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4. Convex optimization problems

• standard form (convex) optimization problem

• linear optimization

• quadratic optimization

• geometric programming

• semidefinite optimization

• quasiconvex optimization

• vector and multicriterion optimization
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Optimization problem in standard form

minimize 50(G)
subject to 58 (G) ≤ 0, 8 = 1, . . . , <

ℎ8 (G) = 0, 8 = 1, . . . , ?

• G ∈ R= is the optimization variable

• 50 : R= → R is the objective or cost function

• 58 : R= → R, for 8 = 1, . . . , <, are the inequality constraint functions

• ℎ8 : R= → R, for 8 = 1, . . . , ?, are the equality constraint functions

Convex optimization problems 4.2



Feasible and optimal points

Feasible point: G is feasible if G ∈ dom 50 and it satisfies all constraints

Optimal value

?★ = inf { 50(G) | 58 (G) ≤ 0, 8 = 1, . . . , <, ℎ8 (G) = 0, 8 = 1, . . . , ?}

• ?★ = ∞ if the problem is infeasible (set of feasible G is empty)

• ?★ = −∞ if the problem is unbounded below

Optimal solution

• a feasible G is optimal if 50(G) = ?★

• the set of optimal points will be denoted by -opt

• Ĝ is locally optimal if there is an ' > 0 such that Ĝ is optimal for the problem

minimize (over G) 50(G)
subject to 58 (G) ≤ 0, 8 = 1, . . . , <

ℎ8 (G) = 0, 8 = 1, . . . , ?

‖G − Ĝ‖2 ≤ '
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Examples (= = 1, < = ? = 0)

50(G) dom 50 graph ?★ -opt

1/G R++ 0 empty

− log G R++ −∞ empty

G log G R++ −1/4 {1/4}

max{0, |G | − 1} R 0 [−1, 1]

G3 − 3G R −∞ empty
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Implicit constraints

the standard form optimization problem has an implicit constraint

G ∈ D =

<
⋂

8=0

dom 58 ∩
?

⋂

8=1

dom ℎ8,

• we call D the domain of the problem

• the constraints 58 (G) ≤ 0, ℎ8 (G) = 0 are the explicit constraints

• a problem is unconstrained if it has no explicit constraints (< = ? = 0)

• the distinction will be important when we diccuss duality

Example

minimize 50(G) = −
:

∑

8=1

log(18 − 0)8 G)

this is an unconstrained problem with implicit constraints 0)
8
G < 18
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Feasibility problem

find G

subject to 58 (G) ≤ 0, 8 = 1, . . . , <

ℎ8 (G) = 0, 8 = 1, . . . , ?

can be considered a special case of the general problem with 50(G) = 0:

minimize 0

subject to 58 (G) ≤ 0, 8 = 1, . . . , <

ℎ8 (G) = 0, 8 = 1, . . . , ?

• ?★ = 0 if constraints are feasible; any feasible G is optimal

• ?★ = ∞ if constraints are infeasible

this formulation is not meant as a practical method for solving feasibility problems
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Convex optimization problem in standard form

minimize 50(G)
subject to 58 (G) ≤ 0, 8 = 1, . . . , <

0)
8
G = 18, 8 = 1, . . . , ?

• objective and inequality constraint functions 50, 51, . . . , 5< are convex

• equality constraints are linear, often written as �G = 1

• feasible set is convex: the intersection of several convex sets

dom 50, sublevel sets {G | 58 (G) ≤ 0}, the affine set {G | �G = 1}

• optimal set is convex: any convex combination of optimal G1, G2 is feasible, with

50(\G1 + (1 − \)G2) ≤ \ 50(G1) + (1 − \) 5 (G2)
= ?★

hence, 50(\G1 + (1 − \)G2) = ?★, so the convex combination is optimal
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Example

minimize 50(G) = G2
1
+ G2

2

subject to 51(G) = G1/(1 + G2
2
) ≤ 0

ℎ1(G) = (G1 + G2)2 = 0

• 50 is convex

• feasible set {(G1, G2) | G1 = −G2 ≤ 0} is convex

• not a convex problem (according to our definition): 51 not convex, ℎ1 not affine

