L. Vandenberghe ECE236B (Winter 2023)

9. Numerical linear algebra background

e matrix structure and algorithm complexity

e solving linear equations with factored matrices

e LU, Cholesky, LDLT factorization

e block elimination and the matrix inversion lemma

e solving underdetermined equations

9.1

Matrix structure and algorithm complexity

cost (execution time) of solving Ax = b with A € R

e for general methods, grows as n>

e less if A is structured (banded, sparse, Toeplitz, ...)

Flop counts

e flop (floating-point operation): one addition, subtraction, multiplication, or
division of two floating-point numbers

e {0 estimate complexity of an algorithm: express number of flops as a

(polynomial) function of the problem dimensions, and simplify by keeping only
the leading terms

e not an accurate predictor of computation time on modern computers

e useful as a rough estimate of complexity

Numerical linear algebra background 9.2

Basic operations

Vector-vector operations (x, y € R")

e inner product x’y: 2n — 1 flops (or 2n if n is large)

e sum x + y, scalar multiplication ax: n flops

Matrix—vector product y = Ax with A € R™*"
e m(2n — 1) flops (or 2mn if n large)
e 2N if A is sparse with N nonzero elements

e 2p(n+m)if Aisgivenas A = UV!, U € R™¥P,V € R™P

Matrix—matrix product C = AB with A € R, B € R"™*P
e mp(2n — 1) flops (or 2mnp if n large)
e less if A and/or B are sparse

o (1/2ym(m+1)(2n—-1) ~ m*nif m = p and C symmetric

Numerical linear algebra background 9.3

Linear equations that are easy to solve

Diagonal matrices (a;; = 0if i # j): n flops

X = A_lb = (bl/all’ T b”/ann)

Lower triangular (a;; = 0 if j > i): n? flops

x1 = bi/an

x2 = (by—azixy)/axn

x3 = (b3 —azx] —azxa)/az;

Xn = (bn —dplX1 —ap2X2 — - — an,n—lxn—l)/ann

called forward substitution

Upper triangular (a;; = 0 if j < i): n’ flops via backward substitution

Numerical linear algebra background

9.4

Linear equations that are easy to solve

Orthogonal matrices: A~! = AT
e 21 flops to compute x = AT b for general A

e less with structure, e.g., if A = I — 2uu! with ||u||, = 1, we can compute
x=A"b =b —2(ulb)u in 4n flops

Permutation matrices:

1 =
4/ =) 0 otherwise

where m = (g, Mo, ..., m,) is a permutation of (1,2, ..., n)

e interpretation: Ax = (xz,,...,%r,)

o satisfies A~! = AT, hence cost of solving Ax = b is 0 flops

example:

Al = AT =

AN

[
_—0 O
oo ==
O = O
—_O O
o O =

o == O

Numerical linear algebra background

The factor—solve method for solving Ax = b

e factor A as a product of simple matrices (usually 2 or 3):
A=A1Ay - A;

(A; diagonal, upper or lower triangular, etc)

e computex = A"'b = A7'--- AJ'AT!b by solving k ‘easy’ equations
Aix1 =0, Arxy = x1q, e, ArXx = Xp_q
cost of factorization step usually dominates cost of solve step
Equations with multiple righthand sides
Ax1 = by, Ax> = by, e Ax,, = by,

cost: one factorization plus m solves

Numerical linear algebra background 9.6

LU factorization

every nonsingular matrix A can be factored as
A=PLU

with P a permutation matrix, L lower triangular, U upper triangular

cost: (2/3)n> flops

Solving linear equations by LU factorization

given: a set of linear equations Ax = b, with A nonsingular

1. LU factorization: factor A as A = PLU ((2/3)n° flops)
2. permutation: solve Pzy = b (0 flops)

3. forward substitution: solve Lz, = z; (n? flops)

4. backward substitution: solve Ux = z, (n?* flops)

cost: (2/3)n> +2n* ~ (2/3)n’ for large n

Numerical linear algebra background

9.7

Sparse LU factorization

A= P,LUP,

e adding permutation matrix P, offers possibility of sparser L, U (hence, cheaper
factor and solve steps)

e P; and P, chosen (heuristically) to yield sparse L, U
e choice of P; and P, depends on sparsity pattern and values of A

e cost is usually much less than (2/3)n>; exact value depends in a complicated
way on n, number of zeros in A, sparsity pattern

