4. Convex optimization problems

- standard form (convex) optimization problem
- linear optimization
- quadratic optimization
- geometric programming
- semidefinite optimization
- quasiconvex optimization
- vector and multicriterion optimization

Optimization problem in standard form

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- $x \in \mathbf{R}^{n}$ is the optimization variable
- $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is the objective or cost function
- $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$, for $i=1, \ldots, m$, are the inequality constraint functions
- $h_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$, for $i=1, \ldots, p$, are the equality constraint functions

Feasible and optimal points

Feasible point: x is feasible if $x \in \operatorname{dom} f_{0}$ and it satisfies all constraints Optimal value

$$
p^{\star}=\inf \left\{f_{0}(x) \mid f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p\right\}
$$

- $p^{\star}=\infty$ if the problem is infeasible (set of feasible x is empty)
- $p^{\star}=-\infty$ if the problem is unbounded below

Optimal solution

- a feasible x is optimal if $f_{0}(x)=p^{\star}$
- the set of optimal points will be denoted by $X_{\text {opt }}$
- \hat{x} is locally optimal if there is an $R>0$ such that \hat{x} is optimal for the problem

```
minimize (over x) for (x)
subject to }\quad\mp@subsup{f}{i}{}(x)\leq0,\quadi=1,\ldots,
    hi}(x)=0,\quadi=1,\ldots,
    |x-\hat{x}\mp@subsup{|}{2}{}\leqR
```


Examples (with $n=1, m=p=0$)

- $f_{0}(x)=1 / x$ with dom $f_{0}=\mathbf{R}_{++}$:

$$
p^{\star}=0, \quad X_{\mathrm{opt}}=\emptyset
$$

- $f_{0}(x)=-\log x$ with $\operatorname{dom} f_{0}=\mathbf{R}_{++}$:

$$
p^{\star}=-\infty, \quad X_{\mathrm{opt}}=\emptyset
$$

- $f_{0}(x)=x \log x$ with dom $f_{0}=\mathbf{R}_{++}$:

$$
p^{\star}=-1 / e, \quad X_{\mathrm{opt}}=\{1 / e\}
$$

- $f_{0}(x)=\max \{0,|x|-1\}, \operatorname{dom} f_{0}=\mathbf{R}$:

$$
p^{\star}=0, \quad X_{\mathrm{opt}}=[-1,1]
$$

- $f_{0}(x)=x^{3}-3 x, \operatorname{dom} f_{0}=\mathbf{R}$:

$$
p^{\star}=-\infty, \quad X_{\mathrm{opt}}=\emptyset, \quad x=1 \text { is locally optimal }
$$

Implicit constraints

the standard form optimization problem has an implicit constraint

$$
x \in \mathcal{D}=\bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i},
$$

- we call \mathcal{D} the domain of the problem
- the constraints $f_{i}(x) \leq 0, h_{i}(x)=0$ are the explicit constraints
- a problem is unconstrained if it has no explicit constraints ($m=p=0$)
- the distinction will become important when we diccuss duality

Example

$$
\operatorname{minimize} \quad f_{0}(x)=-\sum_{i=1}^{k} \log \left(b_{i}-a_{i}^{T} x\right)
$$

this is an unconstrained problem with implicit constraints $a_{i}^{T} x<b_{i}$

Feasibility problem

can be considered a special case of the general problem with $f_{0}(x)=0$:

$$
\begin{array}{ll}
\operatorname{minimize} & 0 \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- $p^{\star}=0$ if constraints are feasible; any feasible x is optimal
- $p^{\star}=\infty$ if constraints are infeasible
this formulation is not meant as a practical method for solving feasibility problems

Convex optimization problem in standard form

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& a_{i}^{T} x=b_{i}, \quad i=1, \ldots, p
\end{array}
$$