• the problem is equivalent (but not identical) to the convex problem

minimize G2
1
+ G2

2
subject to G1 ≤ 0

G1 + G2 = 0
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Local and global optima

any locally optimal point of a convex problem is (globally) optimal

• suppose G is locally optimal: there is an ' > 0 such that

I feasible, ‖I − G‖2 ≤ ' =⇒ 50(I) ≥ 50(G)

• suppose G is not globally optimal: there exists a feasible H with 50(H) < 50(G)

• convex combinations of G and H are feasible

• cost function at convex combination of G and H with 0 < \ ≤ 1 satisfies

50((1 − \)G + \H) ≤ (1 − \) 50(G) + \ 50(H)
< (1 − \) 50(G) + \ 50(G)
= 50(G)

• for 0 < \ ≤ '/‖H − G‖2 this contradicts the assumption of local optimality of G
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Optimality criterion for differentiable 50

G is optimal if and only if it is feasible and

∇ 50(G)) (H − G) ≥ 0 for all feasible H

−∇ 50(G)

-
G

if nonzero, ∇ 50(G) defines a supporting hyperplane to feasible set - at G
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Proof (necessity)

• consider feasible H ≠ G and define line segment � = {G + C (H − G) | 0 ≤ C ≤ 1}

• by convexity of - , points in � are feasible

• let 6(C) = 50(G + C (H − G)) be the restriction of 50 to �

• derivative at C is 6′(C) = ∇ 50(G + C (H − G))) (H − G), so

6′(0) = ∇ 50(G)) (H − G)

• if 6′(0) = ∇ 50(G)) (G − H) < 0, the point G is not even locally optimal

Proof (sufficiency)

if H is feasible and ∇ 50(G)) (H − G) ≥ 0, then, by convexity of 50,

50(H) ≥ 50(G) + ∇ 50(G)) (H − G)
≥ 50(G)
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Examples

Unconstrained problem: G is optimal if and only if

G ∈ dom 50, ∇ 50(G) = 0

(recall our assumption that dom 50 is an open set if 50 is differentiable)

Minimization over nonnegative orthant

minimize 50(G)
subject to G � 0

G is optimal if and only if

G ∈ dom 50, G � 0,

{ ∇ 50(G)8 ≥ 0 G8 = 0

∇ 50(G)8 = 0 G8 > 0
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Equality constrained problem

minimize 50(G)
subject to �G = 1

G is optimal if and only if there exists a a such that

G ∈ dom 50, �G = 1, ∇ 50(G) + �)a = 0

• first two conditions are feasibility of G

• gradient ∇ 50(G) can be decomposed as ∇ 50(G) + �)a = | with �| = 0

• if | = 0, the optimality condition on page 4.10 holds:

∇ 50(G)) (H − G) = −a)�(H − G) = 0 for all H with �H = 1

• if | ≠ 0, condition on p. 4.10 does not hold: H = G − C| is feasible for small C > 0,

∇ 50(G)) (H − G) = −C (| − �)a))| = −C‖|‖2
2 < 0
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Linear program (LP)

minimize 2)G + 3
subject to �G � ℎ

�G = 1

• convex problem with affine objective and constraint functions

• feasible set is a polyhedron

P G★

−2
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Examples

Diet problem: choose quantities G1, . . . , G= of = foods

• one unit of food 9 costs 2 9 , contains amount 08 9 of nutrient 8

• healthy diet requires nutrient 8 in quantity at least 18

to find cheapest healthy diet,

minimize 2)G

subject to �G � 1, G � 0

Piecewise-linear minimization

minimize max
8=1,...,<

(0)8 G + 18)

equivalent to an LP

minimize C

subject to 0)
8
G + 18 ≤ C, 8 = 1, . . . , <
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Chebyshev center of a polyhedron