Numerical linear algebra background 9.8

Cholesky factorization

every positive definite A can be factored as
A=LL"

with L lower triangular

cost: (1/3)n> flops

Solving linear equations by Cholesky factorization

given: a set of linear equations Ax = b, with A € S”,

1. Cholesky factorization: Factor A as A = LLT ((1/3)n° flops)
2. forward substitution: solve Lz; = b (n? flops)
3. backward substitution: solve LTx = z; (n? flops)

cost: (1/3)n> +2n% ~ (1/3)n° for large n

Numerical linear algebra background

9.9

Sparse Cholesky factorization

A=PLLTPT

e adding permutation matrix P offers possibility of sparser L
e P chosen (heuristically) to yield sparse L
e choice of P only depends on sparsity pattern of A (unlike sparse LU)

e cost is usually much less than (1/3)n>; exact value depends in a complicated
way on n, number of zeros in A, sparsity pattern

Numerical linear algebra background 9.10

LDLT factorization

every nonsingular symmetric matrix A can be factored as
A=PLDL'P!

with P a permutation matrix, L lower triangular, D block diagonal with 1 X 1 or
2 x 2 diagonal blocks

cost: (1/3)n°
e cost of solving symmetric sets of linear equations by LDLT factorization:

1 5

1
3n +2n? ~ §n3

e for sparse A, can choose P to yield sparse L; cost < (1/3)n’

Numerical linear algebra background

9.11

Equations with structured sub-blocks

x1 | _ | b1
xz]_[bzl W

e variables x; € R™, x, € R™; blocks A;; € R"*"

l Al Ap]
Az Ax

e if A{; is nonsingular, can eliminate x;: x| = Al‘ll(bl — Arx))

e t0 compute xj, solve

(Axp — An1AT{ A12)x2 = by — A21 AT by

Solving linear equations by block elimination

given: a nonsingular set of linear equations (1), with A{; nonsingular
1. form A7/ A12 and A7/'b;

2.form § = Ay — A21A1_11A12 and~15 = by — A21A1_11b1

3. determine x;, by solving Sx, = b

4. determine x; by solving A{1x; = b1 — Apxp

Numerical linear algebra background 9.12

Complexity of block elimination

Dominant terms in flop count

e step 1: f +nys (f is cost of factoring A;q; s is cost of solve step)

e step 2: 2n%n1 (cost dominated by product of A,; and A1‘11A12)
e step 3: (2/3)n;

total: f +nas +2n5n1 + (2/3)n;

Examples

e general Ay (f = (2/3)n3, s = 2n3): no gain over standard method

2 5 2

2
#flops = gnf + Zn%nz + Zn%nl + 3= §(n1 + 1)

e block elimination is useful for structured A1 (f < n?)

o for example, diagonal (f = 0, s = ny): #flops ~ 2n3n; + (2/3)n3

Numerical linear algebra background 9.13

Structured matrix plus low rank term

(A+BC)x=b

e AcR™ BecR™P C eRP

e assume A has structure (Ax = b easy to solve)

BN

now apply block elimination: solve

first write as

(I+CA™'B)y =CA™ ',

then solve Ax = b — By

this proves the matrix inversion lemma: it A and A + BC nonsingular,
(A+BC) '=A1'-A'BU+ca'B)~lca™!

Numerical linear algebra background

Structured matrix plus low rank term

(A+BC)x=b

Example: A diagonal, B, C dense

e method 1: form D = A + BC, then solve Dx = b
cost: (2/3)n> + 2pn?

e method 2 (via matrix inversion lemma): solve
(I+CA™'B)y=CcA™ b,

then compute x = A~'b — A~!By
total cost is dominated by (2): 2p?n + (2/3)p? (i.e., linear in n)

Numerical linear algebra background

9.15

Underdetermined linear equations
if A € RP*" with p < n, rank A = p,
{x | Ax=b}={Fz+%|zeR" P}

e X is (any) particular solution
e columns of F € R™("~P) gpan nullspace of A

e there exist several numerical methods for computing F
(QR factorization, rectangular LU factorization, ...)

Numerical linear algebra background

9.16

