3. Convex functions

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- log-concave and log-convex functions

Definition

 $f : \mathbf{R}^n \to \mathbf{R}$ is convex if dom f is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \text{dom } f, 0 \le \theta \le 1$

- f is concave if -f is convex
- f is strictly convex if dom f is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \text{dom } f$, $x \neq y$, $0 < \theta < 1$

Examples on R

Convex

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- exponential: e^{ax} , for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $\alpha \ge 1$ or $\alpha \le 0$
- powers of absolute value: $|x|^p$ on **R**, for $p \ge 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

Concave

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $0 \le \alpha \le 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples on \mathbb{R}^n and \mathbb{R}^{m \times n}

- affine functions are convex and concave
- all norms are convex

Examples on \mathbf{R}^n

- affine function $f(x) = a^T x + b$
- norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_{\infty} = \max_k |x_k|$

Examples on \mathbb{R}^{m \times n} (*m* × *n* matrices)

• affine function

$$f(X) = \operatorname{tr}(A^{T}X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}X_{ij} + b$$

• 2-norm (spectral norm): maximum singular value

$$f(X) = \|X\|_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

Extended-value extension

extended-value extension \tilde{f} of f is

$$\tilde{f}(x) = f(x), \quad x \in \text{dom } f, \qquad \tilde{f}(x) = \infty, \quad x \notin \text{dom } f$$

often simplifies notation; for example, the condition

$$0 \le \theta \le 1 \quad \Longrightarrow \quad \tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in $\mathbf{R} \cup \{\infty\}$), means the same as the two conditions

- dom *f* is convex
- for $x, y \in \text{dom } f$,

$$0 \le \theta \le 1 \quad \Longrightarrow \quad f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

Restriction of a convex function to a line

 $f : \mathbf{R}^n \to \mathbf{R}$ is convex if and only if the function $g : \mathbf{R} \to \mathbf{R}$,

$$g(t) = f(x + tv), \qquad \operatorname{dom} g = \{t \mid x + tv \in \operatorname{dom} f\}$$

is convex (in *t*) for any $x \in \text{dom } f, v \in \mathbf{R}^n$

can check convexity of f by checking convexity of functions of one variable

Example: $f : \mathbf{S}^n \to \mathbf{R}$ with $f(X) = \log \det X$, dom $f = \mathbf{S}_{++}^n$

$$g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})$$

= $\log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i)$

where λ_i are the eigenvalues of $X^{-1/2}VX^{-1/2}$

g is concave in t (for any choice of X > 0, V); hence f is concave

Convex functions

First-order condition

f is **differentiable** if dom f is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \text{dom } f$

First-order condition: differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \text{dom } f$

Second-order conditions

f is **twice differentiable** if dom *f* is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \text{dom } f$

Second-order conditions: for twice differentiable f with convex domain

• *f* is convex if and only if

$$\nabla^2 f(x) \ge 0$$
 for all $x \in \text{dom } f$

• if $\nabla^2 f(x) > 0$ for all $x \in \text{dom } f$, then f is strictly convex

Examples

Quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ (with $P \in \mathbf{S}^n$)

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

convex if $P \ge 0$

Least squares objective: $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^T(Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any *A*)

Quadratic-over-linear function: $f(x, y) = x^2/y$

$$\nabla^2 f(x, y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \ge 0$$

dom $f = \{(x, y) \mid y > 0\}$

Examples

Log-sum-exp function: $f(x) = \log \sum_{k=1}^{n} \exp x_k$ is convex

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^T z} \operatorname{diag}(z) - \frac{1}{(\mathbf{1}^T z)^2} z z^T \quad \text{with } z_k = \exp x_k$$

to show $\nabla^2 f(x) \ge 0$, we must verify that $v^T \nabla^2 f(x) v \ge 0$ for all v:

$$v^{T} \nabla^{2} f(x) v = \frac{\left(\sum_{k=1}^{n} z_{k} v_{k}^{2}\right) \left(\sum_{k=1}^{n} z_{k}\right) - \left(\sum_{k=1}^{n} v_{k} z_{k}\right)^{2}}{\left(\sum_{k=1}^{n} z_{k}\right)^{2}} \ge 0$$

since $(\sum_k v_k z_k)^2 \leq (\sum_k z_k v_k^2)(\sum_k z_k)$ (from Cauchy–Schwarz inequality)