Chebyshev center of

P = {G | 0)8 G ≤ 18, 8 = 1, . . . , <}

is center of largest inscribed ball

B = {Gc + D | ‖D‖2 ≤ A}

GcGc

• 0)
8
G ≤ 18 for all G ∈ B if and only if

sup{0)8 (Gc + D) | ‖D‖2 ≤ A} = 0)8 Gc + A ‖08‖2 ≤ 18

• hence, Gc, A can be determined by solving the LP

maximize A

subject to 0)
8
Gc + A ‖08‖2 ≤ 18, 8 = 1, . . . , <
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Quadratic program (QP)

minimize 1
2G
)%G + @)G + A

subject to �G � ℎ

�G = 1

• % ∈ S=+, so objective is convex quadratic

• minimize a convex quadratic function over a polyhedron

P

G★

−∇ 50(G★)
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Examples

Least squares

minimize ‖�G − 1‖2
2

• analytical solution G★ = �†1 (�† is pseudo-inverse)

• can add linear constraints, e.g., ; � G � D

Linear program with random cost

minimize 2̄)G + WG)ΣG = E 2)G + W var(2)G)
subject to �G � ℎ

�G = 1

• 2 is random vector with mean 2̄ and covariance Σ

• hence, 2)G is random variable with mean 2̄)G and variance G)ΣG

• W > 0 is risk aversion parameter

• W controls trade-off between expected cost and variance (risk)
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Quadratically constrained quadratic program (QCQP)

minimize 1
2G
)%0G + @)0G + A0

subject to 1
2G
)%8G + @)8 G + A8 ≤ 0, 8 = 1, . . . , <

�G = 1

• %8 ∈ S=+; objective and constraints are convex quadratic

• if %1, . . . , %< ∈ S=++, feasible set is intersection of < ellipsoids and an affine set
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Second-order cone programming

minimize 5 )G

subject to ‖�8G + 18‖2 ≤ 2)
8
G + 38, 8 = 1, . . . , <

�G = 6

(�8 ∈ R=8×=, � ∈ R?×=)

• inequalities are called second-order cone (SOC) constraints:

(�8G + 18, 2)8 G + 38) ∈ second-order cone in R=8+1

• for =8 = 0, reduces to an LP; if 28 = 0, reduces to a QCQP

• more general than QCQP and LP
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Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize 2)G

subject to 0)
8
G ≤ 18, 8 = 1, . . . , <

there can be uncertainty in 2, 08, 18

two common approaches to handling uncertainty (in 08, for simplicity)

• deterministic model: constraints must hold for all 08 ∈ E8

minimize 2)G

subject to 0)
8
G ≤ 18 for all 08 ∈ E8, 8 = 1, . . . , <,

• stochastic model: 08 is random variable; constraints must hold with probability [

minimize 2)G

subject to prob(0)
8
G ≤ 18) ≥ [, 8 = 1, . . . , <
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Deterministic approach via SOCP

choose an ellipsoid as E8:

E8 = {0̄8 + %8D | ‖D‖2 ≤ 1} (0̄8 ∈ R=, %8 ∈ R=×=)

center is 0̄8, semi-axes determined by singular values/vectors of %8

SOCP formulation

minimize 2)G

subject to 0)
8
G ≤ 18 ∀08 ∈ E8, 8 = 1, . . . , <

this is equivalent to the SOCP

minimize 2)G

subject to 0̄)
8
G + ‖%)

8
G‖2 ≤ 18, 8 = 1, . . . , <

(follows from sup
‖D‖2≤1

(0̄8 + %8D))G = 0̄)8 G + ‖%)
8
G‖2)
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Stochastic approach via SOCP

• assume 08 ∼ N(0̄8, Σ8)): Gaussian with mean 0̄8, covariance Σ8

• 0)
8
G is Gaussian random variable with mean 0̄)

8
G, variance G)Σ8G

• if we denote the CDF of N(0, 1) by Φ(G) = 1√
2c

∫ G

−∞ 4
−C2/2 3C,

prob(0)8 G ≤ 18) = Φ

(

18 − 0̄)8 G

‖Σ1/2
8
G‖2

)

