L. Vandenberghe ECE236B (Winter 2025)

1. Introduction

e mathematical optimization

e least squares and linear programming
e convex optimization

e example

e course information
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o x = (xg,..

Mathematical optimization

minimize  fy(x)
subjectto  f;(x) <0, i=1,...,m
hi(x)=0, i=1,...,p

., X, ). optimization variables

e fo: objective function

* fi...
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s fms R, -

., hp: inequality and equality constraint functions
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Examples

Optimal design and control

e variables represent design parameters, decisions, control actions
e objective function measures performance, cost, deviation from desired outcome

e constraints represent design specifications, restrict allowable choices

Model fitting and approximation

e variables are model parameters
e objective includes approximation or prediction error, regularization terms

e constraints represent prior knowledge, restrictions on possible values
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Solving optimization problems

General optimization problem

e very difficult to solve with guarantees of global optimality

e good suboptimal solutions are often sufficient in applications

Exceptions: important classes of problems can be solved globally and efficiently

e |least squares
e linear programming

e convex optimization
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Least squares

m
minimize  [|Ax — b3 = > (
i=1 j

n
2
aijxj — b;)
=1

e A is an m X n matrix, b is an m-vector

e |yl = \/y% +- -+ + y2 is the Euclidean norm of m-vector y

e optimal solutions satisfy the normal equations AT Ax = ATb

e if A has full column rank, there is a unique solution x = (ATA)~1ATH
e reliable and efficient algorithms and software

e casy to recognize in applications

e flexibility is increased by adding weights, quadratic regularization terms
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Example: fit sphere to set of points

m m
minimize (lyi = ull5 = R*)? = D (llyill3 = 2y7 u + ||ull5 - R*)?
i:l l:1

® Vi,..., Yy, are m given points in R”
e optimization variables are center u € R” and radius R € R of the fitted sphere

e not a least squares problem, due to the nonlinear terms R?, ||u||§
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Least squares formulation

m
minimize (lyill3 = 2y7 u + w)?

i=1

e use u and w := ||ul|5 — R* as variables

e a least squares problem: minimize ||Ax — b||% where

1 —Zy{
1 —Zy%
1 -2y,

e from least squares solution w, u, compute radius
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R = \Jllull? - w

~lly2ll3

~lIy1ll3

—lyml3
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Exactness of least squares formulation

we omitted the constraint in

m
minimize _zl(||y,-||§ = 2yTu + w)?
1=

subjectto  [jull5—w >0

e constraint is needed to guarantee we can compute R = \/||u||% —w

e constraint can be omitted because least squares solution satisfies ||u||% —w >0

e this follows from the normal equations A’ (Ax — b) = 0: first equation is

0 = 11(Ax-b) (1 is m-vector of ones)
m
= D (w=2yju+yl3)
i=1

m

2 2

= m(w— llull3) + > lyi - ully
i=1
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Linear programming

minimize c¢lx =cix;+ -+ cpxy

subject to al.Tx+b,° <0, i=1,...,m

e no analytical formula for solution
e reliable and efficient algorithms and software
e not as easy to recognize as least squares problems

e a few standard techniques are used to convert problems into linear programs

e.g., handling 1-norms or co-norms, piecewise-linear functions
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Example: 1-norm approximation

minimize ||Ax — b||;

e A is an m X n matrix, b is an m-vector

o |[yll1 =I|yil+[y2l +---+|yml| is 1-norm of y

e linear programming formulation:

minimize t1+tH+---+1,
subjectto -t <ajixi+apxy+---+agx,—by <ty
—ty) < arixy+ayxy+---+ayx,— by <t
—tm < Apm1X1+ auoXo + -+ AppXn — by <ty
a linear program with variables x and uy, . . ., u,;,
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Convex optimization problem

minimize  fy(x)
subjectto  f;(x) <0, i=1,...,m
Ax=b>b

e objective and inequality constraint functions are convex: for0 < 6 < 1,

fi(0x + (1 - 0)y) < 0fi(x) + (1 -6)fi(y)
(see lecture 3)

e equality constraints are linear

e includes least squares problems and linear programs as special cases
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Using convex optimization

e no analytical formula for solution

e reliable and efficient algorithms

e may be difficult to recognize in applications

e many techniques available for transforming problems into convex form
e surprisingly many problems can be solved via convex optimization

e modeling languages (CVXPY, CVX, ...) greatly simplify interface with solvers
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Example

e n lamps illuminate m (small, flat) patches

[ J [
lamp power x;

illumination I

e intensity /; at patch k depends linearly on lamp powers x;:

n
— o L= 2 :
I (x) = Z} ay;xj, where a;; = I max{cos 6y ;, 0}
J:

Problem: achieve desired illumination /4., with bounded lamp powers

minimize knllax | log I, (x) — log I 4]
=1,..., m

subjectto 0<x; < pmax, Jj=1,...,n
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Approximate solutions
1. use uniform power: x; = pforj=1,...,n,vary p
2. use least squares: solve

m
minimize > (Ix(x) — Iges)?
k=1

and round x; if x; > pmax Orx; <0

3. use weighted least squares:

o m B 2 . & 1 2
minimize kZl(Ik(X) Tges)” + _Zl w;(Xj — 5Pmax)
= ]:

iteratively adjust weights w; until 0 < x; < pmax

4. use linear programming:

minimize max | (x) — Iges|
=1,..., m

subjectto 0<x; < pmax, Jj=1,...,n
which can be solved via linear programming
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Convex formulation
problem is equivalent to

minimize fo(x)=k_maX h(1(x)/1ges)

..... m
subjectto 0<x; < pmax, J=1,...,n

with A(u) = max{u, 1/u}

-
—
AN\
W
N

fo is a convex function (see lecture 3)

exact solution obtained with effort ~ modest factor x least squares effort
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Nonconvex optimization

algorithms for general nonconvex optimization

Local optimization (nonlinear programming)

e find a solution that minimizes objective among feasible points near it
e fast algorithms, handle large problems
e often require initial guess

e provide no information about distance to (global) optimum

Global optimization

e find the global solution, with guarantee of optimality

e worst-case complexity grows exponentially with problem size

these algorithms are often based on iteratively solving convex subproblems
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Course information

Course material

e textbook available online at web.stanford.edu/"boyd/cvxbook

e |lecture slides, homework assignments on Bruin Learn course website
bruinlearn.ucla.edu/courses/199167

e slides from previous years available on www.seas.ucla.edu/"vandenbe/ee236b

Course requirements (see syllabus on the on the course website)
e weekly homework

e computational problems will use the Python package CVXPY (cvxpy.org) or the
MATLAB package CVX (cvxr.com)

e open-book final exam (Wednesday, March 19, 8am—11am)
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