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3. Convex functions

• basic properties and examples

• operations that preserve convexity

• the conjugate function

• quasiconvex functions

• log-concave and log-convex functions
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Definition

5 : R= → R is convex if dom 5 is a convex set and

5 (\G + (1 − \)H) ≤ \ 5 (G) + (1 − \) 5 (H)

for all G, H ∈ dom 5 , 0 ≤ \ ≤ 1

(G, 5 (G))

(H, 5 (H))

• 5 is concave if − 5 is convex

• 5 is strictly convex if dom 5 is convex and

5 (\G + (1 − \)H) < \ 5 (G) + (1 − \) 5 (H)

for G, H ∈ dom 5 , G ≠ H, 0 < \ < 1
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Examples on R

Convex

• affine: 0G + 1 on R, for any 0, 1 ∈ R

• exponential: 40G, for any 0 ∈ R

• powers: GU on R++, for U ≥ 1 or U ≤ 0

• powers of absolute value: |G |? on R, for ? ≥ 1

• negative entropy: G log G on R++

Concave

• affine: 0G + 1 on R, for any 0, 1 ∈ R

• powers: GU on R++, for 0 ≤ U ≤ 1

• logarithm: log G on R++
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Examples on R= and R<×=

• affine functions are convex and concave

• all norms are convex

Examples on R=

• affine function 5 (G) = 0)G + 1

• norms: ‖G‖? = (∑=
8=1

|G8 |?)1/? for ? ≥ 1; ‖G‖∞ = max: |G: |

Examples on R<×= (< × = matrices)

• affine function

5 (-) = tr(�)-) + 1 =

<
∑

8=1

=
∑

9=1

�8 9-8 9 + 1

• 2-norm (spectral norm): maximum singular value

5 (-) = ‖- ‖2 = fmax(-) = (_max(-)-))1/2
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Extended-value extension

extended-value extension 5̃ of 5 is

5̃ (G) = 5 (G), G ∈ dom 5 , 5̃ (G) = ∞, G ∉ dom 5

often simplifies notation; for example, the condition

0 ≤ \ ≤ 1 =⇒ 5̃ (\G + (1 − \)H) ≤ \ 5̃ (G) + (1 − \) 5̃ (H)

(as an inequality in R ∪ {∞}), means the same as the two conditions

• dom 5 is convex

• for G, H ∈ dom 5 ,

0 ≤ \ ≤ 1 =⇒ 5 (\G + (1 − \)H) ≤ \ 5 (G) + (1 − \) 5 (H)
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Restriction of a convex function to a line

5 : R= → R is convex if and only if the function 6 : R → R,

6(C) = 5 (G + C{), dom 6 = {C | G + C{ ∈ dom 5 }

is convex (in C) for any G ∈ dom 5 , { ∈ R=

can check convexity of 5 by checking convexity of functions of one variable

Example: 5 : S= → R with 5 (-) = log det - , dom 5 = S=
++

6(C) = log det(- + C+) = log det - + log det(� + C-−1/2+-−1/2)

= log det - +
=
∑

8=1

log(1 + C_8)

where _8 are the eigenvalues of -−1/2+-−1/2

6 is concave in C (for any choice of - ≻ 0, +); hence 5 is concave

Convex functions 3.6



First-order condition

5 is differentiable if dom 5 is open and the gradient

∇ 5 (G) =
(

m 5 (G)
mG1

,
m 5 (G)
mG2

, . . . ,
m 5 (G)
mG=

)

exists at each G ∈ dom 5

First-order condition: differentiable 5 with convex domain is convex iff

5 (H) ≥ 5 (G) + ∇ 5 (G)) (H − G) for all G, H ∈ dom 5

(G, 5 (G))

5 (H)

5 (G) + ∇ 5 (G)) (H − G)

first-order approximation of 5 is global underestimator
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Second-order conditions

5 is twice differentiable if dom 5 is open and the Hessian ∇2 5 (G) ∈ S=,

∇2 5 (G)8 9 =
m2 5 (G)
mG8mG 9

, 8, 9 = 1, . . . , =,

exists at each G ∈ dom 5

Second-order conditions: for twice differentiable 5 with convex domain

• 5 is convex if and only if

∇2 5 (G) � 0 for all G ∈ dom 5

• if ∇2 5 (G) ≻ 0 for all G ∈ dom 5 , then 5 is strictly convex
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Examples