SOCP formulation of robust LP

minimize 2)G

subject to prob(0)
8
G ≤ 18) ≥ [, 8 = 1, . . . , <

for [ ≥ 1/2, this is equivalent to the SOCP

minimize 2)G

subject to 0̄)
8
G +Φ

−1([)‖Σ1/2
8
G‖2 ≤ 18, 8 = 1, . . . , <
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Example

prob(0)8 G ≤ 18) ≥ [, 8 = 1, . . . , 5

feasible set for three values of [

[ = 10% [ = 50% [ = 90%

Φ
−1([) < 0 Φ

−1([) = 0 Φ
−1([) > 0
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Geometric programming

Monomial function

5 (G) = 2G01

1
G
02

2
· · · G0== , dom 5 = R=

++

with 2 > 0; exponent 08 can be any real number

Posynomial function: sum of monomials

5 (G) =
 
∑

:=1

2:G
01:

1
G
02:

2
· · · G0=:= , dom 5 = R=

++

Geometric program (GP)

minimize 50(G)
subject to 58 (G) ≤ 1, 8 = 1, . . . , <

ℎ8 (G) = 1, 8 = 1, . . . , ?

with 58 posynomial, ℎ8 monomial
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Geometric program in convex form

change variables to H8 = log G8, and take logarithm of cost, constraints

• monomial 5 (G) = 2G01

1
· · · G0== transforms to

log 5 (4H1, . . . , 4H=) = 0) H + 1 (1 = log 2)

• posynomial 5 (G) = ∑ 
:=1

2:G
01:

1
G
02:

2
· · · G0=:= transforms to

log 5 (4H1, . . . , 4H=) = log(
 
∑

:=1

40
)
:
H+1:) (with 1: = log 2:)

• geometric program transforms to convex problem

minimize log(
 
∑

:=1
exp(0)

0:
H + 10:))

subject to log(
 
∑

:=1
exp(0)

8:
H + 18:)) ≤ 0, 8 = 1, . . . , <

�H + 3 = 0
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Design of cantilever beam

�

segment 4 segment 3 segment 2 segment 1

• # segments with unit lengths, rectangular cross-sections of size |8 × ℎ8
• given vertical force � applied at the right end

Design problem

minimize total weight

subject to upper & lower bounds on |8, ℎ8
upper bound & lower bounds on aspect ratios ℎ8/|8
upper bound on stress in each segment

upper bound on vertical deflection at the end of the beam

variables: |8, ℎ8 for 8 = 1, . . . , #
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Objective and constraint functions

• total weight |1ℎ1 + · · · + |#ℎ# is posynomial

• aspect ratio ℎ8/|8 and inverse aspect ratio |8/ℎ8 are monomials

• maximum stress in segment 8 is given by 68�/(|8ℎ2
8
), a monomial

• vertical deflection H8 and slope {8 of central axis at the right end of segment 8:

{8 = 12(8 − 1/2) �

�|8ℎ
3
8

+ {8+1

H8 = 6(8 − 1/3) �

�|8ℎ
3
8

+ {8+1 + H8+1

for 8 = #, # − 1, . . . , 1, with {#+1 = H#+1 = 0 (� is Young’s modulus)

{8 and H8 are posynomial functions of |, ℎ
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Formulation as a GP

minimize |1ℎ1 + · · · + |#ℎ#
subject to |−1

max|8 ≤ 1, |min|
−1
8

≤ 1, 8 = 1, . . . , #

ℎ−1
maxℎ8 ≤ 1, ℎminℎ

−1
8

≤ 1, 8 = 1, . . . , #

(−1
max|

−1
8
ℎ8 ≤ 1, (min|8ℎ

−1
8

≤ 1, 8 = 1, . . . , #

68�f−1
max|

−1
8
ℎ−2
8

≤ 1, 8 = 1, . . . , #

H−1
maxH1 ≤ 1

note

• we write |min ≤ |8 ≤ |max and ℎmin ≤ ℎ8 ≤ ℎmax

|min/|8 ≤ 1, |8/|max ≤ 1, ℎmin/ℎ8 ≤ 1, ℎ8/ℎmax ≤ 1

• we write (min ≤ ℎ8/|8 ≤ (max as

(min|8/ℎ8 ≤ 1, ℎ8/(|8(max) ≤ 1
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Minimizing spectral radius of nonnegative matrix