- objective and inequality constraint functions $f_{0}, f_{1}, \ldots, f_{m}$ are convex
- equality constraints are linear, often written as $A x=b$
- feasible set is convex: the intersection of several convex sets dom f_{0}, \quad sublevel sets $\left\{x \mid f_{i}(x) \leq 0\right\}, \quad$ the affine set $\{x \mid A x=b\}$
- optimal set is convex: any convex combination of optimal x_{1}, x_{2} is feasible, with

$$
\begin{aligned}
f_{0}\left(\theta x_{1}+(1-\theta) x_{2}\right) & \leq \theta f_{0}\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right) \\
& =p^{\star}
\end{aligned}
$$

hence, $f_{0}\left(\theta x_{1}+(1-\theta) x_{2}\right)=p^{\star}$, so the convex combination is optimal

Example

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)=x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & f_{1}(x)=x_{1} /\left(1+x_{2}^{2}\right) \leq 0 \\
& h_{1}(x)=\left(x_{1}+x_{2}\right)^{2}=0
\end{array}
$$

- f_{0} is convex
- feasible set $\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=-x_{2} \leq 0\right\}$ is convex
- not a convex problem (according to our definition): f_{1} not convex, h_{1} not affine
- the problem is equivalent (but not identical) to the convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & x_{1} \leq 0 \\
& x_{1}+x_{2}=0
\end{array}
$$

Local and global optima

any locally optimal point of a convex problem is (globally) optimal

- suppose x is locally optimal: there is an $R>0$ such that

$$
z \text { feasible, } \quad\|z-x\|_{2} \leq R \quad \Longrightarrow \quad f_{0}(z) \geq f_{0}(x)
$$

- suppose x is not globally optimal: there exists a feasible y with $f_{0}(y)<f_{0}(x)$
- convex combinations of x and y are feasible
- cost function at convex combination of x and y with $0<\theta \leq 1$ satisfies

$$
\begin{aligned}
f_{0}((1-\theta) x+\theta y) & \leq(1-\theta) f_{0}(x)+\theta f_{0}(y) \\
& <(1-\theta) f_{0}(x)+\theta f_{0}(x) \\
& =f_{0}(x)
\end{aligned}
$$

- for $0<\theta \leq R /\|y-x\|_{2}$ this contradicts the assumption of local optimality of x

Optimality criterion for differentiable f_{0}

x is optimal if and only if it is feasible and

$$
\nabla f_{0}(x)^{T}(y-x) \geq 0 \quad \text { for all feasible } y
$$

if nonzero, $\nabla f_{0}(x)$ defines a supporting hyperplane to feasible set X at x

Proof (necessity)

- consider feasible $y \neq x$ and define line segment $I=\{x+t(y-x) \mid 0 \leq t \leq 1\}$
- by convexity of X, points in I are feasible
- let $g(t)=f_{0}(x+t(y-x))$ be the restriction of f_{0} to I
- derivative at t is $g^{\prime}(t)=\nabla f_{0}(x+t(y-x))^{T}(y-x)$, so

$$
g^{\prime}(0)=\nabla f_{0}(x)^{T}(y-x)
$$

- if $g^{\prime}(0)=\nabla f_{0}(x)^{T}(x-y)<0$, the point x is not even locally optimal

Proof (sufficiency)

if y is feasible and $\nabla f_{0}(x)^{T}(y-x) \geq 0$, then, by convexity of f_{0},

$$
\begin{aligned}
f_{0}(y) & \geq f_{0}(x)+\nabla f_{0}(x)^{T}(y-x) \\
& \geq f_{0}(x)
\end{aligned}
$$

Examples

Unconstrained problem: x is optimal if and only if

$$
x \in \operatorname{dom} f_{0}, \quad \nabla f_{0}(x)=0
$$

(recall our assumption that dom f_{0} is an open set if f_{0} is differentiable)

Minimization over nonnegative orthant

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & x \geq 0
\end{array}
$$

x is optimal if and only if

$$
x \in \operatorname{dom} f_{0}, \quad x \geq 0, \quad \begin{cases}\nabla f_{0}(x)_{i} \geq 0 & x_{i}=0 \\ \nabla f_{0}(x)_{i}=0 & x_{i}>0\end{cases}
$$

Equality constrained problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & A x=b
\end{array}
$$

x is optimal if and only if there exists a v such that

$$
x \in \operatorname{dom} f_{0}, \quad A x=b, \quad \nabla f_{0}(x)+A^{T} v=0
$$

