
L. Vandenberghe ECE236B (Winter 2023)

9. Numerical linear algebra background

• matrix structure and algorithm complexity

• solving linear equations with factored matrices

• LU, Cholesky, LDLT factorization

• block elimination and the matrix inversion lemma

• solving underdetermined equations

9.1

Matrix structure and algorithm complexity

cost (execution time) of solving �G = 1 with � ∈ R
=×=

• for general methods, grows as =3

• less if � is structured (banded, sparse, Toeplitz, . . .)

Flop counts

• flop (floating-point operation): one addition, subtraction, multiplication, or

division of two floating-point numbers

• to estimate complexity of an algorithm: express number of flops as a

(polynomial) function of the problem dimensions, and simplify by keeping only

the leading terms

• not an accurate predictor of computation time on modern computers

• useful as a rough estimate of complexity

Numerical linear algebra background 9.2

Basic operations

Vector–vector operations (G, H ∈ R
=)

• inner product G) H: 2= − 1 flops (or 2= if = is large)

• sum G + H, scalar multiplication UG: = flops

Matrix–vector product H = �G with � ∈ R
<×=

• <(2= − 1) flops (or 2<= if = large)

• 2# if � is sparse with # nonzero elements

• 2?(= + <) if � is given as � = *+) , * ∈ R
<×?, + ∈ R

=×?

Matrix–matrix product � = �� with � ∈ R
<×=, � ∈ R

=×?

• <?(2= − 1) flops (or 2<=? if = large)

• less if � and/or � are sparse

• (1/2)<(< + 1) (2= − 1) ≈ <2= if < = ? and � symmetric

Numerical linear algebra background 9.3

Linear equations that are easy to solve

Diagonal matrices (08 9 = 0 if 8 ≠ 9): = flops

G = �−11 = (11/011, . . . , 1=/0==)

Lower triangular (08 9 = 0 if 9 > 8): =2 flops

G1 := 11/011

G2 := (12 − 021G1)/022

G3 := (13 − 031G1 − 032G2)/033

...

G= := (1= − 0=1G1 − 0=2G2 − · · · − 0=,=−1G=−1)/0==

called forward substitution

Upper triangular (08 9 = 0 if 9 < 8): =2 flops via backward substitution

Numerical linear algebra background 9.4

Linear equations that are easy to solve

Orthogonal matrices: �−1
= �)

• 2=2 flops to compute G = �)1 for general �

• less with structure, e.g., if � = � − 2DD) with ‖D‖2 = 1, we can compute

G = �)1 = 1 − 2(D)1)D in 4= flops

Permutation matrices:

08 9 =

{
1 9 = c8
0 otherwise

where c = (c1, c2, . . . , c=) is a permutation of (1, 2, . . . , =)

• interpretation: �G = (Gc1
, . . . , Gc=)

• satisfies �−1
= �) , hence cost of solving �G = 1 is 0 flops

example:

� =



0 1 0

0 0 1

1 0 0


, �−1

= �) =



0 0 1

1 0 0

0 1 0



Numerical linear algebra background 9.5

The factor–solve method for solving �G = 1

• factor � as a product of simple matrices (usually 2 or 3):

� = �1�2 · · · �:

(�8 diagonal, upper or lower triangular, etc)

• compute G = �−11 = �−1

:
· · · �−1

2
�−1

1
1 by solving : ‘easy’ equations

�1G1 = 1, �2G2 = G1, . . . , �:G = G:−1

cost of factorization step usually dominates cost of solve step

Equations with multiple righthand sides

�G1 = 11, �G2 = 12, . . . , �G< = 1<

cost: one factorization plus < solves

Numerical linear algebra background 9.6

LU factorization

every nonsingular matrix � can be factored as

� = %!*

with % a permutation matrix, ! lower triangular, * upper triangular

cost: (2/3)=3 flops

Solving linear equations by LU factorization

given: a set of linear equations �G = 1, with � nonsingular

1. LU factorization: factor � as � = %!* ((2/3)=3 flops)

2. permutation: solve %I1 = 1 (0 flops)

3. forward substitution: solve !I2 = I1 (=2 flops)

4. backward substitution: solve *G = I2 (=2 flops)

cost: (2/3)=3 + 2=2 ≈ (2/3)=3 for large =

Numerical linear algebra background 9.7

Sparse LU factorization

� = %1!*%2

• adding permutation matrix %2 offers possibility of sparser !, * (hence, cheaper

factor and solve steps)

• %1 and %2 chosen (heuristically) to yield sparse !, *

• choice of %1 and %2 depends on sparsity pattern and values of �

• cost is usually much less than (2/3)=3; exact value depends in a complicated

way on =, number of zeros in �, sparsity pattern

Numerical linear algebra background 9.8

Cholesky factorization

every positive definite � can be factored as

� = !!)

