L. Vandenberghe ECE236B (Winter 2024)

10. Equality constrained minimization

- equality constrained minimization
- eliminating equality constraints
- Newton's method with equality constraints
- infeasible start Newton method
- implementation

Equality constrained minimization

minimize
$$f(x)$$

subject to $Ax = b$

- \bullet f convex, twice continuously differentiable; hence, dom f is an open set
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{rank} A = p$
- we assume the optimal value p^* is finite and attained

Optimality conditions: *x* is optimal if and only if

$$x \in \text{dom } f, \qquad Ax = b, \qquad \nabla f(x) + A^T v = 0$$
 (1)

for some $v \in \mathbf{R}^p$

Equality constrained quadratic minimization

minimize
$$\frac{1}{2}x^TPx + q^Tx + r$$

subject to $Ax = b$

where $P \in \mathbf{S}^n_+$ and $\mathbf{rank}(A) = p$

optimality conditions from previous page:

$$Px + q + A^T v = 0, \qquad Ax = b$$

• this is a set of n + p linear equations in n + p variables

$$\left[\begin{array}{cc} P & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} x \\ v \end{array}\right] = \left[\begin{array}{c} -q \\ b \end{array}\right]$$

coefficient matrix is called Karush-Kuhn-Tucker (KKT) matrix

Nonsingular KKT matrix

each of the following three conditions is equivalent to nonsingularity of

$$\left[\begin{array}{cc} P & A^T \\ A & 0 \end{array}\right]$$

(assuming $P \ge 0$ and rank(A) = p)

1. the first block column has full column rank

$$\mathbf{rank}(\begin{bmatrix} P \\ A \end{bmatrix}) = n \tag{2}$$

2. *P* is positive definite on the nullspace of *A*

$$Ax = 0, \quad x \neq 0 \qquad \Longrightarrow \qquad x^T P x > 0 \tag{3}$$

3. the matrix $P + A^T A$ is positive definite

Exercise

show that the three conditions are equivalent to nonsingularity of the KKT matrix

Solution (condition 1)

- clearly, (2) is necessary (first *n* columns of KKT matrix must be independent)
- to show it is sufficient, we assume that (2) holds and show that

$$Px + A^T y = 0, \qquad Ax = 0 (4)$$

holds only if x = 0, y = 0

- inner product of x and first equation of (4) gives $x^T P x = x^T (P x + A^T y) = 0$
- $x^T P x = 0$ if and only if P x = 0 (for positive semidefinite P)
- hence (4) is equivalent to Px = 0, Ax = 0, $A^Ty = 0$
- by the rank property (2) and rank(A) = p, this holds only if x = 0, y = 0

Exercise

Condition 2

• (3) means the same as

$$x^T P x = 0, \quad A x = 0 \implies x = 0$$

• for $P \ge 0$, can replace $x^T P x = 0$ with P x = 0, so (3) is the same as (2)

Condition 3

• the matrix $P + A^T A$ is positive definite if

$$x^{T}(P + A^{T}A)x = x^{T}Px + ||Ax||_{2}^{2} > 0$$
 for all $x \neq 0$

• for $P \ge 0$, this is the same as condition 2 ($x^T P x > 0$ for nonzero x with Ax = 0)

Eliminating equality constraints

minimize
$$f(x) \longrightarrow \text{minimize } f(Fz + \hat{x})$$

subject to $Ax = b$

• the affine set defined by Ax = b is represented as translate of range of F

$$\{x \mid Ax = b\} = \{Fz + \hat{x} \mid z \in \mathbf{R}^{n-p}\}\$$

- \hat{x} is (any) particular solution of the linear equation Ax = b
- $F \in \mathbb{R}^{n \times (n-p)}$ is a full-rank matrix with range equal to nullspace of A
- the reformulated problem is unconstrained with variable $z \in \mathbf{R}^{n-p}$
- from solution z^* , solution of optimality conditions (1) is

$$x^* = Fz^* + \hat{x}, \qquad v^* = -(AA^T)^{-1}A\nabla f(x^*)$$

• elimination step can be expensive, obscure structure in A (e.g., sparsity)