- first two conditions are feasibility of x
- gradient $\nabla f_{0}(x)$ can always be decomposed as $\nabla f_{0}(x)+A^{T} v=w$ with $A w=0$
- if $w=0$, the optimality condition on page 4.10 holds:

$$
\nabla f_{0}(x)^{T}(y-x)=-v^{T} A(y-x)=0 \quad \text { for all } y \text { with } A y=b
$$

- if $w \neq 0$, condition on p. 4.10 does not hold: $y=x-t w$ is feasible for small $t>0$,

$$
\nabla f_{0}(x)^{T}(y-x)=-t\left(w-A^{T} v\right)^{T} w=-t\|w\|_{2}^{2}<0
$$

Linear program (LP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x+d \\
\text { subject to } & G x \leq h \\
& A x=b
\end{array}
$$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Examples

Diet problem: choose quantities x_{1}, \ldots, x_{n} of n foods

- one unit of food j costs c_{j}, contains amount $a_{i j}$ of nutrient i
- healthy diet requires nutrient i in quantity at least b_{i}
to find cheapest healthy diet,

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \geq b, \quad x \geq 0
\end{array}
$$

Piecewise-linear minimization

$$
\operatorname{minimize} \max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)
$$

equivalent to an LP

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & a_{i}^{T} x+b_{i} \leq t, \quad i=1, \ldots, m
\end{array}
$$

Chebyshev center of a polyhedron

Chebyshev center of

$$
\mathcal{P}=\left\{x \mid a_{i}^{T} x \leq b_{i}, i=1, \ldots, m\right\}
$$

is center of largest inscribed ball

$$
\mathcal{B}=\left\{x_{\mathrm{c}}+u \mid\|u\|_{2} \leq r\right\}
$$

- $a_{i}^{T} x \leq b_{i}$ for all $x \in \mathcal{B}$ if and only if

$$
\sup \left\{a_{i}^{T}\left(x_{\mathrm{c}}+u\right) \mid\|u\|_{2} \leq r\right\}=a_{i}^{T} x_{\mathrm{c}}+r\left\|a_{i}\right\|_{2} \leq b_{i}
$$

- hence, x_{c}, r can be determined by solving the LP

$$
\begin{array}{ll}
\operatorname{maximize} & r \\
\text { subject to } & a_{i}^{T} x_{\mathrm{c}}+r\left\|a_{i}\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

Quadratic program (QP)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x+r \\
\text { subject to } & G x \leq h \\
& A x=b
\end{array}
$$

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Examples

Least squares

$$
\text { minimize }\|A x-b\|_{2}^{2}
$$

- analytical solution $x^{\star}=A^{\dagger} b\left(A^{\dagger}\right.$ is pseudo-inverse)
- can add linear constraints, e.g., $l \leq x \leq u$

Linear program with random cost

$$
\begin{array}{ll}
\operatorname{minimize} & \bar{c}^{T} x+\gamma x^{T} \Sigma x=\mathbf{E} c^{T} x+\gamma \operatorname{var}\left(c^{T} x\right) \\
\text { subject to } & G x \leq h \\
& A x=b
\end{array}
$$

- c is random vector with mean \bar{c} and covariance Σ
- hence, $c^{T} x$ is random variable with mean $\bar{c}^{T} x$ and variance $x^{T} \Sigma x$
- $\gamma>0$ is risk aversion parameter
- γ controls trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P_{0} x+q_{0}^{T} x+r_{0} \\
\text { subject to } & (1 / 2) x^{T} P_{i} x+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- $P_{i} \in \mathbf{S}_{+}^{n}$; objective and constraints are convex quadratic
- if $P_{1}, \ldots, P_{m} \in \mathbf{S}_{++}^{n}$, feasible set is intersection of m ellipsoids and an affine set

Second-order cone programming

$$
\begin{array}{ll}
\operatorname{minimize} & f^{T} x \\
\text { subject to } & \left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m \\
& F x=g
\end{array}
$$

$\left(A_{i} \in \mathbf{R}^{n_{i} \times n}, F \in \mathbf{R}^{p \times n}\right)$