Perron–Frobenius eigenvalue _pf (�)

• exists for (elementwise) positive � ∈ R=×=

• a real, positive eigenvalue of �, equal to spectral radius max8 |_8 (�) |
• determines asymptotic growth (decay) rate of �: : �: ∼ _:

pf
as : → ∞

• alternative characterization: _pf (�) = inf{_ | �{ � _{ for some { ≻ 0}

Minimizing spectral radius of matrix of posynomials

• minimize _pf (�(G)), where the elements �(G)8 9 are posynomials of G

• equivalent geometric program:

minimize _

subject to
=
∑

9=1
�(G)8 9{ 9/(_{8) ≤ 1, 8 = 1, . . . , =

variables _, {, G
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Conic linear optimization

minimize 2)G

subject to �G + 6 � 0

�G = 1

•  is a proper convex cone in R<

• � is an < × = matrix, 6 is a <-vector

• constraint means −(�G + 6) ∈  

• linear programming is special case with  = R<
+

• same properties as standard convex problem (local optimum is global, etc.)
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Semidefinite program (SDP)

minimize 2)G

subject to G1�1 + G2�2 + · · · + G=�= + � � 0

�G = 1

with �8, � ∈ S:

• inequality constraint is called linear matrix inequality (LMI)

• includes problems with multiple LMI constraints: for example,

G1�̂1 + · · · + G=�̂= + �̂ � 0, G1�̃1 + · · · + G=�̃= + �̃ � 0

is equivalent to single LMI

G1

[

�̂1 0

0 �̃1

]

+ G2

[

�̂2 0

0 �̃2

]

+ · · · + G=
[

�̂= 0

0 �̃=

]

+
[

�̂ 0

0 �̃

]

� 0
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LP and SOCP as SDP

LP and equivalent SDP

LP: minimize 2)G

subject to �G � 1

SDP: minimize 2)G

subject to diag(�G − 1) � 0

(note different interpretation of generalized inequality �)

SOCP and equivalent SDP

SOCP: minimize 5 )G

subject to ‖�8G + 18‖2 ≤ 2)
8
G + 38, 8 = 1, . . . , <

SDP: minimize 5 )G

subject to

[

(2)
8
G + 38)� �8G + 18

(�8G + 18)) 2)
8
G + 38

]

� 0, 8 = 1, . . . , <
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Eigenvalue minimization

minimize _max(�(G))

where �(G) = �0 + G1�1 + · · · + G=�= (with given �8 ∈ S:)

Equivalent SDP
minimize C

subject to �(G) � C �

• variables G ∈ R=, C ∈ R

• equivalence follows from

_max(�) ≤ C ⇐⇒ � � C �
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Matrix norm minimization

minimize ‖�(G)‖2 =
(

_max(�(G))�(G))
)1/2

where �(G) = �0 + G1�1 + · · · + G=�= (with given �8 ∈ R?×@)

Equivalent SDP
minimize C

subject to

[

C � �(G)
�(G)) C �

]

� 0

• variables G ∈ R=, C ∈ R

• constraint follows from

‖�‖2 ≤ C ⇐⇒ �)� � C2�, C ≥ 0

⇐⇒
[

C � �

�) C �

]

� 0
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Quasiconvex optimization

minimize 50(G)
subject to 58 (G) ≤ 0, 8 = 1, . . . , <

�G = 1

• 50 is quasiconvex

• 51, . . . , 5< are convex

can have locally optimal points that are not (globally) optimal

(G, 50(G))

Convex optimization problems 4.36



Linear-fractional program

minimize 50(G)
subject to �G � ℎ

�G = 1

(1)

where

50(G) =
2)G + 3
4)G + 5

, dom 50 = {G | 4)G + 5 > 0}

• a quasiconvex optimization problem

• also equivalent to the LP (variables H, I)

minimize 2) H + 3I
subject to �H � ℎI

�H = 1I

4) H + 5 I = 1

I ≥ 0

(2)
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Exercise

assume the linear-fractional program (1) is feasible

• show how to obtain the solution of (1) from the solution of the LP (2)

• what do solutions (H, I) of (2) with I = 0 mean for (1)?