Newton step

we extend the definition of Newton step (p. 9.18) to equality-constrained problems

- assume x is feasible ($x \in \text{dom } f$ and Ax = b)
- define Newton step $\Delta x_{\rm nt}$ at x as the solution v of

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ 0 \end{bmatrix}$$

• $x + \Delta x_{nt}$ solves problem if f is replaced with 2nd order approximation \hat{f} at x

minimize (over
$$v$$
) $\hat{f}(x+v) = f(x) + \nabla f(x)^T v + (1/2) v^T \nabla^2 f(x) v$
subject to $A(x+v) = b$

• $x + \Delta x_{nt}$ solves optimality conditions (1), linearized at x:

$$A(x+v) = b,$$
 $\nabla f(x+v) + A^T w \approx \nabla f(x) + \nabla^2 f(x)v + A^T w = 0$

Newton decrement

for the equality-constrained problem, we define the Newton decrement as

$$\lambda(x) = (-\nabla f(x)^T \Delta x_{nt})^{1/2}$$
$$= (\Delta x_{nt}^T \nabla^2 f(x) \Delta x_{nt})^{1/2}$$

• $\lambda(x)^2$ is directional derivative of f at x in Newton direction Δx_{nt} :

$$\left. \frac{d}{dt} f(x + t\Delta x_{\rm nt}) \right|_{t=0} = -\lambda(x)^2$$

- $\lambda(x)$ is norm of Newton step in quadratic Hessian norm
- $\lambda(x)$ gives estimate of $f(x) p^*$, estimated using quadratic approximation \hat{f} :

$$f(x) - \inf_{Ay=b} \hat{f}(y) = \frac{1}{2}\lambda(x)^2$$

• in general,

$$\lambda(x) \neq (\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x))^{1/2}$$

Newton's method with equality constraints

given: a starting point $x \in \text{dom } f$ with Ax = b, tolerance $\epsilon > 0$ repeat

- 1. *Newton step:* compute Newton step $\Delta x_{\rm nt}$ and Newton decrement $\lambda(x)$
- 2. stopping criterion: quit if $\lambda^2/2 \le \epsilon$
- 3. *line search:* choose step size *t* by backtracking line search
- 4. update: $x := x + t\Delta x_{\rm nt}$

- a feasible descent method: iterates $x^{(k)}$ are feasible and $f(x^{(k+1)}) < f(x^{(k)})$
- affine-invariant

Newton's method and elimination

Newton's method for unconstrained optimization (after eliminating Ax = b)

minimize
$$g(z) = f(Fz + \hat{x})$$

suppose Newton method for g, started at $z^{(0)}$, generates iterates $z^{(k)}$

Newton's method with equality constraints (method on page 10.10)

when started at $x^{(0)} = Fz^{(0)} + \hat{x}$, iterates are

$$x^{(k+1)} = Fz^{(k)} + \hat{x}$$

hence, we don't need separate convergence analysis for the method on p. 10.10

Newton step at infeasible points

2nd interpretation of page 10.8 extends to infeasible x (*i.e.*, with $Ax \neq b$) linearizing optimality conditions at infeasible x (with $x \in \text{dom } f$) gives

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\text{nt}} \\ w \end{bmatrix} = - \begin{bmatrix} \nabla f(x) \\ Ax - b \end{bmatrix}$$
 (5)