- inequalities are called second-order cone (SOC) constraints:

$$
\left(A_{i} x+b_{i}, c_{i}^{T} x+d_{i}\right) \in \text { second-order cone in } \mathbf{R}^{n_{i}+1}
$$

- for $n_{i}=0$, reduces to an LP; if $c_{i}=0$, reduces to a QCQP
- more general than QCQP and LP

Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

there can be uncertainty in c, a_{i}, b_{i}
two common approaches to handling uncertainty (in a_{i}, for simplicity)

- deterministic model: constraints must hold for all $a_{i} \in \mathcal{E}_{i}$

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i} \text { for all } a_{i} \in \mathcal{E}_{i}, \quad i=1, \ldots, m,
\end{array}
$$

- stochastic model: a_{i} is random variable; constraints must hold with probability η

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \operatorname{prob}\left(a_{i}^{T} x \leq b_{i}\right) \geq \eta, \quad i=1, \ldots, m
\end{array}
$$

Deterministic approach via SOCP

choose an ellipsoid as \mathcal{E}_{i} :

$$
\mathcal{E}_{i}=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\} \quad\left(\bar{a}_{i} \in \mathbf{R}^{n}, P_{i} \in \mathbf{R}^{n \times n}\right)
$$

center is \bar{a}_{i}, semi-axes determined by singular values/vectors of P_{i}

SOCP formulation

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i} \quad \forall a_{i} \in \mathcal{E}_{i}, \quad i=1, \ldots, m
\end{array}
$$

this is equivalent to the SOCP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \bar{a}_{i}^{T} x+\left\|P_{i}^{T} x\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

(follows from $\left.\sup _{\|u\|_{2} \leq 1}\left(\bar{a}_{i}+P_{i} u\right)^{T} x=\bar{a}_{i}^{T} x+\left\|P_{i}^{T} x\right\|_{2}\right)$

Stochastic approach via SOCP

- assume $\left.a_{i} \sim \mathcal{N}\left(\bar{a}_{i}, \Sigma_{i}\right)\right)$: Gaussian with mean \bar{a}_{i}, covariance Σ_{i}
- $a_{i}^{T} x$ is Gaussian random variable with mean $\bar{a}_{i}^{T} x$, variance $x^{T} \Sigma_{i} x$
- if we denote the CDF of $\mathcal{N}(0,1)$ by $\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t$,

$$
\operatorname{prob}\left(a_{i}^{T} x \leq b_{i}\right)=\Phi\left(\frac{b_{i}-\bar{a}_{i}^{T} x}{\left\|\Sigma_{i}^{1 / 2} x\right\|_{2}}\right)
$$

SOCP formulation of robust LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \operatorname{prob}\left(a_{i}^{T} x \leq b_{i}\right) \geq \eta, \quad i=1, \ldots, m
\end{array}
$$

for $\eta \geq 1 / 2$, this is equivalent to the SOCP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \bar{a}_{i}^{T} x+\Phi^{-1}(\eta)\left\|\Sigma_{i}^{1 / 2} x\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

Example

$$
\operatorname{prob}\left(a_{i}^{T} x \leq b_{i}\right) \geq \eta, \quad i=1, \ldots, 5
$$

feasible set for three values of η

Geometric programming

Monomial function

$$
f(x)=c x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}, \quad \operatorname{dom} f=\mathbf{R}_{++}^{n}
$$

with $c>0$; exponent a_{i} can be any real number
Posynomial function: sum of monomials

$$
f(x)=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \cdots x_{n}^{a_{n k}}, \quad \operatorname{dom} f=\mathbf{R}_{++}^{n}
$$

Geometric program (GP)

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 1, \quad i=1, \ldots, m \\
& h_{i}(x)=1, \quad i=1, \ldots, p
\end{array}
$$

with f_{i} posynomial, h_{i} monomial

Geometric program in convex form

change variables to $y_{i}=\log x_{i}$, and take logarithm of cost, constraints

- monomial $f(x)=c x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ transforms to

$$
\log f\left(e^{y_{1}}, \ldots, e^{y_{n}}\right)=a^{T} y+b \quad(b=\log c)
$$

- posynomial $f(x)=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \cdots x_{n}^{a_{n k}}$ transforms to

$$
\left.\log f\left(e^{y_{1}}, \ldots, e^{y_{n}}\right)=\log \left(\sum_{k=1}^{K} e^{a_{k}^{T} y+b_{k}}\right) \quad \text { (with } b_{k}=\log c_{k}\right)
$$