with ! lower triangular

cost: (1/3)=3 flops

Solving linear equations by Cholesky factorization

given: a set of linear equations �G = 1, with � ∈ S
=
++

1. Cholesky factorization: Factor � as � = !!) ((1/3)=3 flops)

2. forward substitution: solve !I1 = 1 (=2 flops)

3. backward substitution: solve !)G = I1 (=2 flops)

cost: (1/3)=3 + 2=2 ≈ (1/3)=3 for large =

Numerical linear algebra background 9.9

Sparse Cholesky factorization

� = %!!)%)

• adding permutation matrix % offers possibility of sparser !

• % chosen (heuristically) to yield sparse !

• choice of % only depends on sparsity pattern of � (unlike sparse LU)

• cost is usually much less than (1/3)=3; exact value depends in a complicated

way on =, number of zeros in �, sparsity pattern

Numerical linear algebra background 9.10

LDLT factorization

every nonsingular symmetric matrix � can be factored as

� = %!�!)%)

with % a permutation matrix, ! lower triangular, � block diagonal with 1 × 1 or

2 × 2 diagonal blocks

cost: (1/3)=3

• cost of solving symmetric sets of linear equations by LDLT factorization:

1

3
=3 + 2=2 ≈

1

3
=3

• for sparse �, can choose % to yield sparse !; cost ≪ (1/3)=3

Numerical linear algebra background 9.11

Equations with structured sub-blocks

[
�11 �12

�21 �22

] [
G1

G2

]
=

[
11

12

]
(1)

• variables G1 ∈ R
=1, G2 ∈ R

=2; blocks �8 9 ∈ R
=8×= 9

• if �11 is nonsingular, can eliminate G1: G1 = �−1

11
(11 − �12G2)

• to compute G2, solve

(�22 − �21�
−1

11
�12)G2 = 12 − �21�

−1

11
11

Solving linear equations by block elimination

given: a nonsingular set of linear equations (1), with �11 nonsingular

1. form �−1

11
�12 and �−1

11
11

2. form (= �22 − �21�
−1

11
�12 and 1̃ = 12 − �21�

−1

11
11

3. determine G2 by solving (G2 = 1̃

4. determine G1 by solving �11G1 = 11 − �12G2

Numerical linear algebra background 9.12

Complexity of block elimination

Dominant terms in flop count

• step 1: 5 + =2B (5 is cost of factoring �11; B is cost of solve step)

• step 2: 2=2

2
=1 (cost dominated by product of �21 and �−1

11
�12)

• step 3: (2/3)=3

2

total: 5 + =2B + 2=2

2
=1 + (2/3)=3

2

Examples

• general �11 (5 = (2/3)=3

1
, B = 2=2

1
): no gain over standard method

#flops =
2

3
=3

1
+ 2=2

1
=2 + 2=2

2
=1 +

2

3
=3

2
=

2

3
(=1 + =2)

3

• block elimination is useful for structured �11 (5 ≪ =3

1
)

• for example, diagonal (5 = 0, B = =1): #flops ≈ 2=2

2
=1 + (2/3)=3

2

Numerical linear algebra background 9.13

Structured matrix plus low rank term

(� + ��)G = 1

• � ∈ R
=×=, � ∈ R

=×?, � ∈ R
?×=

• assume � has structure (�G = 1 easy to solve)

first write as [
� �

� −�

] [
G

H

]
=

[
1

0

]

now apply block elimination: solve

(� + ��−1�)H = ��−11,

then solve �G = 1 − �H

this proves the matrix inversion lemma: if � and � + �� nonsingular,

(� + ��)−1
= �−1 − �−1�(� + ��−1�)−1��−1

Numerical linear algebra background 9.14

Structured matrix plus low rank term

(� + ��)G = 1

Example: � diagonal, �,� dense

• method 1: form � = � + ��, then solve �G = 1

cost: (2/3)=3 + 2?=2

• method 2 (via matrix inversion lemma): solve

(� + ��−1�)H = ��−11, (2)

then compute G = �−11 − �−1�H

total cost is dominated by (2): 2?2= + (2/3)?3 (i.e., linear in =)

Numerical linear algebra background 9.15

Underdetermined linear equations

if � ∈ R
?×= with ? < =, rank � = ?,

{G | �G = 1} = {�I + Ĝ | I ∈ R
=−?}

• Ĝ is (any) particular solution

• columns of � ∈ R
=×(=−?) span nullspace of �

• there exist several numerical methods for computing �

(QR factorization, rectangular LU factorization, . . .)

Numerical linear algebra background 9.16