Geometric mean:
$$f(x) = (\prod_{k=1}^{n} x_k)^{1/n}$$
 on \mathbb{R}_{++}^n is concave

(similar proof as for log-sum-exp)

Convex functions

Epigraph and sublevel set

 α -sublevel set of $f : \mathbf{R}^n \to \mathbf{R}$:

$$C_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}$$

sublevel sets of convex functions are convex (converse is false)

Epigraph of $f : \mathbf{R}^n \to \mathbf{R}$:

epi
$$f = \{(x, t) \in \mathbf{R}^{n+1} \mid x \in \text{dom } f, f(x) \le t\}$$

f is convex if and only if epi f is a convex set

Convex functions

Jensen's inequality

Basic inequality: if *f* is convex, then for $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

Extension: if f is convex, then

 $f(\mathbf{E}\,z) \le \mathbf{E}\,f(z)$

for any random variable z

basic inequality is special case with discrete distribution

 $\operatorname{prob}(z = x) = \theta$, $\operatorname{prob}(z = y) = 1 - \theta$

Operations that preserve convexity

methods for establishing convexity of a function

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show $\nabla^2 f(x) \ge 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

Positive weighted sum and composition with affine function

Nonnegative multiple: αf is convex if f is convex, $\alpha \ge 0$

Sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)

Composition with affine function: f(Ax + b) is convex if *f* is convex

Examples

• logarithmic barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$$

• (any) norm of affine function: f(x) = ||Ax + b||

Pointwise maximum

if f_1, \ldots, f_m are convex, then the function

$$f(x) = \max\{f_1(x), \dots, f_m(x)\}$$

is convex

Examples

- piecewise-linear function: $f(x) = \max_{i=1,...,m}(a_i^T x + b_i)$ is convex
- sum of *r* largest components of $x \in \mathbf{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex $(x_{[i]} \text{ is } i \text{th largest component of } x)$

proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

Pointwise supremum

if f(x, y) is convex in x for each $y \in \mathcal{A}$, then the function

 $g(x) = \sup_{y \in \mathcal{A}} f(x, y)$

is convex

Examples

- support function of a set: $S_C(x) = \sup_{y \in C} y^T x$ is convex for any set C
- distance to farthest point in a set *C*:

$$f(x) = \sup_{y \in C} \|x - y\|$$

• maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^n$,

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^T X y$$

Proof.

- suppose f(x, y) is a convex function of x, for any fixed $y \in \mathcal{A}$ (and $\mathcal{A} \neq \emptyset$)
- this means that for all $y \in \mathcal{A}$, x_1, x_2 , and $\theta \in [0, 1]$,

$$f(\theta x_1 + (1 - \theta)x_2, y) \le \theta f(x_1, y) + (1 - \theta)f(x_2, y)$$

• for simplicity, we use the extended-value convention (where $0 \cdot \infty = 0$)

convexity of g follows from

$$g(\theta x_1 + (1 - \theta) x_2) = \sup_{y \in \mathcal{A}} f(\theta x_1 + (1 - \theta) x_2, y)$$

$$\leq \sup_{y \in \mathcal{A}} (\theta f(x_1, y) + (1 - \theta) f(x_2, y))$$

$$\leq \theta \sup_{y \in \mathcal{A}} f(x_1, y) + (1 - \theta) \sup_{y \in \mathcal{A}} f(x_2, y)$$

$$= \theta g(x_1) + (1 - \theta) g(x_2)$$

Partial minimization

if f(x, y) is convex in (x, y) and C is a convex set, then the function

 $g(x) = \inf_{y \in C} f(x, y)$

is convex

Examples

•
$$f(x, y) = x^T A x + 2x^T B y + y^T C y$$
 with

$$\left[\begin{array}{cc} A & B \\ B^T & C \end{array}\right] \ge 0, \qquad C > 0$$

minimizing over y gives $g(x) = \inf_{y} f(x, y) = x^{T} (A - BC^{-1}B^{T})x$

g is convex, hence Schur complement $A - BC^{-1}B^T \ge 0$

• distance to a set: $d(x, S) = \inf_{y \in S} ||x - y||$ is convex if S is convex

Proof.

