8. Geometric problems

- extremal volume ellipsoids
- centering
- classification
- placement and facility location

Minimum volume ellipsoid around a set

Löwner-John ellipsoid of a set C : minimum volume ellipsoid \mathcal{E} such that $C \subseteq \mathcal{E}$

- parametrize \mathcal{E} as $\mathcal{E}=\left\{v \mid\|A v+b\|_{2} \leq 1\right\}$; w.l.o.g. assume $A \in \mathbf{S}_{++}^{n}$
- $\operatorname{vol} \mathcal{E}$ is proportional to $\operatorname{det} A^{-1}$; to compute minimum volume ellipsoid,

$$
\begin{array}{ll}
\text { minimize (over } A, b) & \log \operatorname{det} A^{-1} \\
\text { subject to } & \sup _{v \in C}\|A v+b\|_{2} \leq 1
\end{array}
$$

convex, but evaluating the constraint can be hard (for general C)

Finite set $C=\left\{x_{1}, \ldots, x_{m}\right\}$:

$$
\begin{array}{ll}
\text { minimize (over } A, b) & \log \operatorname{det} A^{-1} \\
\text { subject to } & \left\|A x_{i}+b\right\|_{2} \leq 1, \quad i=1, \ldots, m
\end{array}
$$

also gives Löwner-John ellipsoid for polyhedron $\operatorname{conv}\left\{x_{1}, \ldots, x_{m}\right\}$

Maximum volume inscribed ellipsoid

maximum volume ellipsoid \mathcal{E} inside a convex set $C \subseteq \mathbf{R}^{n}$

- parametrize \mathcal{E} as $\mathcal{E}=\left\{B u+d \mid\|u\|_{2} \leq 1\right\}$; w.l.o.g. assume $B \in \mathbf{S}_{++}^{n}$
- $\operatorname{vol} \mathcal{E}$ is proportional to $\operatorname{det} B$; can compute \mathcal{E} by solving

$$
\begin{array}{ll}
\begin{array}{ll}
\operatorname{maximize} & \log \operatorname{det} B \\
\text { subject to } & \sup _{\|u\|_{2} \leq 1} I_{C}(B u+d) \leq 0
\end{array}
\end{array}
$$

(where $I_{C}(x)=0$ for $x \in C$ and $I_{C}(x)=\infty$ for $x \notin C$)
convex, but evaluating the constraint can be hard (for general C)
Polyhedron $\left\{x \mid a_{i}^{T} x \leq b_{i}, i=1, \ldots, m\right\}$:

$$
\begin{array}{ll}
\text { maximize } & \log \operatorname{det} B \\
\text { subject to } & \left\|B a_{i}\right\|_{2}+a_{i}^{T} d \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

(constraint follows from $\sup _{\|u\|_{2} \leq 1} a_{i}^{T}(B u+d)=\left\|B a_{i}\right\|_{2}+a_{i}^{T} d$)

Efficiency of ellipsoidal approximations

$C \subseteq \mathbf{R}^{n}$ convex, bounded, with nonempty interior

- Löwner-John ellipsoid, shrunk by a factor n, lies inside C
- maximum volume inscribed ellipsoid, expanded by a factor n, covers C

Example (for two polyhedra in \mathbf{R}^{2})

factor n can be improved to \sqrt{n} if C is symmetric

Centering

some possible definitions of 'center' of a convex set C :

- center of largest inscribed ball ('Chebyshev center’) for polyhedron, can be computed via linear programming (page 4.16)
- center of maximum volume inscribed ellipsoid (page 8.3)

MVE center is invariant under affine coordinate transformations

Analytic center of a set of inequalities

the analytic center of set of convex inequalities and linear equations

$$
f_{i}(x) \leq 0, \quad i=1, \ldots, m, \quad F x=g
$$

is defined as the optimal point of

$$
\begin{array}{ll}
\text { minimize } & -\sum_{i=1}^{m} \log \left(-f_{i}(x)\right) \\
\text { subject to } & F x=g
\end{array}
$$