- geometric program transforms to convex problem

$$
\begin{array}{ll}
\text { minimize } & \log \left(\sum_{k=1}^{K} \exp \left(a_{0 k}^{T} y+b_{0 k}\right)\right) \\
\text { subject to } & \log \left(\sum_{k=1}^{K} \exp \left(a_{i k}^{T} y+b_{i k}\right)\right) \leq 0, \quad i=1, \ldots, m \\
& G y+d=0
\end{array}
$$

Design of cantilever beam

- N segments with unit lengths, rectangular cross-sections of size $w_{i} \times h_{i}$
- given vertical force F applied at the right end

Design problem

minimize total weight
subject to upper \& lower bounds on w_{i}, h_{i} upper bound \& lower bounds on aspect ratios h_{i} / w_{i} upper bound on stress in each segment upper bound on vertical deflection at the end of the beam
variables: w_{i}, h_{i} for $i=1, \ldots, N$

Objective and constraint functions

- total weight $w_{1} h_{1}+\cdots+w_{N} h_{N}$ is posynomial
- aspect ratio h_{i} / w_{i} and inverse aspect ratio w_{i} / h_{i} are monomials
- maximum stress in segment i is given by $6 i F /\left(w_{i} h_{i}^{2}\right)$, a monomial
- vertical deflection y_{i} and slope v_{i} of central axis at the right end of segment i :

$$
\begin{aligned}
v_{i} & =12(i-1 / 2) \frac{F}{E w_{i} h_{i}^{3}}+v_{i+1} \\
y_{i} & =6(i-1 / 3) \frac{F}{E w_{i} h_{i}^{3}}+v_{i+1}+y_{i+1}
\end{aligned}
$$

for $i=N, N-1, \ldots, 1$, with $v_{N+1}=y_{N+1}=0(E$ is Young's modulus $)$
v_{i} and y_{i} are posynomial functions of w, h

Formulation as a GP

minimize $\quad w_{1} h_{1}+\cdots+w_{N} h_{N}$
subject to $\quad w_{\max }^{-1} w_{i} \leq 1, \quad w_{\min } w_{i}^{-1} \leq 1, \quad i=1, \ldots, N$

$$
h_{\max }^{-1} h_{i} \leq 1, \quad h_{\min } h_{i}^{-1} \leq 1, \quad i=1, \ldots, N
$$

$$
S_{\max }^{-1} w_{i}^{-1} h_{i} \leq 1, \quad S_{\min } w_{i} h_{i}^{-1} \leq 1, \quad i=1, \ldots, N
$$

$$
6 i F \sigma_{\max }^{-1} w_{i}^{-1} h_{i}^{-2} \leq 1, \quad i=1, \ldots, N
$$

$$
y_{\max }^{-1} y_{1} \leq 1
$$

note

- we write $w_{\min } \leq w_{i} \leq w_{\max }$ and $h_{\min } \leq h_{i} \leq h_{\max }$

$$
w_{\min } / w_{i} \leq 1, \quad w_{i} / w_{\max } \leq 1, \quad h_{\min } / h_{i} \leq 1, \quad h_{i} / h_{\max } \leq 1
$$

- we write $S_{\min } \leq h_{i} / w_{i} \leq S_{\max }$ as

$$
S_{\min } w_{i} / h_{i} \leq 1, \quad h_{i} /\left(w_{i} S_{\max }\right) \leq 1
$$

Minimizing spectral radius of nonnegative matrix

Perron-Frobenius eigenvalue $\lambda_{\mathrm{pf}}(A)$

- exists for (elementwise) positive $A \in \mathbf{R}^{n \times n}$
- a real, positive eigenvalue of A, equal to spectral radius $\max _{i}\left|\lambda_{i}(A)\right|$
- determines asymptotic growth (decay) rate of $A^{k}: A^{k} \sim \lambda_{\mathrm{pf}}^{k}$ as $k \rightarrow \infty$
- alternative characterization: $\lambda_{\mathrm{pf}}(A)=\inf \{\lambda \mid A v \leq \lambda v$ for some $v>0\}$