Quadratic function: 5 (G) = (1/2)G)%G + @)G + A (with % ∈ S=)

∇ 5 (G) = %G + @, ∇2 5 (G) = %

convex if % � 0

Least squares objective: 5 (G) = ‖�G − 1‖2
2

∇ 5 (G) = 2�) (�G − 1), ∇2 5 (G) = 2�)�

convex (for any �)

Quadratic-over-linear function: 5 (G, H) = G2/H

∇2 5 (G, H) =
2

H3

[

H

−G

] [

H

−G

])

� 0

dom 5 = {(G, H) | H > 0}
GH

5
(G
,
H
)

−2

0

2

0

1

2
0

1

2
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Examples

Log-sum-exp function: 5 (G) = log
=
∑

:=1
exp G: is convex

∇2 5 (G) = 1

1) I
diag(I) − 1

(1) I)2
II) with I: = exp G:

to show ∇2 5 (G) � 0, we must verify that {)∇2 5 (G){ ≥ 0 for all {:

{)∇2 5 (G){ =
(

=
∑

:=1
I:{

2
:
) (

=
∑

:=1
I:) − (

=
∑

:=1
{:I:)2

(
=
∑

:=1
I:)2

≥ 0

since (∑: {:I:)2 ≤ (∑: I:{
2
:
) (∑: I:) (from Cauchy–Schwarz inequality)

Geometric mean: 5 (G) = (
=
∏

:=1
G:)1/= on R=

++ is concave

(similar proof as for log-sum-exp)
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Epigraph and sublevel set

U-sublevel set of 5 : R= → R:

�U = {G ∈ dom 5 | 5 (G) ≤ U}

sublevel sets of convex functions are convex (converse is false)

Epigraph of 5 : R= → R:

epi 5 = {(G, C) ∈ R=+1 | G ∈ dom 5 , 5 (G) ≤ C}

epi 5

5

5 is convex if and only if epi 5 is a convex set
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Jensen’s inequality

Basic inequality: if 5 is convex, then for 0 ≤ \ ≤ 1,

5 (\G + (1 − \)H) ≤ \ 5 (G) + (1 − \) 5 (H)

Extension: if 5 is convex, then

5 (E I) ≤ E 5 (I)

for any random variable I

basic inequality is special case with discrete distribution

prob(I = G) = \, prob(I = H) = 1 − \
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Operations that preserve convexity

methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show ∇2 5 (G) � 0

3. show that 5 is obtained from simple convex functions by operations that

preserve convexity

• nonnegative weighted sum

• composition with affine function

• pointwise maximum and supremum

• composition

• minimization

• perspective
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Positive weighted sum and composition with affine function

Nonnegative multiple: U 5 is convex if 5 is convex, U ≥ 0

Sum: 51 + 52 convex if 51, 52 convex (extends to infinite sums, integrals)

Composition with affine function: 5 (�G + 1) is convex if 5 is convex

Examples

• logarithmic barrier for linear inequalities

5 (G) = −
<
∑

8=1

log(18 − 0)8 G), dom 5 = {G | 0)8 G < 18, 8 = 1, . . . , <}

• (any) norm of affine function: 5 (G) = ‖�G + 1‖
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Pointwise maximum

if 51, . . . , 5< are convex, then the function

5 (G) = max{ 51(G), . . . , 5< (G)}

is convex

Examples

• piecewise-linear function: 5 (G) = max8=1,...,< (0)8 G + 18) is convex

• sum of A largest components of G ∈ R=:

5 (G) = G[1] + G[2] + · · · + G[A]

is convex (G[8] is 8th largest component of G)

proof: 5 (G) = max{G81 + G82 + · · · + G8A | 1 ≤ 81 < 82 < · · · < 8A ≤ =}
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Pointwise supremum

if 5 (G, H) is convex in G for each H ∈ A, then the function

6(G) = sup
H∈A

5 (G, H)

is convex

Examples

• support function of a set: (� (G) = supH∈� H)G is convex for any set �

• distance to farthest point in a set �:

5 (G) = sup
H∈�

‖G − H‖

• maximum eigenvalue of symmetric matrix: for - ∈ S=,

_max(-) = sup
‖H‖2=1

H)-H
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Proof.