- more easily computed than MVE or Chebyshev center (see later)
- not just a property of the feasible set: two sets of inequalities can describe the same set, but have different analytic centers

Analytic center of linear inequalities

$$
a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
$$

x_{ac} is minimizer of

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)
$$

inner and outer ellipsoids from analytic center:

$$
\mathcal{E}_{\text {inner }} \subseteq\left\{x \mid a_{i}^{T} x \leq b_{i}, i=1, \ldots, m\right\} \subseteq \mathcal{E}_{\text {outer }}
$$

where

$$
\begin{aligned}
& \mathcal{E}_{\text {inner }}=\left\{x \mid\left(x-x_{\mathrm{ac}}\right)^{T} \nabla^{2} \phi\left(x_{\mathrm{ac}}\right)\left(x-x_{\mathrm{ac}}\right) \leq 1\right\} \\
& \mathcal{E}_{\text {outer }}=\left\{x \mid\left(x-x_{\mathrm{ac}}\right)^{T} \nabla^{2} \phi\left(x_{\mathrm{ac}}\right)\left(x-x_{\mathrm{ac}}\right) \leq m(m-1)\right\}
\end{aligned}
$$

Linear discrimination

separate two sets of points $\left\{x_{1}, \ldots, x_{N}\right\},\left\{y_{1}, \ldots, y_{M}\right\}$ by a hyperplane:

$$
a^{T} x_{i}+b>0, \quad i=1, \ldots, N, \quad a^{T} y_{i}+b<0, \quad i=1, \ldots, M
$$

homogeneous in a, b, hence equivalent to

$$
a^{T} x_{i}+b \geq 1, \quad i=1, \ldots, N, \quad a^{T} y_{i}+b \leq-1, \quad i=1, \ldots, M
$$

a set of linear inequalities in a, b

Robust linear discrimination

(Euclidean) distance between hyperplanes

$$
\begin{aligned}
\mathcal{H}_{1} & =\left\{z \mid a^{T} z+b=1\right\} \\
\mathcal{H}_{2} & =\left\{z \mid a^{T} z+b=-1\right\}
\end{aligned}
$$

is $d\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)=2 /\|a\|_{2}$
to separate two sets of points by maximum margin,

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2)\|a\|_{2} \\
\text { subject to } & a^{T} x_{i}+b \geq 1, \quad i=1, \ldots, N \tag{1}\\
& a^{T} y_{i}+b \leq-1, \quad i=1, \ldots, M
\end{array}
$$

(after squaring objective) a QP in a, b

Lagrange dual of maximum margin separation problem (1)

$$
\begin{array}{ll}
\text { maximize } & \mathbf{1}^{T} \lambda+\mathbf{1}^{T} \mu \\
\text { subject to } & 2\left\|\sum_{i=1}^{N} \lambda_{i} x_{i}-\sum_{i=1}^{M} \mu_{i} y_{i}\right\|_{2} \leq 1 \tag{2}\\
& \mathbf{1}^{T} \lambda=\mathbf{1}^{T} \mu, \quad \lambda \geq 0, \quad \mu \geq 0
\end{array}
$$

from duality, optimal value is inverse of maximum margin of separation

Interpretation

- change variables to

$$
\theta_{i}=\frac{\lambda_{i}}{\mathbf{1}^{T} \lambda}, \quad \gamma_{i}=\frac{\mu_{i}}{\mathbf{1}^{T} \mu}, \quad t=\frac{1}{\mathbf{1}^{T} \lambda+\mathbf{1}^{T} \mu}
$$

- invert objective to minimize $1 /\left(\mathbf{1}^{T} \lambda+\mathbf{1}^{T} \mu\right)=t$