Interpretation

• optimality condition (1) is nonlinear equation r(x, v) = 0, where

$$r(x, \nu) = \begin{bmatrix} \nabla f(x) + A^T \nu \\ Ax - b \end{bmatrix}$$

• linearizing r(y) = 0 gives

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\text{nt}} \\ \Delta v_{\text{nt}} \end{bmatrix} = - \begin{bmatrix} \nabla f(x) + A^T v \\ Ax - b \end{bmatrix}$$

this is the same as (5) with $w = v + \Delta v_{\rm nt}$

Infeasible start Newton method

given: a starting point $x \in \text{dom } f$, ν , tolerance $\epsilon > 0$, $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$ repeat

- 1. Newton step: compute primal and dual Newton steps $\Delta x_{\rm nt}$, $\Delta v_{\rm nt}$
- 2. backtracking line search:

$$t := 1$$
 while $||r(x + t\Delta x_{\text{nt}}, \nu + t\Delta \nu_{\text{nt}})||_2 > (1 - \alpha t)||r(x, \nu)||_2$
$$t := \beta t$$

3. *update:* $x := x + t\Delta x_{\rm nt}, \ \nu := \nu + t\Delta \nu_{\rm nt}$ until Ax = b and $||r(x, \nu)||_2 \le \epsilon$

- not a descent method: $f(x^{(k+1)}) > f(x^{(k)})$ is possible
- therefore we use norm of r as merit function in line search
- directional derivative of norm of r, at $y=(x,\nu)$, in direction $\Delta y=(\Delta x_{\rm nt},\Delta \nu_{\rm nt})$ is

$$\frac{d}{dt} \|r(y + t\Delta y)\|_{2} \Big|_{t=0} = -\|r(y)\|_{2}$$

Solving KKT systems

$$\left[\begin{array}{cc} H & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} v \\ w \end{array}\right] = - \left[\begin{array}{c} g \\ h \end{array}\right]$$

Solution methods

- use matrix factorization for symmetric indefinite matrices (LDL^T factorization)
- if *H* is positive definite, solve by block elimination: two equations

$$AH^{-1}A^{T}w = h - AH^{-1}g, \qquad Hv = -(g + A^{T}w)$$

• if *H* is not positive definite, first write KKT system as

$$\begin{bmatrix} H + A^T Q A & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = - \begin{bmatrix} g + A^T Q h \\ h \end{bmatrix}$$

with $Q \ge 0$ chosen so that $H + A^T Q A > 0$; then apply block elimination

Primal and dual problems

minimize
$$-\sum_{i=1}^{n} \log x_i$$
 maximize $-b^T v + \sum_{i=1}^{n} \log(A^T v)_i + n$ subject to $Ax = b$

Algorithms

- we compare three versions of Newton's method
- $A \in \mathbf{R}^{100 \times 500}$
- starting points are different for the three methods

1. Newton method with equality constraints (requires $x^{(0)} > 0$, $Ax^{(0)} = b$)

2. (unconstrained) Newton method applied to dual problem (requires $A^T v^{(0)} > 0$)

3. infeasible start Newton method (requires $x^{(0)} > 0$)

complexity per iteration of the three methods is identical

1. use block elimination to solve KKT system

$$\begin{bmatrix} \operatorname{diag}(x)^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ w \end{bmatrix} = \begin{bmatrix} \operatorname{diag}(x)^{-1} \mathbf{1} \\ 0 \end{bmatrix}$$

reduces to solving $A \operatorname{diag}(x)^2 A^T w = b$

- 2. solve Newton system $A \operatorname{diag}(A^T v)^{-2} A^T \Delta v = -b + A \operatorname{diag}(A^T v)^{-1} \mathbf{1}$
- 3. use block elimination to solve KKT system

$$\begin{bmatrix} \operatorname{\mathbf{diag}}(x)^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta v \end{bmatrix} = \begin{bmatrix} \operatorname{\mathbf{diag}}(x)^{-1} \mathbf{1} \\ Ax - b \end{bmatrix}$$