- suppose $f : \mathbf{R}^n \times \mathbf{R}^m \to \mathbf{R}$ is jointly convex in (x, y)
- without loss of generality, we make C part of the domain of f, *i.e.*, redefine

dom $f := \operatorname{dom} f \cap \{(x, y) \mid y \in C\}, \qquad C := \mathbf{R}^m$

• convexity of f(x, y) jointly in (x, y) means that for all $x_1, y_1, x_2, y_2, \theta \in [0, 1]$,

$$f(\theta x_1 + (1 - \theta)x_2, \theta y_1 + (1 - \theta)y_2) \le \theta f(x_1, y_1) + (1 - \theta)f(x_2, y_2)$$

• assume $\inf_y f(x, y) > -\infty$ for all x (we don't allow functions that take value $-\infty$)

convexity of g follows from

$$g(\theta x_{1} + (1 - \theta)x_{2}) = \inf_{y} f(\theta x_{1} + (1 - \theta)x_{2}, y)$$

$$= \inf_{y_{1}, y_{2}} f(\theta x_{1} + (1 - \theta)x_{2}, \theta y_{1} + (1 - \theta)y_{2})$$

$$\leq \inf_{y_{1}, y_{2}} (\theta f(x_{1}, y_{1}) + (1 - \theta)f(x_{2}, y_{2}))$$

$$= \theta \inf_{y_{1}} f(x_{1}, y_{1}) + (1 - \theta) \inf_{y_{2}} f(x_{2}, y_{2})$$

$$= \theta g(x_{1}) + (1 - \theta)g(x_{2})$$

Summary of minimization/maximization rules

if we include the counterparts for concave functions, there are four rules

Maximization

$$g(x) = \sup_{y \in C} f(x, y)$$

- *g* is convex if *f* is convex in *x* for fixed *y*; *C* can be any set
- g is concave if f is jointly concave in (x, y) and C is a convex set

Minimization

$$g(x) = \inf_{y \in C} f(x, y)$$

- g is convex if f is jointly convex in (x, y) and C is a convex set
- *g* is concave if *f* is concave in *x* for fixed *y*; *C* can be any set

Composition with scalar functions

composition of $g : \mathbf{R}^n \to \mathbf{R}$ and $h : \mathbf{R} \to \mathbf{R}$:

f(x) = h(g(x))

f is convex if h is convex and one of the following three cases holds

g is convex and \tilde{h} nondecreasing g is concave and \tilde{h} nonincreasing g is affine

- monotonicity properties of h must hold for extended-value extension \tilde{h}
- quick proof (for n = 1, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

Examples

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive

Proof (first composition rule)

- suppose g is convex and h is convex
- suppose \tilde{h} is nondecreasing: this means that

 $y \le x, x \in \operatorname{dom} h \implies y \in \operatorname{dom} h, h(y) \le h(x)$

consider convex combination of points $x_1, x_2 \in \text{dom } f$

- $x_1, x_2 \in \text{dom } f$ means that $x_1, x_2 \in \text{dom } g$ and $g(x_1), g(x_2) \in \text{dom } h$
- by convexity of g, the convex combination $\theta x_1 + (1 \theta)x_2$ is in dom g and

$$g(\theta x_1 + (1 - \theta)x_2) \le \theta g(x_1) + (1 - \theta)g(x_2)$$

• by monotonicity of \tilde{h} and convexity of h, $g(\theta x_1 + (1 - \theta)x_2) \in \text{dom } h$ and

$$\begin{aligned} h(g(\theta x_1 + (1 - \theta) x_2)) &\leq h(\theta g(x_1) + (1 - \theta) g(x_2)) \\ &\leq \theta h(g(x_1)) + (1 - \theta) h(g(x_2)) \end{aligned}$$

Vector composition

composition of $g : \mathbf{R}^n \to \mathbf{R}^k$ and $h : \mathbf{R}^k \to \mathbf{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

f is convex if h is convex and for each i, one of the following three cases holds

- g_i is convex and \tilde{h} nondecreasing in its *i*th argument g_i is concave and \tilde{h} is nonincreasing in its *i*th argument g_i is affine
- \tilde{h} is extended-value extension of h
- quick proof (for n = 1, differentiable g, h)

$$f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)$$

Examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex

Proof (first composition rule)

