L. Vandenberghe ECE236B (Winter 2024)

10. Equality constrained minimization

e equality constrained minimization

e eliminating equality constraints

e Newton’s method with equality constraints
e infeasible start Newton method

e implementation
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Equality constrained minimization

minimize  f(x)
subjectto Ax =05

e f convex, twice continuously differentiable; hence, dom f is an open set
e AcRP"withrank A = p

e we assume the optimal value p* is finite and attained

Optimality conditions: x is optimal if and only if
xedomf, Ax=b, Vfx)+Alv=0 (1)

for some v € R?
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Equality constrained quadratic minimization

minimize  3xT Px + g x +r
subjectto Ax =b>
where P € S and rank(A) = p

e optimality conditions from previous page:

Px+q+ATV:O, Ax=0>b

e this is a set of n + p linear equations in n + p variables
p Al x| | —¢q
A 0 v | | b

coefficient matrix is called Karush—Kuhn—Tucker (KKT) matrix
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Nonsingular KKT matrix
each of the following three conditions is equivalent to nonsingularity of
L
A 0
(assuming P > 0 and rank(A) = p)

1. the first block column has full column rank

rank ( i ]) =n (2)

2. P is positive definite on the nullspace of A

Ax=0, x#0 =  xIPx>0 (3)

3. the matrix P + AT A is positive definite
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Exercise

show that the three conditions are equivalent to nonsingularity of the KKT matrix
Solution (condition 1)

e clearly, (2) is necessary (first n columns of KKT matrix must be independent)

e to show it is sufficient, we assume that (2) holds and show that
Px+Aly=0, Ax=0 (4)

holdsonlyifx =0,y =0
e inner product of x and first equation of (4) gives x’ Px = xT (Px + ATy) =0
e x! Px =0if and only if Px = 0 (for positive semidefinite P)
e hence (4) is equivalentto Px =0, Ax =0, ATy =0
e by the rank property (2) and rank(A) = p, this holds only if x =0, y =0
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Exercise

Condition 2

e (3) means the same as

xTPx:O, Ax =0 — x=0

e for P > 0, can replace x! Px = 0 with Px = 0, so (3) is the same as (2)

Condition 3

o the matrix P + AT A is positive definite if

x'(P+ATA)x =x"Px +||Ax||5> 0 forallx #0
e for P > 0, this is the same as condition 2 (x Px > 0 for nonzero x with Ax = 0)
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Eliminating equality constraints

minimize  f(x) — minimize f(Fz+X)
subjectto Ax =05

e the affine set defined by Ax = b is represented as translate of range of F

{x | Ax=b}={Fz+x|zeR"7?}

e X is (any) particular solution of the linear equation Ax = b
e F e R™("=P) js a full-rank matrix with range equal to nullspace of A
e the reformulated problem is unconstrained with variable z € R"™?

e from solution z*, solution of optimality conditions (1) is
*=F7+%, v =—(AAD)TTAV (Y
e climination step can be expensive, obscure structure in A (e.g., sparsity)
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Newton step

we extend the definition of Newton step (p. 9.18) to equality-constrained problems

e assume x is feasible (x € dom f and Ax = b)

e define Newton step Ax,; at x as the solution v of

[ Vif(x) AT ] [ v ]: [ =V f(x) ]
A 0 w 0

e X + Axy solves problem if f is replaced with 2nd order approximation f at x

minimize (over v) f(x +v) = f(x) + V()T v+ (1/2)0T V2 £ (x)v
subject to Ax+v)=0b

e x + Axy solves optimality conditions (1), linearized at x:

A(x+v) =b, Vix+o)+Alw~ Vi) + V2 F(x)o+ATw=0
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Newton decrement

for the equality-constrained problem, we define the Newton decrement as

Ax) = (=VF) Axg)'/?
= (AL V2 £ () Axn) 1/

e 1(x)? is directional derivative of f at x in Newton direction Axy:

©F e+ 1) =iy

e A(x) is norm of Newton step in quadratic Hessian norm

e 1(x) gives estimate of f(x) — p*, estimated using quadratic approximation £:

f(x) — inf f(y) = ta(x)?

Ay=b

e in general,

Ax) 2 (VFx)TV2F(x) IV ()2
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Newton’s method with equality constraints

given: a starting point x € dom f with Ax = b, tolerance € > 0

repeat
1. Newton step: compute Newton step Ax, and Newton decrement A(x)

2. stopping criterion: quit if 12/2 < €
3. line search: choose step size r by backtracking line search
4. update: x = x + tAxyy

e afeasible descent method: iterates x(K) are feasible and f(x**1) < £(x(%))

e affine-invariant
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Newton’s method and elimination

Newton’s method for unconstrained optimization (after eliminating Ax = b)
minimize g(z) = f(Fz+X)

suppose Newton method for g, started at z(?, generates iterates z(¥)

Newton’s method with equality constraints (method on page 10.10)

when started at x(0) = Fz(0 1 £, iterates are

xE+D = R g

hence, we don’t need separate convergence analysis for the method on p. 10.10
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Newton step at infeasible points

