
L. Vandenberghe ECE236B (Winter 2025)

1. Introduction

• mathematical optimization

• least squares and linear programming

• convex optimization

• example

• course information

1.1

Mathematical optimization

minimize 50(G)

subject to 58 (G) ≤ 0, 8 = 1, . . . , <

ℎ8 (G) = 0, 8 = 1, . . . , ?

• G = (G1, . . . , G=): optimization variables

• 50: objective function

• 51, . . . , 5<, ℎ1, . . . , ℎ?: inequality and equality constraint functions

Introduction 1.2

Examples

Optimal design and control

• variables represent design parameters, decisions, control actions

• objective function measures performance, cost, deviation from desired outcome

• constraints represent design specifications, restrict allowable choices

Model fitting and approximation

• variables are model parameters

• objective includes approximation or prediction error, regularization terms

• constraints represent prior knowledge, restrictions on possible values

Introduction 1.3

Solving optimization problems

General optimization problem

• very difficult to solve with guarantees of global optimality

• good suboptimal solutions are often sufficient in applications

Exceptions: important classes of problems can be solved globally and efficiently

• least squares

• linear programming

• convex optimization

Introduction 1.4

Least squares

minimize ‖�G − 1‖2
2 =

<∑

8=1

(
=∑

9=1

08 9G 9 − 18)
2

• � is an < × = matrix, 1 is an <-vector

• ‖H‖2 =

√
H2

1
+ · · · + H2

< is the Euclidean norm of <-vector H

• optimal solutions satisfy the normal equations �)�G = �)1

• if � has full column rank, there is a unique solution G = (�)�)−1�)1

• reliable and efficient algorithms and software

• easy to recognize in applications

• flexibility is increased by adding weights, quadratic regularization terms

Introduction 1.5

Example: fit sphere to set of points

minimize
<∑

8=1

(‖H8 − D‖2
2 − '2)2 =

<∑

8=1

(‖H8‖
2
2 − 2H)8 D + ‖D‖2

2 − '2)2

• H1, . . . , H< are < given points in R
?

• optimization variables are center D ∈ R
? and radius ' ∈ R of the fitted sphere

• not a least squares problem, due to the nonlinear terms '2, ‖D‖2
2

Introduction 1.6

Least squares formulation

minimize
<∑

8=1

(‖H8‖
2
2 − 2H)8 D + |)2

• use D and | := ‖D‖2
2
− '2 as variables

• a least squares problem: minimize ‖�G − 1‖2
2

where

� =

1 −2H)
1

1 −2H2
2

... ...

1 −2H)<

, G =

[
|

D

]
, 1 =

−‖H1‖
2
2

−‖H2‖
2
2

...

−‖H<‖
2
2

• from least squares solution |, D, compute radius

' =

√
‖D‖2

2
− |

Introduction 1.7

Exactness of least squares formulation

we omitted the constraint in

minimize
<∑
8=1

(‖H8‖
2
2
− 2H)

8
D + |)2

subject to ‖D‖2
2
− | ≥ 0

• constraint is needed to guarantee we can compute ' =

√
‖D‖2

2
− |

• constraint can be omitted because least squares solution satisfies ‖D‖2
2
− | ≥ 0

• this follows from the normal equations �) (�G − 1) = 0: first equation is

0 = 1
) (�G − 1) (1 is <-vector of ones)

=

<∑

8=1

(| − 2H)8 D + ‖H8‖
2
2)

= <(| − ‖D‖2
2) +

<∑

8=1

‖H8 − D‖2
2

Introduction 1.8

Linear programming

minimize 2)G = 21G1 + · · · + 2=G=
subject to 0)

8
G + 18 ≤ 0, 8 = 1, . . . , <

• no analytical formula for solution

• reliable and efficient algorithms and software

• not as easy to recognize as least squares problems

• a few standard techniques are used to convert problems into linear programs

e.g., handling 1-norms or ∞-norms, piecewise-linear functions

Introduction 1.9

Example: 1-norm approximation

minimize ‖�G − 1‖1

• � is an < × = matrix, 1 is an <-vector

• ‖H‖1 = |H1 | + |H2 | + · · · + |H< | is 1-norm of H

• linear programming formulation:

minimize C1 + C2 + · · · + C<
subject to −C1 ≤ 011G1 + 012G2 + · · · + 01=G= − 11 ≤ C1