Solution: denote the optimal values of (1) and (2) by ?★
lfp

and ?★
lp

, respectively

1. for every feasible G in (1), there is a corresponding feasible (H, I) in (2):

H =
G

4)G + 5
, I =

1

4)G + 5
, 2) H + 3 =

2)G + 3
4)G + 5

2. for every feasible (H, I) in (2) with I > 0, there is a feasible G in (1):

G =
H

I
, 50(G) =

2)G + 3
4)G + 5

=
2) H + 3I
4) H + 5 I

= 2) H + 3
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3. suppose (H, I) is feasible for (2) with I = 0:

�H � 0, �H = 0, 4) H = 1

let Ĝ be a feasible point for (1):

�Ĝ � ℎ, �Ĝ = 1, 4) Ĝ + 5 > 0

all points on the half-line {Ĝ + UH | U ≥ 0} are feasible for (1),

� (Ĝ + UH) � ℎ, �(Ĝ + UH) = 1, 4) (Ĝ + UH + 5 ) > 0,

and the cost function at Ĝ + UH tends to 2) H as U → ∞:

50(Ĝ + UH) =
2) Ĝ + 3 + U2) H
4) Ĝ + 5 + U

−→ 2) H

• 1 shows that ?★
lfp

≥ ?★
lp

and 2, 3 show that ?★
lp
≥ ?★

lfp
; therefore ?★

lp
= ?★

lfp

• if (H, I) is an optimal solution of (2) and I > 0, then G = H/I is optimal for (1)

• (H, 0) of (2) indicates the optimal value of (1) is finite but not attained
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Generalized linear-fractional program

50(G) = max
8=1,...,A

2)
8
G + 38

4)
8
G + 58

, dom 50(G) = {G | 4)8 G + 58 > 0, 8 = 1, . . . , A}

• a quasiconvex optimization problem

• LP reformulation of page 4.37 does not extend to generalized problem

Example: Von Neumann model of a growing economy

maximize (over G, G+) min
8=1,...,=

G+8 /G8

subject to G+ � 0, �G+ � �G

• G, G+ ∈ R=: activity levels of = sectors, in current and next period

• (�G)8: amount of good 8 produced in current period

• (�G+)8: amount consumed in next period, cannot exceed (�G)8
• G+

8
/G8: growth rate of sector 8

allocate activity to maximize growth rate of slowest growing sector
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Convex representation of sublevel sets of 50

if 50 is quasiconvex, there exists a family of functions qC such that:

• qC (G) is convex in G for fixed C

• C-sublevel set of 50 is 0-sublevel set of qC, i.e.,

50(G) ≤ C ⇐⇒ qC (G) ≤ 0

Example

50(G) =
?(G)
@(G)

with ? convex, @ concave, and ?(G) ≥ 0, @(G) > 0 on dom 50

can take qC (G) = ?(G) − C@(G):
• for C ≥ 0, qC convex in G

• ?(G)/@(G) ≤ C if and only if qC (G) ≤ 0
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Quasiconvex optimization via convex feasibility problems

qC (G) ≤ 0, 58 (G) ≤ 0, 8 = 1, . . . , <, �G = 1 (3)

• for fixed C, a convex feasibility problem in G

• if feasible, we can conclude that C ≥ ?★; if infeasible, C ≤ ?★

Bisection method

given: ; ≤ ?★, D ≥ ?★, tolerance n > 0

repeat

1. C := (; + D)/2
2. solve the convex feasibility problem (3)

3. if (3) is feasible, D := C

else ; := C

until D − ; ≤ n

requires exactly
⌈

log2

(

D−;
n

)⌉

iterations
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Vector optimization