• suppose 5 (G, H) is a convex function of G, for any fixed H ∈ A (and A ≠ ∅)

• this means that for all H ∈ A, G1, G2, and \ ∈ [0, 1],

5 (\G1 + (1 − \)G2, H) ≤ \ 5 (G1, H) + (1 − \) 5 (G2, H)

• for simplicity, we use the extended-value convention (where 0 · ∞ = 0)

convexity of 6 follows from

6(\G1 + (1 − \)G2) = sup
H∈A

5 (\G1 + (1 − \)G2, H)

≤ sup
H∈A

(\ 5 (G1, H) + (1 − \) 5 (G2, H))

≤ \ sup
H∈A

5 (G1, H) + (1 − \) sup
H∈A

5 (G2, H)

= \6(G1) + (1 − \)6(G2)
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Partial minimization

if 5 (G, H) is convex in (G, H) and � is a convex set, then the function

6(G) = inf
H∈�

5 (G, H)

is convex

Examples

• 5 (G, H) = G)�G + 2G)�H + H)�H with

[

� �

�) �

]

� 0, � ≻ 0

minimizing over H gives 6(G) = infH 5 (G, H) = G) (� − ��−1�))G

6 is convex, hence Schur complement � − ��−1�) � 0

• distance to a set: 3 (G, () = infH∈( ‖G − H‖ is convex if ( is convex
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Proof.

• suppose 5 : R= × R< → R is jointly convex in (G, H)
• without loss of generality, we make � part of the domain of 5 , i.e., redefine

dom 5 := dom 5 ∩ {(G, H) | H ∈ �}, � := R<

• convexity of 5 (G, H) jointly in (G, H) means that for all G1, H1, G2, H2, \ ∈ [0, 1],

5 (\G1 + (1 − \)G2, \H1 + (1 − \)H2) ≤ \ 5 (G1, H1) + (1 − \) 5 (G2, H2)

• assume infH 5 (G, H) > −∞ for all G (we don’t allow functions that take value −∞)

convexity of 6 follows from

6(\G1 + (1 − \)G2) = inf
H

5 (\G1 + (1 − \)G2, H)

= inf
H1,H2

5 (\G1 + (1 − \)G2, \H1 + (1 − \)H2)

≤ inf
H1,H2

(\ 5 (G1, H1) + (1 − \) 5 (G2, H2))

≤ \ inf
H1

5 (G1, H1) + (1 − \) inf
H2

5 (G2, H2)

= \6(G1) + (1 − \)6(G2)
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Summary of minimization/maximization rules

if we include the counterparts for concave functions, there are four rules

Maximization

6(G) = sup
H∈�

5 (G, H)

• 6 is convex if 5 is convex in G for fixed H; � can be any set

• 6 is concave if 5 is jointly concave in (G, H) and � is a convex set

Minimization

6(G) = inf
H∈�

5 (G, H)

• 6 is convex if 5 is jointly convex in (G, H) and � is a convex set

• 6 is concave if 5 is concave in G for fixed H; � can be any set
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Composition with scalar functions

composition of 6 : R= → R and ℎ : R → R:

5 (G) = ℎ(6(G))

5 is convex if ℎ is convex and one of the following three cases holds

6 is convex and ℎ̃ nondecreasing

6 is concave and ℎ̃ nonincreasing

6 is affine

• monotonicity properties of ℎ must hold for extended-value extension ℎ̃

• quick proof (for = = 1, differentiable 6, ℎ)

5 ′′(G) = ℎ′′(6(G))6′(G)2 + ℎ′(6(G))6′′(G)

Examples

• exp 6(G) is convex if 6 is convex

• 1/6(G) is convex if 6 is concave and positive
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Proof (first composition rule)

• suppose 6 is convex and ℎ is convex

• suppose ℎ̃ is nondecreasing: this means that

H ≤ G, G ∈ dom ℎ =⇒ H ∈ dom ℎ, ℎ(H) ≤ ℎ(G)

consider convex combination of points G1, G2 ∈ dom 5

• G1, G2 ∈ dom 5 means that G1, G2 ∈ dom 6 and 6(G1), 6(G2) ∈ dom ℎ

• by convexity of 6, the convex combination \G1 + (1 − \)G2 is in dom 6 and

6(\G1 + (1 − \)G2) ≤ \6(G1) + (1 − \)6(G2)

• by monotonicity of ℎ̃ and convexity of ℎ, 6(\G1 + (1 − \)G2) ∈ dom ℎ and

ℎ(6(\G1 + (1 − \)G2)) ≤ ℎ(\6(G1) + (1 − \)6(G2))
≤ \ℎ(6(G1)) + (1 − \)ℎ(6(G2))
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Vector composition

composition of 6 : R= → R: and ℎ : R: → R:

5 (G) = ℎ(6(G)) = ℎ(61(G), 62(G), . . . , 6: (G))

5 is convex if ℎ is convex and for each 8, one of the following three cases holds

68 is convex and ℎ̃ nondecreasing in its 8th argument

68 is concave and ℎ̃ is nonincreasing in its 8th argument

68 is affine

• ℎ̃ is extended-value extension of ℎ

• quick proof (for = = 1, differentiable 6, ℎ)

5 ′′(G) = 6′(G))∇2ℎ(6(G))6′(G) + ∇ℎ(6(G)))6′′(G)

Examples

•
<
∑

8=1
log 68 (G) is concave if 68 are concave and positive

• log
<
∑

8=1
exp 68 (G) is convex if 68 are convex
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Proof (first composition rule)

• suppose 61, . . . , 6: is convex and ℎ is convex

• Jensen’s inequality for 61, . . . , 6: can be written as a vector inequality

6(\G1 + (1 − \)G2) � \6(G1) + (1 − \)6(G2)

• suppose ℎ̃ is nondecreasing in each argument; this means that

H � G, G ∈ dom ℎ =⇒ H ∈ dom ℎ, ℎ(H) ≤ ℎ(G)

consider a convex combination of points G1, G2 ∈ dom 5

• G1, G2 ∈ dom 5 means that G1, G2 ∈ dom 6 and 6(G1), 6(G2) ∈ dom ℎ

• by convexity of 61, . . . , 6: , the convex combination \G1 + (1 − \)G2 ∈ dom 6 and

6(\G1 + (1 − \)G2) � \6(G1) + (1 − \)6(G2)

• hence, by monotonicity of ℎ̃ and convexity of ℎ, 6(\G1 + (1 − \)G2) ∈ dom ℎ and

ℎ(6(\G1 + (1 − \)G2)) ≤ ℎ(\6(G1) + (1 − \)6(G2))
≤ \ℎ(6(G1)) + (1 − \)ℎ(6(G2))
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Perspective

the perspective of a function 5 : R= → R is the function 6 : R= × R → R,

6(G, C) = C 5 (G/C), dom 6 = {(G, C) | G/C ∈ dom 5 , C > 0}

6 is convex if 5 is convex

Examples

• 5 (G) = G)G is convex; hence 6(G, C) = G)G/C is convex for C > 0

• negative logarithm 5 (G) = − log G is convex; hence relative entropy

6(G, C) = C log C − C log G

is convex on R2
++

• if 5 is convex, then

6(G) = (2)G + 3) 5
(

(�G + 1)/(2)G + 3)
)

is convex on {G | 2)G + 3 > 0, (�G + 1)/(2)G + 3) ∈ dom 5 }
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Proof.

• consider convex combination of two points (G1, C1), (G2, C2) ∈ dom 6:

C1 > 0, G1/C1 ∈ dom 5 , C2 > 0, G2/C2 ∈ dom 5

• we verify Jensen’s inequality:

6(\G1 + (1 − \)G2, \C1 + (1 − \)C2)

= (\C1 + (1 − \)C2) 5 (
\G1 + (1 − \)G2

\C1 + (1 − \)C2
)

= (\C1 + (1 − \)C2) 5 (
\C1

\C1 + (1 − \)C2
(G1/C1) +

(1 − \)C2
\C1 + (1 − \)C2

(G2/C2))

≤ \C1 5 (G1/C1) + (1 − \)C2 5 (G2/C2)
= \6(G1, C1) + (1 − \)6(G2, C2)

the inequality follows from convexity of 5 :

5 (`(G1/C1) + (1 − `) (G2/C2)) ≤ ` 5 (G1/C1) + (1 − `) 5 (G2/C2)

where ` = \C1/(\C1 + (1 − \)C2)
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The conjugate function

the conjugate of a function 5 is

5 ∗(H) = sup
G∈dom 5

(H)G − 5 (G))

5 (G)

(0,− 5 ∗(H))

GH

G

• 5 ∗ is convex (even if 5 is not)

• will be useful when we discuss duality
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Examples

• negative logarithm 5 (G) = − log G

5 ∗(H) = sup
G>0

(GH + log G)