−C2 ≤ 021G1 + 022G2 + · · · + 02=G= − 12 ≤ C2
· · ·

−C< ≤ 0<1G1 + 0<2G2 + · · · + 0<=G= − 1< ≤ C<

a linear program with variables G and D1, . . . , D<

Introduction 1.10

Convex optimization problem

minimize 50(G)

subject to 58 (G) ≤ 0, 8 = 1, . . . , <

�G = 1

• objective and inequality constraint functions are convex: for 0 ≤ \ ≤ 1,

58 (\G + (1 − \)H) ≤ \ 58 (G) + (1 − \) 58 (H)

(see lecture 3)

• equality constraints are linear

• includes least squares problems and linear programs as special cases

Introduction 1.11

Using convex optimization

• no analytical formula for solution

• reliable and efficient algorithms

• may be difficult to recognize in applications

• many techniques available for transforming problems into convex form

• surprisingly many problems can be solved via convex optimization

• modeling languages (CVXPY, CVX, . . .) greatly simplify interface with solvers

Introduction 1.12

Example

• = lamps illuminate < (small, flat) patches

lamp power G 9

A: 9
\: 9

illumination �:

• intensity �: at patch : depends linearly on lamp powers G 9 :

�: (G) =
=∑

9=1

0: 9G 9 , where 0: 9 = A−2
: 9

max{cos \: 9 , 0}

Problem: achieve desired illumination �des with bounded lamp powers

minimize max
:=1,...,<

| log �: (G) − log �des |

subject to 0 ≤ G 9 ≤ ?max, 9 = 1, . . . , =

Introduction 1.13

Approximate solutions

1. use uniform power: G 9 = ? for 9 = 1, . . . , =, vary ?

2. use least squares: solve

minimize
<∑
:=1

(�: (G) − �des)
2

and round G 9 if G 9 > ?max or G 9 < 0

3. use weighted least squares:

minimize
<∑
:=1

(�: (G) − �des)
2 +

=∑
9=1

| 9 (G 9 −
1
2
?max)

2

iteratively adjust weights | 9 until 0 ≤ G 9 ≤ ?max

4. use linear programming:

minimize max
:=1,...,<

|�: (G) − �des |

subject to 0 ≤ G 9 ≤ ?max, 9 = 1, . . . , =

which can be solved via linear programming

Introduction 1.14

Convex formulation

problem is equivalent to

minimize 50(G) = max
:=1,...,<

ℎ(�: (G)/�des)

subject to 0 ≤ G 9 ≤ ?max, 9 = 1, . . . , =

with ℎ(D) = max{D, 1/D}

0 1 2 3 4
0

1

2

3

4

5

D

ℎ
(D
)

50 is a convex function (see lecture 3)

exact solution obtained with effort ≈ modest factor × least squares effort

Introduction 1.15

Nonconvex optimization

algorithms for general nonconvex optimization

Local optimization (nonlinear programming)

• find a solution that minimizes objective among feasible points near it

• fast algorithms, handle large problems

• often require initial guess

• provide no information about distance to (global) optimum

Global optimization

• find the global solution, with guarantee of optimality

• worst-case complexity grows exponentially with problem size

these algorithms are often based on iteratively solving convex subproblems

Introduction 1.16

Course information

Course material

• textbook available online at web.stanford.edu/˜boyd/cvxbook

• lecture slides, homework assignments on Bruin Learn course website

bruinlearn.ucla.edu/courses/199167

• slides from previous years available on www.seas.ucla.edu/˜vandenbe/ee236b

Course requirements (see syllabus on the on the course website)

• weekly homework

• computational problems will use the Python package CVXPY (cvxpy.org) or the

MATLAB package CVX (cvxr.com)

• open-book final exam (Wednesday, March 19, 8am–11am)

Introduction 1.17

https://web.stanford.edu/~boyd/cvxbook
https://bruinlearn.ucla.edu/courses/199167
https://www.seas.ucla.edu/~vandenbe/ee236b
https://www.cvxpy.org
http://cvxr.com/cvx