General vector optimization problem

minimize (w.r.t.  ) 50(G)
subject to 58 (G) ≤ 0, 8 = 1, . . . , <

ℎ8 (G) = 0, 8 = 1, . . . , ?

vector objective 50 : R= → R@, minimized with respect to proper cone  ∈ R@

Convex vector optimization problem

minimize (w.r.t.  ) 50(G)
subject to 58 (G) ≤ 0, 8 = 1, . . . , <

�G = 1

where 51, . . . , 5< are convex and 50 is “ -convex”, i.e.,

50(\G + (1 − \)H) � \ 50(G) + (1 − \) 50(H)

for all G, H ∈ dom 50 and \ ∈ [0, 1]
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Multicriterion optimization

vector optimization problem with  = R
@
+

50(G) = (�1(G), . . . , �@ (G))

• @ different objectives �8; roughly speaking we want all �8’s to be small

• feasible G★ is optimal if

H feasible =⇒ 50(G★) � 50(H)

if there exists an optimal point, the objectives are noncompeting

• feasible Gpo is Pareto optimal if

H feasible, 50(H) � 50(Gpo) =⇒ 50(Gpo) = 50(H)

if Pareto optimal values are not unique, there is a trade-off between objectives

• 50 is  -convex if �1, . . . , �@ are convex (in the usual sense)

Convex optimization problems 4.44



Optimal and Pareto optimal points

set of achievable objective values

O = { 50(G) | G feasible}

• feasible G is optimal if 50(G) is the minimum value of O

• feasible G is Pareto optimal if 50(G) is a minimal value of O

O

50(G★)
G★ is optimal

O

50(Gpo)

Gpo is Pareto optimal
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Regularized least-squares

minimize (w.r.t. R2
+) (‖�G − 1‖2

2
, ‖G‖2

2
)
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�1(G) = ‖�G − 1‖2
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�
2
(G
)=

‖G
‖2 2

O

example for � ∈ R100×10; heavy line is formed by Pareto optimal points
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Risk–return trade-off in portfolio optimization

minimize (w.r.t. R2
+) (−?̄)G, G)ΣG)

subject to 1)G = 1, G � 0

• G ∈ R= is investment portfolio; G8 is fraction invested in asset 8

• return is A = ?)G where ? ∈ R= is vector of relative asset price changes

• ? is modeled as a random variable with mean ?̄, covariance Σ

• ?̄)G = E A is expected return; G)ΣG = var A is return variance (risk)

Example
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Scalarization

to find Pareto optimal points: choose _ ≻ ∗ 0 and solve scalar problem

minimize _) 50(G)
subject to 58 (G) ≤ 0, 8 = 1, . . . , <

ℎ8 (G) = 0, 8 = 1, . . . , ?

• solutions G of scalar problem are Pareto-optimal for vector optimization problem

G not Pareto-optimal

⇓
∃ feasible H : 50(H) � 50(G), 50(H) ≠ 50(G)

⇓
_) 50(H) < _) 50(G) for _ ≻ ∗ 0

O

50(G1)

_1

50(G2) _2

50(G3)

• partial converse for convex vector optimization problems (see later in duality):

can find (almost) all Pareto optimal points by varying _ ≻ ∗ 0

• objective of scalar problem is convex if 50 is  -convex
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Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

_) 50(G) = _1�1(G) + · · · + _@�@ (G)

• regularized least squares problem of page 4.46

take _ = (1, W) with W > 0

minimize ‖�G − 1‖2
2
+ W‖G‖2

2

for fixed W, a LS problem

0 5 10 15 20
0

5

10

15

20

‖�G − 1‖2
2

‖G
‖2 2

W = 1

• risk–return trade-off of page 4.47: with W > 0,

minimize −?̄)G + WG)ΣG
subject to 1)G = 1, G � 0
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