Minimizing spectral radius of matrix of posynomials

- minimize $\lambda_{\mathrm{pf}}(A(x))$, where the elements $A(x)_{i j}$ are posynomials of x
- equivalent geometric program:

$$
\begin{array}{ll}
\operatorname{minimize} & \lambda \\
\text { subject to } & \sum_{j=1}^{n} A(x)_{i j} v_{j} /\left(\lambda v_{i}\right) \leq 1, \quad i=1, \ldots, n
\end{array}
$$

variables λ, v, x

Conic linear optimization

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & F x+g \leq_{K} 0 \\
& A x=b
\end{array}
$$

- K is a proper convex cone in \mathbf{R}^{m}
- F is an $m \times n$ matrix, g is a m-vector
- constraint means $-(F x+g) \in K$
- linear programming is special case with $K=\mathbf{R}_{+}^{m}$
- same properties as standard convex problem (local optimum is global, etc.)

Semidefinite program (SDP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} F_{1}+x_{2} F_{2}+\cdots+x_{n} F_{n}+G \leq 0 \\
& A x=b
\end{array}
$$

with $F_{i}, G \in \mathbf{S}^{k}$

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$
x_{1} \hat{F}_{1}+\cdots+x_{n} \hat{F}_{n}+\hat{G} \leq 0, \quad x_{1} \tilde{F}_{1}+\cdots+x_{n} \tilde{F}_{n}+\tilde{G} \leq 0
$$

is equivalent to single LMI

$$
x_{1}\left[\begin{array}{cc}
\hat{F}_{1} & 0 \\
0 & \tilde{F}_{1}
\end{array}\right]+x_{2}\left[\begin{array}{cc}
\hat{F}_{2} & 0 \\
0 & \tilde{F}_{2}
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{cc}
\hat{F}_{n} & 0 \\
0 & \tilde{F}_{n}
\end{array}\right]+\left[\begin{array}{cc}
\hat{G} & 0 \\
0 & \tilde{G}
\end{array}\right] \leq 0
$$

LP and SOCP as SDP

LP and equivalent SDP

LP: minimize $c^{T} x \quad$ SDP: minimize $c^{T} x$ subject to $A x \leq b \quad$ subject to $\boldsymbol{\operatorname { d i a g }}(A x-b) \leq 0$
(note different interpretation of generalized inequality \leq)

SOCP and equivalent SDP

SOCP: minimize $f^{T} x$

$$
\text { subject to } \quad\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m
$$

SDP: minimize $f^{T} x$

$$
\text { subject to }\left[\begin{array}{cc}
\left(c_{i}^{T} x+d_{i}\right) I & A_{i} x+b_{i} \\
\left(A_{i} x+b_{i}\right)^{T} & c_{i}^{T} x+d_{i}
\end{array}\right] \geq 0, \quad i=1, \ldots, m
$$

Eigenvalue minimization

$$
\operatorname{minimize} \quad \lambda_{\max }(A(x))
$$

where $A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}$ (with given $\left.A_{i} \in \mathbf{S}^{k}\right)$

Equivalent SDP

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & A(x) \leq t I
\end{array}
$$

- variables $x \in \mathbf{R}^{n}, t \in \mathbf{R}$
- equivalence follows from

$$
\lambda_{\max }(A) \leq t \quad \Longleftrightarrow \quad A \leq t I
$$

Matrix norm minimization

$$
\text { minimize }\|A(x)\|_{2}=\left(\lambda_{\max }\left(A(x)^{T} A(x)\right)\right)^{1 / 2}
$$

where $A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}$ (with given $A_{i} \in \mathbf{R}^{p \times q}$)

Equivalent SDP

$$
\left.\begin{array}{l}
\operatorname{minimize} \\
\text { subject to }
\end{array} \begin{array}{cc}
t I & A(x) \\
A(x)^{T} & t I
\end{array}\right] \geq 0
$$

