9. Numerical linear algebra background

- matrix structure and algorithm complexity
- solving linear equations with factored matrices
- LU, Cholesky, LDL^T factorization
- block elimination and the matrix inversion lemma
- solving underdetermined equations
Matrix structure and algorithm complexity

cost (execution time) of solving $Ax = b$ with $A \in \mathbb{R}^{n \times n}$

- for general methods, grows as n^3
- less if A is structured (banded, sparse, Toeplitz, ...)

Flop counts

- flop (floating-point operation): one addition, subtraction, multiplication, or division of two floating-point numbers
- to estimate complexity of an algorithm: express number of flops as a (polynomial) function of the problem dimensions, and simplify by keeping only the leading terms
- not an accurate predictor of computation time on modern computers
- useful as a rough estimate of complexity
Basic operations

Vector–vector operations \((x, y \in \mathbb{R}^n)\)

- inner product \(x^T y\): \(2n - 1\) flops (or \(2n\) if \(n\) is large)
- sum \(x + y\), scalar multiplication \(\alpha x\): \(n\) flops

Matrix–vector product \(y = Ax\) with \(A \in \mathbb{R}^{m \times n}\)

- \(m(2n - 1)\) flops (or \(2mn\) if \(n\) large)
- \(2N\) if \(A\) is sparse with \(N\) nonzero elements
- \(2p(n + m)\) if \(A\) is given as \(A = UV^T\), \(U \in \mathbb{R}^{m \times p}\), \(V \in \mathbb{R}^{n \times p}\)

Matrix–matrix product \(C = AB\) with \(A \in \mathbb{R}^{m \times n}\), \(B \in \mathbb{R}^{n \times p}\)

- \(mp(2n - 1)\) flops (or \(2mnp\) if \(n\) large)
- less if \(A\) and/or \(B\) are sparse
- \(\left(1/2\right)m(m + 1)(2n - 1) \approx m^2n\) if \(m = p\) and \(C\) symmetric
Linear equations that are easy to solve

Diagonal matrices \((a_{ij} = 0 \text{ if } i \neq j)\): \(n\) flops

\[x = A^{-1}b = (b_1/a_{11}, \ldots, b_n/a_{nn}) \]

Lower triangular \((a_{ij} = 0 \text{ if } j > i)\): \(n^2\) flops

\[
\begin{align*}
x_1 & := b_1/a_{11} \\
x_2 & := (b_2 - a_{21}x_1)/a_{22} \\
x_3 & := (b_3 - a_{31}x_1 - a_{32}x_2)/a_{33} \\
& \quad \vdots \\
x_n & := (b_n - a_{n1}x_1 - a_{n2}x_2 - \cdots - a_{n,n-1}x_{n-1})/a_{nn}
\end{align*}
\]
called forward substitution

Upper triangular \((a_{ij} = 0 \text{ if } j < i)\): \(n^2\) flops via backward substitution
Linear equations that are easy to solve

Orthogonal matrices: \(A^{-1} = A^T \)

- \(2n^2\) flops to compute \(x = A^T b\) for general \(A\)
- less with structure, e.g., if \(A = I - 2uu^T\) with \(\|u\|_2 = 1\), we can compute \(x = A^T b = b - 2(u^T b)u\) in \(4n\) flops

Permutation matrices:

\[a_{ij} = \begin{cases} 1 & j = \pi_i \\ 0 & \text{otherwise} \end{cases} \]

where \(\pi = (\pi_1, \pi_2, \ldots, \pi_n)\) is a permutation of \((1, 2, \ldots, n)\)

- interpretation: \(Ax = (x_{\pi_1}, \ldots, x_{\pi_n})\)
- satisfies \(A^{-1} = A^T\), hence cost of solving \(Ax = b\) is 0 flops

example:

\[
A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \quad A^{-1} = A^T = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}
\]
The factor–solve method for solving $Ax = b$

- factor A as a product of simple matrices (usually 2 or 3):
 \[A = A_1 A_2 \cdots A_k \]
 $(A_i \text{ diagonal, upper or lower triangular, etc})$

- compute $x = A^{-1}b = A_k^{-1} \cdots A_2^{-1} A_1^{-1} b$ by solving k ‘easy’ equations
 \[A_1 x_1 = b, \quad A_2 x_2 = x_1, \quad \ldots, \quad A_k x = x_{k-1} \]

 cost of factorization step usually dominates cost of solve step

Equations with multiple righthand sides

\[Ax_1 = b_1, \quad Ax_2 = b_2, \quad \ldots, \quad Ax_m = b_m \]

 cost: one factorization plus m solves
LU factorization

every nonsingular matrix A can be factored as

$$A = PLU$$

with P a permutation matrix, L lower triangular, U upper triangular

cost: $(2/3)n^3$ flops

Solving linear equations by LU factorization

given: a set of linear equations $Ax = b$, with A nonsingular

1. LU factorization: factor A as $A = PLU$ ($(2/3)n^3$ flops)
2. permutation: solve $Pz_1 = b$ (0 flops)
3. forward substitution: solve $Lz_2 = z_1$ (n^2 flops)
4. backward substitution: solve $Ux = z_2$ (n^2 flops)

cost: $(2/3)n^3 + 2n^2 \approx (2/3)n^3$ for large n
Sparse LU factorization

\[A = P_1 L U P_2 \]