=

{

−1 − log(−H) H < 0

∞ otherwise

• strictly convex quadratic 5 (G) = (1/2)G)&G with & ∈ S=
++

5 ∗(H) = sup
G

(H)G − (1/2)G)&G)

=
1

2
H)&−1H
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Quasiconvex functions

5 : R= → R is quasiconvex if dom 5 is convex and the sublevel sets

(U = {G ∈ dom 5 | 5 (G) ≤ U}

are convex for all U

U

V

0 1 2

(U = [0, 1]
(V = (−∞, 2)

• 5 is quasiconcave if − 5 is quasiconvex

• 5 is quasilinear if it is quasiconvex and quasiconcave
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Examples

•
√

|G | is quasiconvex on R

• ceil(G) = inf{I ∈ Z | I ≥ G} is quasilinear

• log G is quasilinear on R++

• 5 (G1, G2) = G1G2 is quasiconcave on R2
++

• linear-fractional function

5 (G) = 0)G + 1

2)G + 3
, dom 5 = {G | 2)G + 3 > 0}

is quasilinear

• distance ratio

5 (G) = ‖G − 0‖2

‖G − 1‖2
, dom 5 = {G | ‖G − 0‖2 ≤ ‖G − 1‖2}

is quasiconvex
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Internal rate of return

• cash flow G = (G0, . . . , G=); G8 is payment in period 8 (to us if G8 > 0)

• we assume G0 < 0 and G0 + G1 + · · · + G= > 0

• present value of cash flow G, for interest rate A:

PV(G, A) =
=
∑

8=0

(1 + A)−8G8

• internal rate of return is smallest interest rate for which PV(G, A) = 0:

IRR(G) = inf{A ≥ 0 | PV(G, A) = 0}

IRR is quasiconcave: superlevel set is intersection of open halfspaces

IRR(G) ≥ ' ⇐⇒
=
∑

8=0

(1 + A)−8G8 > 0 for 0 ≤ A < '
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Properties

Modified Jensen inequality: for quasiconvex 5

0 ≤ \ ≤ 1 =⇒ 5 (\G + (1 − \)H) ≤ max{ 5 (G), 5 (H)}

First-order condition: differentiable 5 with cvx domain is quasiconvex iff

5 (H) ≤ 5 (G) =⇒ ∇ 5 (G)) (H − G) ≤ 0

G
∇ 5 (G)

Sums: sums of quasiconvex functions are not necessarily quasiconvex
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Log-concave and log-convex functions

a positive function 5 is log-concave if log 5 is concave:

5 (\G + (1 − \)H) ≥ 5 (G)\ 5 (H)1−\ for 0 ≤ \ ≤ 1

5 is log-convex if log 5 is convex

• powers: G0 on R++ is log-convex for 0 ≤ 0, log-concave for 0 ≥ 0

• many common probability densities are log-concave, e.g., normal:

5 (G) = 1
√

(2c)= detΣ
4−

1
2
(G−Ḡ))Σ−1(G−Ḡ)

• cumulative Gaussian distribution function Φ is log-concave

Φ(G) = 1
√

2c

∫ G

−∞
4−D

2/2 3D
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Properties of log-concave functions

• twice differentiable 5 with convex domain is log-concave if and only if

5 (G)∇2 5 (G) � ∇ 5 (G)∇ 5 (G)) for all G ∈ dom 5

• product of log-concave functions is log-concave

• sum of log-concave functions is not always log-concave

• integration: if 5 : R= × R< → R is log-concave, then

6(G) =
∫

5 (G, H) 3H

is log-concave (not easy to show)
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Consequences of integration property

• convolution 5 ∗ 6 of log-concave functions 5 , 6 is log-concave

( 5 ∗ 6) (G) =
∫

5 (G − H)6(H)3H

• if � ⊆ R= convex and H is a random variable with log-concave p.d.f. then

5 (G) = prob(G + H ∈ �)

is log-concave

proof: write 5 (G) as integral of product of log-concave functions

5 (G) =
∫

6(G + H)?(H) 3H, 6(D) =
{

1 D ∈ �

0 D ∉ �,

? is p.d.f. of H
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Example: yield function

. (G) = prob(G + | ∈ ()

• G ∈ R=: nominal parameter values for product

• | ∈ R=: random variations of parameters in manufactured product

• (: set of acceptable values

if ( is convex and | has a log-concave p.d.f., then

• . is log-concave

• yield regions {G | . (G) ≥ U} are convex
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