Newton direction ΔGnt:

3

3C
5 (G + CΔGnt)

����
C=0

= −_(G)2

• _(G) is norm of Newton step in quadratic Hessian norm

• _(G) gives estimate of 5 (G) − ?★, estimated using quadratic approximation 5̂ :

5 (G) − inf
�H=1

5̂ (H) = 1
2_(G)

2

• in general,

_(G) ≠ (∇ 5 (G))∇2 5 (G)−1∇ 5 (G))1/2
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Newton’s method with equality constraints

given: a starting point G ∈ dom 5 with �G = 1, tolerance n > 0

repeat

1. Newton step: compute Newton step ΔGnt and Newton decrement _(G)

2. stopping criterion: quit if _2/2 ≤ n

3. line search: choose step size C by backtracking line search

4. update: G := G + CΔGnt

• a feasible descent method: iterates G (:) are feasible and 5 (G (:+1)) < 5 (G (:))

• affine-invariant
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Newton’s method and elimination

Newton’s method for unconstrained optimization (after eliminating �G = 1)

minimize 6(I) = 5 (�I + Ĝ)

suppose Newton method for 6, started at I(0), generates iterates I(:)

Newton’s method with equality constraints (method on page 10.10)

when started at G (0) = �I(0) + Ĝ, iterates are

G (:+1)
= �I(:) + Ĝ

hence, we don’t need separate convergence analysis for the method on p. 10.10
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Newton step at infeasible points

2nd interpretation of page 10.8 extends to infeasible G (i.e., with �G ≠ 1)

linearizing optimality conditions at infeasible G (with G ∈ dom 5 ) gives

[
∇2 5 (G) �)

� 0

] [
ΔGnt

|

]
= −

[
∇ 5 (G)

�G − 1

]
(5)

Interpretation

• optimality condition (1) is nonlinear equation A (G, a) = 0, where

A (G, a) =

[
∇ 5 (G) + �)a

�G − 1

]

• linearizing A (H) = 0 gives

[
∇2 5 (G) �)

� 0

] [
ΔGnt

Δant

]
= −

[
∇ 5 (G) + �)a

�G − 1

]

this is the same as (5) with | = a + Δant
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Infeasible start Newton method

given: a starting point G ∈ dom 5 , a, tolerance n > 0, U ∈ (0, 1/2), V ∈ (0, 1)

repeat

1. Newton step: compute primal and dual Newton steps ΔGnt, Δant

2. backtracking line search:

C := 1

while ‖A (G + CΔGnt, a + CΔant)‖2 > (1 − UC)‖A (G, a)‖2

C := VC

3. update: G := G + CΔGnt, a := a + CΔant

until �G = 1 and ‖A (G, a)‖2 ≤ n

• not a descent method: 5 (G (:+1)) > 5 (G (:)) is possible

• therefore we use norm of A as merit function in line search

• directional derivative of norm of A, at H = (G, a), in direction ΔH = (ΔGnt,Δant) is

3

3C
‖A (H + CΔH)‖2

����
C=0

= −‖A (H)‖2
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Solving KKT systems

[
� �)

� 0

] [
{

|

]
= −

[
6

ℎ

]

Solution methods

• use matrix factorization for symmetric indefinite matrices (LDLT factorization)

• if � is positive definite, solve by block elimination: two equations

��−1�)| = ℎ − ��−16, �{ = −(6 + �)|)

• if � is not positive definite, first write KKT system as

[
� + �)&� �)

� 0

] [
{

|

]
= −

[
6 + �)&ℎ

ℎ

]

with & � 0 chosen so that � + �)&� ≻ 0; then apply block elimination
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Equality constrained analytic centering

Primal and dual problems

minimize −
=∑

8=1

log G8

subject to �G = 1

maximize −1)a +
=∑

8=1

log(�)a)8 + =

Algorithms

• we compare three versions of Newton’s method

• � ∈ R100×500

• starting points are different for the three methods

Equality constrained minimization 10.15



Equality constrained analytic centering

1. Newton method with equality constraints (requires G (0) ≻ 0, �G (0) = 1)

:

5
(G

(:
) )
−
?
★

0 5 10 15 20
10−10

10−5
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105

2. (unconstrained) Newton method applied to dual problem (requires �)a(0) ≻ 0)

:

?
★
−
6
(a

(:
) )
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Equality constrained analytic centering

3. infeasible start Newton method (requires G (0) ≻ 0)

:

‖A
(G

(:
) ,
a
(:
) )
‖ 2
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100
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Equality constrained analytic centering

complexity per iteration of the three methods is identical

1. use block elimination to solve KKT system

[
diag(G)−2 �)

� 0

] [
ΔG

|

]
=

[
diag(G)−11

0

]

reduces to solving � diag(G)2�)| = 1

2. solve Newton system � diag(�)a)−2�)Δa = −1 + � diag(�)a)−11

3. use block elimination to solve KKT system

[
diag(G)−2 �)

� 0

] [
ΔG

Δa

]
=

[
diag(G)−11

�G − 1

]

reduces to solving � diag(G)2�)| = 2�G − 1

conclusion: in each case, solve ���)| = ℎ with � positive diagonal
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Network flow optimization

minimize
=∑
8=1

q8 (G8)

subject to �G = 1

• directed graph with = arcs, ? + 1 nodes

• G8 is flow through arc 8; q8 is cost flow function for arc 8 (with q′′
8
(G) > 0)

• node-incidence matrix �̃ ∈ R(?+1)×= defined as

�̃8 9 =




1 arc 9 leaves node 8

−1 arc 9 enters node 8

0 otherwise

reduced node-incidence matrix � ∈ R?×= is �̃ with last row removed

• 1 ∈ R? is (reduced) source vector

• rank � = ? if graph is connected
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KKT system for network flow problem

[
� �)

� 0

] [
{

|

]
= −

[
6

ℎ

]

• � = diag(q′′
1
(G1), . . . , q

′′
= (G=)), positive diagonal

• can be solved by block elimination:

��−1�)| = ℎ − ��−16, �{ = −(6 + �)|)

sparsity pattern of coefficient matrix ��−1�) is given by graph connectivity

(��−1�))8 9 ≠ 0 ⇐⇒ (��))8 9 ≠ 0

⇐⇒ nodes 8 and 9 are adjacent
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Analytic center of linear matrix inequality

minimize − log det -

subject to tr(�8-) = 18, 8 = 1, . . . , ?

• variable is - ∈ S=

• includes an implicit constraint - ≻ 0

Optimality conditions

- ≻ 0, −-−1 +
?∑

9=1

a 9�8 = 0, tr(�8-) = 18, 8 = 1, . . . , ?

Newton equation at feasible -

-−1
Δ--−1 +

?∑

9=1

| 9� 9 = -−1, tr(�8Δ-) = 0, 8 = 1, . . . , ?

• follows from linear approximation (- + Δ-)−1 ≈ -−1 − -−1Δ--−1

• a set of 1
2=(= + 1) + ? linear equations in 1

2=(= + 1) + ? variables Δ- , |
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Solution by block elimination

• eliminate Δ- from first equation:

Δ- = - −
?∑

9=1

| 9-� 9- (6)

• substitute expression for Δ- in second equation

?∑

9=1

tr(�8-� 9-)| 9 = 18, 8 = 1, . . . , ? (7)

this is a dense positive definite set of linear equations �| = 1 with

�8 9 = tr(�8-� 9-), 8, 9 = 1, . . . , ?

• first solve (7) by Cholesky factorization of �; then substitute | in (6) to get Δ-
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Complexity of block elimination method

the dominant terms in a flop count:

• Cholesky factorization - = !!) ((1/3)=3 flops)

• form ? products !)� 9! ((3/2)?=3 flops)

• compute ?(? + 1)/2 elements of �

�8 9 = tr((!)�8!) (!
)� 9!))

((1/2)?2=2 flops)

• solve (7) via Cholesky factorization ((1/3)?3 flops)

complexity is cubic in = (although KKT system has 1
2=(= + 1) + ? variables)
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