- adding permutation matrix \(P_2 \) offers possibility of sparser \(L, U \) (hence, cheaper factor and solve steps)
- \(P_1 \) and \(P_2 \) chosen (heuristically) to yield sparse \(L, U \)
- choice of \(P_1 \) and \(P_2 \) depends on sparsity pattern and values of \(A \)
- cost is usually much less than \((2/3)n^3\); exact value depends in a complicated way on \(n \), number of zeros in \(A \), sparsity pattern
Cholesky factorization

every positive definite A can be factored as

$$A = LL^T$$

with L lower triangular

cost: $(1/3)n^3$ flops

Solving linear equations by Cholesky factorization

given: a set of linear equations $Ax = b$, with $A \in S_{++}^n$
 1. Cholesky factorization: Factor A as $A = LL^T$ ($(1/3)n^3$ flops)
 2. forward substitution: solve $Lz_1 = b$ (n^2 flops)
 3. backward substitution: solve $L^Tx = z_1$ (n^2 flops)

cost: $(1/3)n^3 + 2n^2 \approx (1/3)n^3$ for large n
Sparse Cholesky factorization

\[A = PLL^T P^T \]

- adding permutation matrix \(P \) offers possibility of sparser \(L \)
- \(P \) chosen (heuristically) to yield sparse \(L \)
- choice of \(P \) only depends on sparsity pattern of \(A \) (unlike sparse LU)
- cost is usually much less than \((1/3)n^3\); exact value depends in a complicated way on \(n \), number of zeros in \(A \), sparsity pattern
LDL^T factorization

every nonsingular symmetric matrix A can be factored as

$$A = PLDL^TP^T$$

with P a permutation matrix, L lower triangular, D block diagonal with 1×1 or 2×2 diagonal blocks

cost: $(1/3)n^3$

- cost of solving symmetric sets of linear equations by LDL^T factorization:

$$\frac{1}{3}n^3 + 2n^2 \approx \frac{1}{3}n^3$$

- for sparse A, can choose P to yield sparse L; cost $\ll (1/3)n^3$
Equations with structured sub-blocks

\[
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} =
\begin{bmatrix}
b_1 \\
b_2
\end{bmatrix}
\]

(1)

- variables \(x_1 \in \mathbb{R}^{n_1}, x_2 \in \mathbb{R}^{n_2}; \) blocks \(A_{ij} \in \mathbb{R}^{n_i \times n_j}\)
- if \(A_{11}\) is nonsingular, can eliminate \(x_1\): \(x_1 = A_{11}^{-1}(b_1 - A_{12}x_2)\)
- to compute \(x_2\), solve

\[(A_{22} - A_{21}A_{11}^{-1}A_{12})x_2 = b_2 - A_{21}A_{11}^{-1}b_1\]

Solving linear equations by block elimination

given: a nonsingular set of linear equations (1), with \(A_{11}\) nonsingular
1. form \(A_{11}^{-1}A_{12}\) and \(A_{11}^{-1}b_1\)
2. form \(S = A_{22} - A_{21}A_{11}^{-1}A_{12}\) and \(\tilde{b} = b_2 - A_{21}A_{11}^{-1}b_1\)
3. determine \(x_2\) by solving \(Sx_2 = \tilde{b}\)
4. determine \(x_1\) by solving \(A_{11}x_1 = b_1 - A_{12}x_2\)
Complexity of block elimination

Dominant terms in flop count

- step 1: \(f + n_2s \) (\(f \) is cost of factoring \(A_{11} \); \(s \) is cost of solve step)
- step 2: \(2n_2^2n_1 \) (cost dominated by product of \(A_{21} \) and \(A_{11}^{-1}A_{12} \))
- step 3: \((2/3)n_2^3 \)

Total: \(f + n_2s + 2n_2^2n_1 + (2/3)n_2^3 \)

Examples

- general \(A_{11} (f = (2/3)n_1^3, s = 2n_1^2) \): no gain over standard method

\[
\text{#flops} = \frac{2}{3}n_1^3 + 2n_1^2n_2 + 2n_2^2n_1 + \frac{2}{3}n_2^3 = \frac{2}{3}(n_1 + n_2)^3
\]

- block elimination is useful for structured \(A_{11} (f \ll n_1^3) \)

- for example, diagonal (\(f = 0, s = n_1 \)): \#flops \(\approx 2n_2^2n_1 + (2/3)n_2^3 \)
Structured matrix plus low rank term

\[(A + BC)x = b\]

- \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{p \times n}\)
- assume \(A\) has structure \((Ax = b\) easy to solve\)

first write as

\[
\begin{bmatrix}
A & B \\
C & -I
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} =
\begin{bmatrix}
b \\
0
\end{bmatrix}
\]

now apply block elimination: solve

\[(I + CA^{-1}B)y = CA^{-1}b,\]

then solve \(Ax = b - By\)

this proves the matrix inversion lemma: if \(A\) and \(A + BC\) nonsingular,

\[
(A + BC)^{-1} = A^{-1} - A^{-1}B(I + CA^{-1}B)^{-1}CA^{-1}
\]
Structured matrix plus low rank term

\[(A + BC)x = b\]

Example: A diagonal, B, C dense

- method 1: form \(D = A + BC\), then solve \(Dx = b\)

 cost: \((2/3)n^3 + 2pn^2\)

- method 2 (via matrix inversion lemma): solve

\[(I + CA^{-1}B)y = CA^{-1}b, \quad (2)\]

then compute \(x = A^{-1}b - A^{-1}By\)

total cost is dominated by (2): \(2p^2n + (2/3)p^3\) (i.e., linear in \(n\))
Underdetermined linear equations

if $A \in \mathbb{R}^{p \times n}$ with $p < n$, \textbf{rank} $A = p$,

$$\{x \mid Ax = b\} = \{Fz + \hat{x} \mid z \in \mathbb{R}^{n-p}\}$$

- \hat{x} is (any) particular solution
- columns of $F \in \mathbb{R}^{n \times (n-p)}$ span nullspace of A
- there exist several numerical methods for computing F
 (QR factorization, rectangular LU factorization, . . .)