- suppose g_1, \ldots, g_k is convex and h is convex
- Jensen's inequality for g_1, \ldots, g_k can be written as a vector inequality

$$g(\theta x_1 + (1 - \theta)x_2) \le \theta g(x_1) + (1 - \theta)g(x_2)$$

• suppose \tilde{h} is nondecreasing in each argument; this means that

$$y \le x, x \in \operatorname{dom} h \implies y \in \operatorname{dom} h, h(y) \le h(x)$$

consider a convex combination of points $x_1, x_2 \in \text{dom } f$

- $x_1, x_2 \in \text{dom } f$ means that $x_1, x_2 \in \text{dom } g$ and $g(x_1), g(x_2) \in \text{dom } h$
- by convexity of g_1, \ldots, g_k , the convex combination $\theta x_1 + (1 \theta)x_2 \in \text{dom } g$ and

$$g(\theta x_1 + (1 - \theta)x_2) \le \theta g(x_1) + (1 - \theta)g(x_2)$$

• hence, by monotonicity of \tilde{h} and convexity of h, $g(\theta x_1 + (1 - \theta)x_2) \in \text{dom } h$ and

$$h(g(\theta x_1 + (1 - \theta)x_2)) \leq h(\theta g(x_1) + (1 - \theta)g(x_2))$$

$$\leq \theta h(g(x_1)) + (1 - \theta)h(g(x_2))$$

Perspective

the **perspective** of a function $f : \mathbf{R}^n \to \mathbf{R}$ is the function $g : \mathbf{R}^n \times \mathbf{R} \to \mathbf{R}$,

 $g(x,t) = tf(x/t), \quad \text{dom} g = \{(x,t) \mid x/t \in \text{dom} f, t > 0\}$

g is convex if f is convex

Examples

- $f(x) = x^T x$ is convex; hence $g(x, t) = x^T x/t$ is convex for t > 0
- negative logarithm $f(x) = -\log x$ is convex; hence relative entropy

 $g(x,t) = t \log t - t \log x$

is convex on $R^2_{\rm ++}$

• if f is convex, then

$$g(x) = (c^T x + d) f\left((Ax + b) / (c^T x + d) \right)$$

is convex on $\{x \mid c^T x + d > 0, (Ax + b)/(c^T x + d) \in \text{dom } f\}$

Convex functions

Proof.

• consider convex combination of two points $(x_1, t_1), (x_2, t_2) \in \text{dom } g$:

$$t_1 > 0$$
, $x_1/t_1 \in \text{dom } f$, $t_2 > 0$, $x_2/t_2 \in \text{dom } f$

• we verify Jensen's inequality:

$$g(\theta x_{1} + (1 - \theta)x_{2}, \theta t_{1} + (1 - \theta)t_{2})$$

$$= (\theta t_{1} + (1 - \theta)t_{2}) f(\frac{\theta x_{1} + (1 - \theta)x_{2}}{\theta t_{1} + (1 - \theta)t_{2}})$$

$$= (\theta t_{1} + (1 - \theta)t_{2}) f(\frac{\theta t_{1}}{\theta t_{1} + (1 - \theta)t_{2}}(x_{1}/t_{1}) + \frac{(1 - \theta)t_{2}}{\theta t_{1} + (1 - \theta)t_{2}}(x_{2}/t_{2}))$$

$$\leq \theta t_{1}f(x_{1}/t_{1}) + (1 - \theta)t_{2}f(x_{2}/t_{2})$$

$$= \theta g(x_{1}, t_{1}) + (1 - \theta)g(x_{2}, t_{2})$$

the inequality follows from convexity of f:

$$f(\mu(x_1/t_1) + (1-\mu)(x_2/t_2)) \le \mu f(x_1/t_1) + (1-\mu)f(x_2/t_2)$$

where $\mu = \theta t_1 / (\theta t_1 + (1 - \theta) t_2)$

The conjugate function

the **conjugate** of a function f is

- f^* is convex (even if f is not)
- will be useful when we discuss duality

Examples

• negative logarithm $f(x) = -\log x$

$$f^{*}(y) = \sup_{x>0} (xy + \log x)$$
$$= \begin{cases} -1 - \log(-y) & y < 0\\ \infty & \text{otherwise} \end{cases}$$

