9. Numerical linear algebra background

- matrix structure and algorithm complexity
- solving linear equations with factored matrices
- LU, Cholesky, LDL^T factorization
- block elimination and the matrix inversion lemma
- solving underdetermined equations

Matrix structure and algorithm complexity

cost (execution time) of solving Ax = b with $A \in \mathbf{R}^{n \times n}$

- for general methods, grows as n^3
- less if *A* is structured (banded, sparse, Toeplitz, ...)

Flop counts

- flop (floating-point operation): one addition, subtraction, multiplication, or division of two floating-point numbers
- to estimate complexity of an algorithm: express number of flops as a (polynomial) function of the problem dimensions, and simplify by keeping only the leading terms
- not an accurate predictor of computation time on modern computers
- useful as a rough estimate of complexity

Basic operations

Vector–vector operations ($x, y \in \mathbf{R}^n$)

- inner product $x^T y$: 2n 1 flops (or 2n if n is large)
- sum x + y, scalar multiplication αx : *n* flops

Matrix–vector product y = Ax with $A \in \mathbf{R}^{m \times n}$

- m(2n-1) flops (or 2mn if n large)
- 2N if A is sparse with N nonzero elements
- 2p(n+m) if A is given as $A = UV^T$, $U \in \mathbb{R}^{m \times p}$, $V \in \mathbb{R}^{n \times p}$

Matrix-matrix product C = AB with $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$

- mp(2n-1) flops (or 2mnp if n large)
- less if A and/or B are sparse
- $(1/2)m(m+1)(2n-1) \approx m^2 n$ if m = p and *C* symmetric

Linear equations that are easy to solve

Diagonal matrices $(a_{ij} = 0 \text{ if } i \neq j)$: *n* flops

$$x = A^{-1}b = (b_1/a_{11}, \dots, b_n/a_{nn})$$

Lower triangular $(a_{ij} = 0 \text{ if } j > i)$: n^2 flops

$$x_{1} := b_{1}/a_{11}$$

$$x_{2} := (b_{2} - a_{21}x_{1})/a_{22}$$

$$x_{3} := (b_{3} - a_{31}x_{1} - a_{32}x_{2})/a_{33}$$

$$\vdots$$

$$x_{n} := (b_{n} - a_{n1}x_{1} - a_{n2}x_{2} - \dots - a_{n,n-1}x_{n-1})/a_{nn}$$

called forward substitution

Upper triangular $(a_{ij} = 0 \text{ if } j < i)$: n^2 flops via backward substitution

Linear equations that are easy to solve

Orthogonal matrices: $A^{-1} = A^T$

- $2n^2$ flops to compute $x = A^T b$ for general A
- less with structure, *e.g.*, if $A = I 2uu^T$ with $||u||_2 = 1$, we can compute $x = A^T b = b 2(u^T b)u$ in 4n flops

Permutation matrices:

$$a_{ij} = \begin{cases} 1 & j = \pi_i \\ 0 & \text{otherwise} \end{cases}$$

where $\pi = (\pi_1, \pi_2, \dots, \pi_n)$ is a permutation of $(1, 2, \dots, n)$

- interpretation: $Ax = (x_{\pi_1}, \ldots, x_{\pi_n})$
- satisfies $A^{-1} = A^T$, hence cost of solving Ax = b is 0 flops

example:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \qquad A^{-1} = A^{T} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

The factor–solve method for solving Ax = b

• factor *A* as a product of simple matrices (usually 2 or 3):

$$A = A_1 A_2 \cdots A_k$$

 $(A_i \text{ diagonal, upper or lower triangular, etc})$

• compute $x = A^{-1}b = A_k^{-1} \cdots A_2^{-1}A_1^{-1}b$ by solving k 'easy' equations

$$A_1 x_1 = b,$$
 $A_2 x_2 = x_1,$..., $A_k x = x_{k-1}$

cost of factorization step usually dominates cost of solve step

Equations with multiple righthand sides

$$Ax_1 = b_1, \qquad Ax_2 = b_2, \qquad \dots, \qquad Ax_m = b_m$$

cost: one factorization plus m solves

LU factorization

every nonsingular matrix A can be factored as

A = PLU

with *P* a permutation matrix, *L* lower triangular, *U* upper triangular cost: $(2/3)n^3$ flops

Solving linear equations by LU factorization

given: a set of linear equations Ax = b, with A nonsingular 1. *LU factorization:* factor A as A = PLU ((2/3) n^3 flops) 2. *permutation:* solve $Pz_1 = b$ (0 flops) 3. *forward substitution:* solve $Lz_2 = z_1$ (n^2 flops) 4. *backward substitution:* solve $Ux = z_2$ (n^2 flops)

cost: $(2/3)n^3 + 2n^2 \approx (2/3)n^3$ for large *n*

Sparse LU factorization

 $A = P_1 L U P_2$

- adding permutation matrix *P*₂ offers possibility of sparser *L*, *U* (hence, cheaper factor and solve steps)
- P_1 and P_2 chosen (heuristically) to yield sparse L, U
- choice of P_1 and P_2 depends on sparsity pattern and values of A
- cost is usually much less than $(2/3)n^3$; exact value depends in a complicated way on *n*, number of zeros in *A*, sparsity pattern