- variables $x \in \mathbf{R}^{n}, t \in \mathbf{R}$
- constraint follows from

$$
\begin{aligned}
\|A\|_{2} \leq t & \Longleftrightarrow A^{T} A \leq t^{2} I, \quad t \geq 0 \\
& \Longleftrightarrow\left[\begin{array}{cc}
t I & A \\
A^{T} & t I
\end{array}\right] \geq 0
\end{aligned}
$$

Quasiconvex optimization

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- f_{0} is quasiconvex
- f_{1}, \ldots, f_{m} are convex
can have locally optimal points that are not (globally) optimal

Linear-fractional program

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & G x \leq h \tag{1}\\
& A x=b
\end{array}
$$

where

$$
f_{0}(x)=\frac{c^{T} x+d}{e^{T} x+f}, \quad \operatorname{dom} f_{0}(x)=\left\{x \mid e^{T} x+f>0\right\}
$$

- a quasiconvex optimization problem
- also equivalent to the LP (variables y, z)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} y+d z \\
\text { subject to } & G y \leq h z \\
& A y=b z \tag{2}\\
& e^{T} y+f z=1 \\
& z \geq 0
\end{array}
$$

Exercise

assume the linear-fractional program (1) is feasible

- show how to obtain the solution of (1) from the solution of the LP (2)
- what do solutions (y, z) of (2) with $z=0$ mean for (1)?

Solution: denote the optimal values of (1) and (2) by p_{Ifp}^{\star} and p_{lp}^{\star}, respectively

1. for every feasible x in (1), there is a corresponding feasible (y, z) in (2):

$$
y=\frac{x}{e^{T} x+f}, \quad z=\frac{1}{e^{T} x+f}, \quad c^{T} y+d=\frac{c^{T} x+d}{e^{T} x+f}
$$

2. for every feasible (y, z) in (2) with $z>0$, there is a feasible x in (1):

$$
x=\frac{y}{z}, \quad f_{0}(x)=\frac{c^{T} x+d}{e^{T} x+f}=\frac{c^{T} y+d z}{e^{T} y+f z}=c^{T} y+d
$$

3. suppose (y, z) is feasible for (2) with $z=0$:

$$
G y \leq 0, \quad A y=0, \quad e^{T} y=1
$$

let \hat{x} be a feasible point for (1):

$$
G \hat{x} \leq h, \quad A \hat{x}=b, \quad e^{T} \hat{x}+f>0
$$

all points on the half-line $\{\hat{x}+\alpha y \mid \alpha \geq 0\}$ are feasible for (1),

$$
G(\hat{x}+\alpha y) \leq h, \quad A(\hat{x}+\alpha y)=b, \quad e^{T}(\hat{x}+\alpha y+f)>0,
$$

and the cost function at $\hat{x}+\alpha y$ tends to $c^{T} y$ as $\alpha \rightarrow \infty$:

$$
f_{0}(\hat{x}+\alpha y)=\frac{c^{T} \hat{x}+d+\alpha c^{T} y}{e^{T} \hat{x}+f+\alpha} \longrightarrow c^{T} y
$$

- 1 shows that $p_{\mathrm{lfp}}^{\star} \geq p_{\mathrm{lp}}^{\star}$ and 2,3 show that $p_{\mathrm{lp}}^{\star} \geq p_{\mathrm{lfp}}^{\star}$; therefore $p_{\mathrm{lp}}^{\star}=p_{\mathrm{lfp}}^{\star}$
- if (y, z) is an optimal solution of (2) and $z>0$, then $x=y / z$ is optimal for (1)
- $(y, 0)$ of (2) indicates the optimal value of (1) is finite but not attained

Generalized linear-fractional program

$$
f_{0}(x)=\max _{i=1, \ldots, r} \frac{c_{i}^{T} x+d_{i}}{e_{i}^{T} x+f_{i}}, \quad \operatorname{dom} f_{0}(x)=\left\{x \mid e_{i}^{T} x+f_{i}>0, i=1, \ldots, r\right\}
$$

- a quasiconvex optimization problem
- LP reformulation of page 4.37 does not extend to generalized problem

