L. Vandenberghe ECE236B (Winter 2024)

1. Introduction

e mathematical optimization

e |east squares and linear programming
e convex optimization

e example

e course information
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o x = (xg,..

Mathematical optimization

minimize  fy(x)
subjectto  fi(x) <0, i=1,...,m
hi(x)=0, i=1,...,p

., X, ). optimization variables

e fo: objective function

* f1,..
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.,fm, hl,...

, hy: inequality and equality constraint functions
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Examples

Optimal designh and control

e variables represent design parameters, decisions, control actions
e objective function measures performance, cost, deviation from desired outcome

e constraints represent design specifications, restrict allowable choices

Model fitting and approximation

e variables are model parameters
e objective includes approximation or prediction error, regularization terms

e constraints represent prior knowledge, restrictions on possible values
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Solving optimization problems

General optimization problem

e very difficult to solve with guarantees of global optimality

e good suboptimal solutions are often sufficient in applications

Exceptions: important classes of problems can be solved globally and efficiently

e least squares
e linear programming

e convex optimization
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Least squares

minimize ||Ax — b||% = Z(Z Ajjxj — bi)*
P

e solution: x = (ATA)~1ATp if A has full column rank
e reliable and efficient algorithms and software
e casy to recognize in applications

e flexibility is increased by adding weights, quadratic regularization terms
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Linear programming

minimize c¢'x =cix;+ -+ cpxy,
subjectto alx+b; <0, i=1,...,m

e no analytical formula for solution
e reliable and efficient algorithms and software
e not as easy to recognize as least squares problems

e a few standard techniques are used to convert problems into linear programs

e.g., handling 1-norms or co-norms, piecewise-linear functions
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Convex optimization problem

minimize  fy(x)
subjectto fi(x) <0, i=1,...,m
Ax=b

e objective and inequality constraint functions are convex: for0 < 6 < 1,

Ji(0x + (1 -0)y) < 0fi(x) + (1-6)fi(y)
(see lecture 3)

e equality constraints are linear

e includes least squares problems and linear programs as special cases
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Using convex optimization

e no analytical formula for solution

e reliable and efficient algorithms

e may be difficult to recognize in applications

e many techniques available for transforming problems into convex form
e surprisingly many problems can be solved via convex optimization

e modeling languages (CVXPY, CVX, ...) greatly simplify interface with solvers
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Example

e n lamps illuminate m (small, flat) patches

([ [ ]
lamp power x;

illumination I

e intensity /; at patch k depends linearly on lamp powers x;:

n
_ o =2 .
I (x) = Z} ajxj, where a;; = o max{cos 6y ;, 0}
J:

Problem: achieve desired illumination /4., with bounded lamp powers

minimize  max | log I, (x) — log Ies|
=1,..., m

subjectto 0<x; < pmax, Jj=1,...,n
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Approximate solutions

1. use uniform power: x; = pforj=1,...,n,vary p

2. use least squares: solve

m
minimize Y (I (x) — Iges)?
k=1

and round x; if x; > pmax Orx; <0

3. use weighted least squares:

m n
minimize kZl(Ik(x) — Iges) + Zl wj(Xj = Pmax/2)?
= ]:
iteratively adjust weights w; until 0 < x; < pmax
4. use linear programming:

minimize max |1 (x) — Ige]
=1,..., m

subjectto 0 <x; < pmax, Jj=1,...,n
which can be solved via linear programming
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Convex formulation

problem is equivalent to

minimize  fo(x) = max A(l;(x)/lges)

..... m
subjectto 0<x; < pmax, Jj=1,...,n

with A(u) = max{u, 1/u}

-]
—_
SN
W
N

fo is a convex function (see lecture 3)

exact solution obtained with effort * modest factor X least squares effort
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Nonconvex optimization

algorithms for general nonconvex optimization

Local optimization (nonlinear programming)

e find a solution that minimizes objective among feasible points near it
e fast algorithms, handle large problems
e often require initial guess

e provide no information about distance to (global) optimum

Global optimization

e find the global solution, with guarantee of optimality

e worst-case complexity grows exponentially with problem size

these algorithms are often based on iteratively solving convex subproblems
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Course information

Course material

e textbook available online at web.stanford.edu/"boyd/cvxbook

e lecture slides, homework assignments on Bruin Learn course website
bruinlearn.ucla.edu/courses/177014

e slides from previous years available on www.seas.ucla.edu/"vandenbe/ee236b

Course requirements (see syllabus on the on the course website)

e weekly homework

e computational problems will use the Python package CVXPY (cvxpy.org) or the
MATLAB package CVX (cvxr.com)

e open-book final exam (Tuesday, March 19, 11:30am—-2:30pm)

Introduction


https://web.stanford.edu/~boyd/cvxbook
https://bruinlearn.ucla.edu/courses/177014
https://www.seas.ucla.edu/~vandenbe/ee236b
https://www.cvxpy.org
http://cvxr.com/cvx