reduces to solving $A \operatorname{diag}(x)^2 A^T w = 2Ax - b$

conclusion: in each case, solve $ADA^Tw = h$ with D positive diagonal

Network flow optimization

minimize
$$\sum_{i=1}^{n} \phi_i(x_i)$$

subject to
$$Ax = b$$

- directed graph with n arcs, p + 1 nodes
- x_i is flow through arc i; ϕ_i is cost flow function for arc i (with $\phi_i''(x) > 0$)
- node-incidence matrix $\tilde{A} \in \mathbf{R}^{(p+1)\times n}$ defined as

$$\tilde{A}_{ij} = \begin{cases} 1 & \text{arc } j \text{ leaves node } i \\ -1 & \text{arc } j \text{ enters node } i \\ 0 & \text{otherwise} \end{cases}$$

reduced node-incidence matrix $A \in \mathbf{R}^{p \times n}$ is \tilde{A} with last row removed

- $b \in \mathbf{R}^p$ is (reduced) source vector
- $\operatorname{rank} A = p$ if graph is connected

KKT system for network flow problem

$$\left[\begin{array}{cc} H & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} v \\ w \end{array}\right] = - \left[\begin{array}{c} g \\ h \end{array}\right]$$

- $H = \mathbf{diag}(\phi_1''(x_1), \dots, \phi_n''(x_n))$, positive diagonal
- can be solved by block elimination:

$$AH^{-1}A^{T}w = h - AH^{-1}g, \qquad Hv = -(g + A^{T}w)$$

sparsity pattern of coefficient matrix $AH^{-1}A^{T}$ is given by graph connectivity

$$(AH^{-1}A^T)_{ij} \neq 0 \iff (AA^T)_{ij} \neq 0$$
 $\iff \text{nodes } i \text{ and } j \text{ are adjacent}$

Analytic center of linear matrix inequality

minimize
$$-\log \det X$$

subject to $\operatorname{tr}(A_i X) = b_i, \quad i = 1, \dots, p$

- variable is $X \in \mathbf{S}^n$
- includes an implicit constraint X > 0

Optimality conditions

$$X > 0$$
, $-X^{-1} + \sum_{j=1}^{p} v_j A_i = 0$, $tr(A_i X) = b_i$, $i = 1, ..., p$

Newton equation at feasible X

$$X^{-1}\Delta XX^{-1} + \sum_{j=1}^{p} w_j A_j = X^{-1}, \quad \operatorname{tr}(A_i \Delta X) = 0, \quad i = 1, \dots, p$$

- follows from linear approximation $(X + \Delta X)^{-1} \approx X^{-1} X^{-1} \Delta X X^{-1}$
- a set of $\frac{1}{2}n(n+1) + p$ linear equations in $\frac{1}{2}n(n+1) + p$ variables ΔX , w

Solution by block elimination

• eliminate ΔX from first equation:

$$\Delta X = X - \sum_{j=1}^{p} w_j X A_j X \tag{6}$$

• substitute expression for ΔX in second equation

$$\sum_{j=1}^{p} \operatorname{tr}(A_{i} X A_{j} X) w_{j} = b_{i}, \quad i = 1, \dots, p$$
 (7)

this is a dense positive definite set of linear equations Gw = b with

$$G_{ij} = \operatorname{tr}(A_i X A_j X), \quad i, j = 1, \dots, p$$

• first solve (7) by Cholesky factorization of G; then substitute w in (6) to get ΔX

Complexity of block elimination method

the dominant terms in a flop count:

- Cholesky factorization $X = LL^T ((1/3)n^3 \text{ flops})$
- form p products $L^T A_j L$ ((3/2) pn^3 flops)
- compute p(p+1)/2 elements of G

$$G_{ij} = \operatorname{tr}((L^T A_i L)(L^T A_j L))$$

$$((1/2)p^2n^2 \text{ flops})$$

• solve (7) via Cholesky factorization $((1/3)p^3$ flops)

complexity is *cubic* in n (although KKT system has $\frac{1}{2}n(n+1) + p$ variables)