2nd interpretation of page 10.8 extends to infeasible x (i.e., with Ax # b)

linearizing optimality conditions at infeasible x (with x € dom f) gives

V2f(x) AT Axne | V£ (x)
A 0 w | Ax-b

Interpretation

e optimality condition (1) is nonlinear equation r(x, v) = 0, where

=] T

e linearizing r(y) = 0 gives

V2f(x) AT
A 0

Axne | VFx)+Aly
Avpe |~ Ax—Db

this is the same as (5) with w = v + Avy;
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Infeasible start Newton method

given: a starting point x € dom f, v, tolerance e > 0, @ € (0,1/2), B8 € (0,1)
repeat
1. Newton step: compute primal and dual Newton steps Axpt, Avye
2. backtracking line search:
t =1
while ||r(x + tAxpe, v + tAvne) |2 > (1 — at)||r(x, v)||2
t =t
3. update: x :==x +tAxp, Vv = v+ tAvy
until Ax = b and ||r(x, v)||» < €

e not a descent method: f(xk*D) > f(x(¥)) is possible
e therefore we use norm of r as merit function in line search

e directional derivative of norm of r, at y = (x, v), in direction Ay = (Axpt, Avnt) iS

d
= lr(y +tAy)ll,|  =-=llr()ll2
4 =0
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Solving KKT systems

Solution methods

e use matrix factorization for symmetric indefinite matrices (LDL' factorization)

e if H is positive definite, solve by block elimination: two equations

AH'ATw = h - AH_lg, Hv=—(g+Alw)

e if A is not positive definite, first write KKT system as

H+A'QgA AT || v |
A 0 w |~

g+ ATQh
h

with Q > 0 chosen so that H + ATQA > 0; then apply block elimination
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Equality constrained analytic centering

Primal and dual problems

n n

minimize - > logx; maximize —b'v+ > log(A"v); +n
i=1 i=1

subjectto Ax =5

Algorithms

e we compare three versions of Newton’s method

o A c R100x500

e starting points are different for the three methods
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Equality constrained analytic centering

1. Newton method with equality constraints (requires x(9 > 0, Ax(9) = p)
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Equality constrained analytic centering

3. infeasible start Newton method (requires x(©) > 0)
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Equality constrained analytic centering

complexity per iteration of the three methods is identical

1. use block elimination to solve KKT system

diag(x)~> AT Ax | | diag(x)~'1
A 0 w | 0

reduces to solving A diag(x)?ATw = b
2. solve Newton system A diag(A”v)2ATAy = —b + A diag(ATv)~'1

3. use block elimination to solve KKT system

diag(x)~% AT Ax | | diag(x) -1
A 0 Av | Ax = b
reduces to solving A diag(x)?ATw = 2Ax — b

conclusion: in each case, solve ADAw = h with D positive diagonal
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Network flow optimization

minimize 3. ¢i(x;)
i=1

subjectto Ax =5

e directed graph with n arcs, p + 1 nodes

e x; is flow through arc i; ¢; is cost flow function for arc i (with ¢’ (x) > 0)

e node-incidence matrix A € R(?*D*" defined as

1 arc j leaves node i
A;j; =4 —1 arcjentersnodei
0 otherwise

reduced node-incidence matrix A € RP*" is A with last row removed
e b € R? is (reduced) source vector

e rank A = p if graph is connected
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KKT system for network flow problem

FRSIFE

o H = diag(¢7(x1),...,¢;,(xn)), positive diagonal

e can be solved by block elimination:
AH ATy = h—AH_lg, Hv = —(g+ATw)
sparsity pattern of coefficient matrix AH ~1AT is given by graph connectivity

(AH'ATY;; 20 = (AAT);; 20

& nodesi and j are adjacent
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Analytic center of linear matrix inequality

minimize  —logdet X
subjectto tr(A;X)=b;, i=1,...,p

e variableis X € §"

e includes an implicit constraint X > 0

Optimality conditions

14
X>0, -X'+>\v;A4=0, w(AX)=b; i=1,...,p
j=1

Newton equation at feasible X

P
XT'AXx '+ Y wiAj =X, w(AAX)=0, i=1,...,p

j=1
e follows from linear approximation (X + AX)™! ~ X1 — x-1axx~!

e asetof yn(n+ 1) + p linear equations in 3n(n + 1) + p variables AX, w
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Solution by block elimination

e eliminate AX from first equation:

AX =X —

p
ijAjX (6)

j=1

e substitute expression for AX in second equation

p
Ztl‘(A,‘XAjX)wj =b;, i=1,...,p (7)
j=1

this is a dense positive definite set of linear equations Gw = b with

Gij = tI'(AiXAjX), i,j=1,...,p

e first solve (7) by Cholesky factorization of G; then substitute w in (6) to get AX
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Complexity of block elimination method

the dominant terms in a flop count:

e Cholesky factorization X = LLT ((1/3)n> flops)
e form p products LT AL ((3/2)pn’ flops)

e compute p(p + 1)/2 elements of G
Gi;j =tr((L"A;L)(L"A;L))

((1/2) p*n? flops)
e solve (7) via Cholesky factorization ((1/3)p> flops)

complexity is cubic in n (although KKT system has %n(n + 1) + p variables)
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