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & \left\|\sum_{i=1}^{N} \theta_{i} x_{i}-\sum_{i=1}^{M} \gamma_{i} y_{i}\right\|_{2} \leq t \\
& \theta \geq 0, \quad \mathbf{1}^{T} \theta=1, \quad \gamma \geq 0, \quad \mathbf{1}^{T} \gamma=1
\end{array}
$$

optimal value is distance between convex hulls

Approximate linear separation of non-separable sets

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} u+\mathbf{1}^{T} v \\
\text { subject to } & a^{T} x_{i}+b \geq 1-u_{i}, \quad i=1, \ldots, N \\
& a^{T} y_{i}+b \leq-1+v_{i}, \quad i=1, \ldots, M \\
& u \geq 0, \quad v \geq 0
\end{array}
$$

- an LP in a, b, u, v
- at optimum, $u_{i}=\max \left\{0,1-a^{T} x_{i}-b\right\}, v_{i}=\max \left\{0,1+a^{T} y_{i}+b\right\}$
- can be interpreted as a heuristic for minimizing \#misclassified points

Support vector classifier

$$
\begin{array}{ll}
\operatorname{minimize} & \|a\|_{2}+\gamma\left(\mathbf{1}^{T} u+\mathbf{1}^{T} v\right) \\
\text { subject to } & a^{T} x_{i}+b \geq 1-u_{i}, \quad i=1, \ldots, N \\
& a^{T} y_{i}+b \leq-1+v_{i}, \quad i=1, \ldots, M \\
& u \geq 0, \quad v \geq 0
\end{array}
$$

produces point on trade-off curve between inverse of margin $2 /\|a\|_{2}$ and classification error, measured by total slack $\mathbf{1}^{T} u+\mathbf{1}^{T} v$
same example as previous page, with $\gamma=0.1$:

Nonlinear discrimination

separate two sets of points by a nonlinear function:

$$
f\left(x_{i}\right)>0, \quad i=1, \ldots, N, \quad f\left(y_{i}\right)<0, \quad i=1, \ldots, M
$$

- choose a linearly parametrized family of functions

$$
\begin{array}{r}
f(z)=\theta^{T} F(z) \\
F=\left(F_{1}, \ldots, F_{k}\right): \mathbf{R}^{n} \rightarrow \mathbf{R}^{k} \text { are basis functions }
\end{array}
$$

- solve a set of linear inequalities in θ :

$$
\theta^{T} F\left(x_{i}\right) \geq 1, \quad i=1, \ldots, N, \quad \theta^{T} F\left(y_{i}\right) \leq-1, \quad i=1, \ldots, M
$$

Quadratic discrimination: $f(z)=z^{T} P z+q^{T} z+r$

$$
x_{i}^{T} P x_{i}+q^{T} x_{i}+r \geq 1, \quad y_{i}^{T} P y_{i}+q^{T} y_{i}+r \leq-1
$$

can add additional constraints (e.g., $P \leq-I$ to separate by an ellipsoid)
Polynomial discrimination: $F(z)$ are all monomials up to a given degree

separation by ellipsoid
separation by 4th degree polynomial

Placement and facility location

- N points with coordinates $x_{i} \in \mathbf{R}^{2}$ (or \mathbf{R}^{3})
- some positions x_{i} are given; the other x_{i} 's are variables
- for each pair of points, a cost function $f_{i j}\left(x_{i}, x_{j}\right)$

Placement problem

$$
\text { minimize } \sum_{i \neq j} f_{i j}\left(x_{i}, x_{j}\right)
$$

variables are positions of free points

Interpretations

- points represent plants or warehouses; $f_{i j}$ is transportation cost between facilities i and j
- points represent cells on an IC; $f_{i j}$ represents wirelength

Example: minimize $\sum_{(i, j) \in \mathcal{A}} h\left(\left\|x_{i}-x_{j}\right\|_{2}\right)$, with 6 free points, 27 links
optimal placement for $h(z)=z, h(z)=z^{2}, h(z)=z^{4}$

histograms of connection lengths $\left\|x_{i}-x_{j}\right\|_{2}$

Geometric problems