• strictly convex quadratic $f(x) = (1/2)x^TQx$ with $Q \in \mathbf{S}_{++}^n$

$$f^{*}(y) = \sup_{x} (y^{T}x - (1/2)x^{T}Qx)$$
$$= \frac{1}{2}y^{T}Q^{-1}y$$

Quasiconvex functions

 $f : \mathbf{R}^n \to \mathbf{R}$ is quasiconvex if dom f is convex and the sublevel sets

 $S_{\alpha} = \{x \in \operatorname{dom} f \mid f(x) \le \alpha\}$

- f is quasiconcave if -f is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave

Examples

- $\sqrt{|x|}$ is quasiconvex on **R**
- $\operatorname{ceil}(x) = \inf\{z \in \mathbf{Z} \mid z \ge x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbf{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbf{R}^2_{++}
- linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d}, \quad \text{dom } f = \{x \mid c^T x + d > 0\}$$

is quasilinear

• distance ratio

$$f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \qquad \text{dom } f = \{x \mid \|x - a\|_2 \le \|x - b\|_2\}$$

is quasiconvex

Convex functions

Internal rate of return

- cash flow $x = (x_0, ..., x_n)$; x_i is payment in period *i* (to us if $x_i > 0$)
- we assume $x_0 < 0$ and $x_0 + x_1 + \cdots + x_n > 0$
- *present value* of cash flow *x*, for interest rate *r*:

$$PV(x,r) = \sum_{i=0}^{n} (1+r)^{-i} x_i$$

• *internal rate of return* is smallest interest rate for which PV(x, r) = 0:

$$IRR(x) = \inf\{r \ge 0 \mid PV(x, r) = 0\}$$

IRR is quasiconcave: superlevel set is intersection of open halfspaces

$$\operatorname{IRR}(x) \ge R \qquad \Longleftrightarrow \qquad \sum_{i=0}^{n} (1+r)^{-i} x_i > 0 \quad \text{for } 0 \le r < R$$

Properties

Modified Jensen inequality: for quasiconvex f

$$0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}$$

First-order condition: differentiable f with cvx domain is quasiconvex iff

$$f(y) \le f(x) \implies \nabla f(x)^T (y - x) \le 0$$

Sums: sums of quasiconvex functions are not necessarily quasiconvex

Convex functions

Log-concave and log-convex functions

a positive function f is log-concave if $\log f$ is concave:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1-\theta}$$
 for $0 \le \theta \le 1$

f is log-convex if $\log f$ is convex

- powers: x^a on \mathbf{R}_{++} is log-convex for $a \leq 0$, log-concave for $a \geq 0$
- many common probability densities are log-concave, *e.g.*, normal:

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1}(x-\bar{x})}$$

- cumulative Gaussian distribution function Φ is log-concave

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du$$

Properties of log-concave functions

• twice differentiable f with convex domain is log-concave if and only if

 $f(x)\nabla^2 f(x) \le \nabla f(x)\nabla f(x)^T$ for all $x \in \text{dom } f$

- product of log-concave functions is log-concave
- sum of log-concave functions is not always log-concave
- integration: if $f : \mathbf{R}^n \times \mathbf{R}^m \to \mathbf{R}$ is log-concave, then

$$g(x) = \int f(x, y) \, dy$$

is log-concave (not easy to show)

Consequences of integration property

• convolution f * g of log-concave functions f, g is log-concave

$$(f * g)(x) = \int f(x - y)g(y)dy$$

• if $C \subseteq \mathbf{R}^n$ convex and y is a random variable with log-concave p.d.f. then

$$f(x) = \mathbf{prob}(x + y \in C)$$

is log-concave

proof: write f(x) as integral of product of log-concave functions

$$f(x) = \int g(x+y)p(y) \, dy, \qquad g(u) = \begin{cases} 1 & u \in C \\ 0 & u \notin C, \end{cases}$$

p is p.d.f. of y

Convex functions

Example: yield function

 $Y(x) = \mathbf{prob}(x + w \in S)$

- $x \in \mathbf{R}^n$: nominal parameter values for product
- $w \in \mathbf{R}^n$: random variations of parameters in manufactured product
- *S*: set of acceptable values

if S is convex and w has a log-concave p.d.f., then

- *Y* is log-concave
- yield regions $\{x \mid Y(x) \ge \alpha\}$ are convex