Cholesky factorization

every positive definite A can be factored as

 $A = LL^T$

with L lower triangular

cost: $(1/3)n^3$ flops

Solving linear equations by Cholesky factorization

given: a set of linear equations Ax = b, with $A \in \mathbf{S}_{++}^n$

- 1. Cholesky factorization: Factor A as $A = LL^T$ ((1/3) n^3 flops)
- 2. *forward substitution:* solve $Lz_1 = b$ (n^2 flops)
- 3. *backward substitution:* solve $L^T x = z_1$ (n^2 flops)

cost: $(1/3)n^3 + 2n^2 \approx (1/3)n^3$ for large *n*

Sparse Cholesky factorization

 $A = PLL^T P^T$

- adding permutation matrix *P* offers possibility of sparser *L*
- *P* chosen (heuristically) to yield sparse *L*
- choice of *P* only depends on sparsity pattern of *A* (unlike sparse LU)
- cost is usually much less than $(1/3)n^3$; exact value depends in a complicated way on *n*, number of zeros in *A*, sparsity pattern

LDL^{T} factorization

every nonsingular symmetric matrix A can be factored as

 $A = PLDL^T P^T$

with *P* a permutation matrix, *L* lower triangular, *D* block diagonal with 1×1 or 2×2 diagonal blocks

cost: $(1/3)n^3$

• cost of solving symmetric sets of linear equations by LDL^T factorization:

$$\frac{1}{3}n^3 + 2n^2 \approx \frac{1}{3}n^3$$

• for sparse A, can choose P to yield sparse L; $cost \ll (1/3)n^3$

Equations with structured sub-blocks

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
(1)

- variables $x_1 \in \mathbf{R}^{n_1}$, $x_2 \in \mathbf{R}^{n_2}$; blocks $A_{ij} \in \mathbf{R}^{n_i \times n_j}$
- if A_{11} is nonsingular, can eliminate x_1 : $x_1 = A_{11}^{-1}(b_1 A_{12}x_2)$
- to compute *x*₂, solve

$$(A_{22} - A_{21}A_{11}^{-1}A_{12})x_2 = b_2 - A_{21}A_{11}^{-1}b_1$$

Solving linear equations by block elimination

given: a nonsingular set of linear equations (1), with A_{11} nonsingular 1. form $A_{11}^{-1}A_{12}$ and $A_{11}^{-1}b_1$ 2. form $S = A_{22} - A_{21}A_{11}^{-1}A_{12}$ and $\tilde{b} = b_2 - A_{21}A_{11}^{-1}b_1$ 3. determine x_2 by solving $Sx_2 = \tilde{b}$ 4. determine x_1 by solving $A_{11}x_1 = b_1 - A_{12}x_2$

Complexity of block elimination

Dominant terms in flop count

- step 1: $f + n_2 s$ (f is cost of factoring A_{11} ; s is cost of solve step)
- step 2: $2n_2^2n_1$ (cost dominated by product of A_{21} and $A_{11}^{-1}A_{12}$)
- step 3: $(2/3)n_2^3$

total: $f + n_2 s + 2n_2^2 n_1 + (2/3)n_2^3$

Examples

• general A_{11} ($f = (2/3)n_1^3$, $s = 2n_1^2$): no gain over standard method

#flops =
$$\frac{2}{3}n_1^3 + 2n_1^2n_2 + 2n_2^2n_1 + \frac{2}{3}n_2^3 = \frac{2}{3}(n_1 + n_2)^3$$

- block elimination is useful for structured A_{11} ($f \ll n_1^3$)
- for example, diagonal (f = 0, $s = n_1$): #flops $\approx 2n_2^2n_1 + (2/3)n_2^3$

Structured matrix plus low rank term

(A + BC)x = b

- $A \in \mathbf{R}^{n \times n}, B \in \mathbf{R}^{n \times p}, C \in \mathbf{R}^{p \times n}$
- assume A has structure (Ax = b easy to solve)

first write as

$$\left[\begin{array}{cc} A & B \\ C & -I \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} b \\ 0 \end{array}\right]$$

now apply block elimination: solve

$$(I + CA^{-1}B)y = CA^{-1}b,$$

then solve Ax = b - By

this proves the *matrix inversion lemma*: if A and A + BC nonsingular,

$$(A + BC)^{-1} = A^{-1} - A^{-1}B(I + CA^{-1}B)^{-1}CA^{-1}$$

Structured matrix plus low rank term

(A + BC)x = b

Example: *A* diagonal, *B*, *C* dense

- method 1: form D = A + BC, then solve Dx = bcost: $(2/3)n^3 + 2pn^2$
- method 2 (via matrix inversion lemma): solve

$$(I + CA^{-1}B)y = CA^{-1}b,$$
(2)

then compute $x = A^{-1}b - A^{-1}By$

total cost is dominated by (2): $2p^2n + (2/3)p^3$ (*i.e.*, linear in *n*)

Underdetermined linear equations

if $A \in \mathbf{R}^{p \times n}$ with p < n, rank A = p,

$$\{x \mid Ax = b\} = \{Fz + \hat{x} \mid z \in \mathbf{R}^{n-p}\}\$$

- \hat{x} is (any) particular solution
- columns of $F \in \mathbf{R}^{n \times (n-p)}$ span nullspace of A
- there exist several numerical methods for computing *F* (QR factorization, rectangular LU factorization, ...)