Example: Von Neumann model of a growing economy

$$
\begin{array}{ll}
\operatorname{maximize}\left(\operatorname{over} x, x^{+}\right) & \min _{i=1, \ldots, n} x_{i}^{+} / x_{i} \\
\text { subject to } & x^{+} \geq 0, \quad B x^{+} \leq A x
\end{array}
$$

- $x, x^{+} \in \mathbf{R}^{n}$: activity levels of n sectors, in current and next period
- $(A x)_{i}$: amount of good i produced in current period;
- $\left(B x^{+}\right)_{i}$: amount consumed in next period, cannot exceed $(A x)_{i}$
- x_{i}^{+} / x_{i} : growth rate of sector i
allocate activity to maximize growth rate of slowest growing sector

Convex representation of sublevel sets of f_{0}

if f_{0} is quasiconvex, there exists a family of functions ϕ_{t} such that:

- $\phi_{t}(x)$ is convex in x for fixed t
- t-sublevel set of f_{0} is 0 -sublevel set of ϕ_{t}, i.e.,

$$
f_{0}(x) \leq t \quad \Longleftrightarrow \phi_{t}(x) \leq 0
$$

Example

$$
f_{0}(x)=\frac{p(x)}{q(x)}
$$

with p convex, q concave, and $p(x) \geq 0, q(x)>0$ on $\operatorname{dom} f_{0}$
can take $\phi_{t}(x)=p(x)-t q(x)$:

- for $t \geq 0, \phi_{t}$ convex in x
- $p(x) / q(x) \leq t$ if and only if $\phi_{t}(x) \leq 0$

Quasiconvex optimization via convex feasibility problems

$$
\begin{equation*}
\phi_{t}(x) \leq 0, \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m, \quad A x=b \tag{3}
\end{equation*}
$$

- for fixed t, a convex feasibility problem in x
- if feasible, we can conclude that $t \geq p^{\star}$; if infeasible, $t \leq p^{\star}$

Bisection method
given: $l \leq p^{\star}, u \geq p^{\star}$, tolerance $\epsilon>0$
repeat

1. $t:=(l+u) / 2$
2. solve the convex feasibility problem (3)
3. if (3) is feasible, $u:=t$

$$
\text { else } l:=t
$$

until $u-l \leq \epsilon$
requires exactly $\left[\log _{2}\left(\frac{u-l}{\epsilon}\right)\right]$ iterations

Vector optimization

General vector optimization problem

$$
\begin{array}{ll}
\operatorname{minimize}(\text { w.r.t. } K) & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

vector objective $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{q}$, minimized with respect to proper cone $K \in \mathbf{R}^{q}$ Convex vector optimization problem

$$
\begin{array}{ll}
\operatorname{minimize}(\text { w.r.t. } K) & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

where f_{1}, \ldots, f_{m} are convex and f_{0} is " K-convex", i.e.,

$$
f_{0}(\theta x+(1-\theta) y) \leq_{K} \theta f_{0}(x)+(1-\theta) f_{0}(y)
$$

for all $x, y \in \operatorname{dom} f_{0}$ and $\theta \in[0,1]$

Multicriterion optimization

vector optimization problem with $K=\mathbf{R}_{+}^{q}$

$$
f_{0}(x)=\left(F_{1}(x), \ldots, F_{q}(x)\right)
$$

- q different objectives F_{i}; roughly speaking we want all F_{i} 's to be small
- feasible x^{\star} is optimal if

$$
y \text { feasible } \quad \Longrightarrow \quad f_{0}\left(x^{\star}\right) \leq f_{0}(y)
$$

if there exists an optimal point, the objectives are noncompeting

- feasible x^{po} is Pareto optimal if

$$
y \text { feasible, } \quad f_{0}(y) \leq f_{0}\left(x^{\mathrm{po}}\right) \quad \Longrightarrow \quad f_{0}\left(x^{\mathrm{po}}\right)=f_{0}(y)
$$

if Pareto optimal values are not unique, there is a trade-off between objectives

- f_{0} is K-convex if F_{1}, \ldots, F_{q} are convex (in the usual sense)

Optimal and Pareto optimal points

set of achievable objective values

$$
\mathcal{O}=\left\{f_{0}(x) \mid x \text { feasible }\right\}
$$

- feasible x is optimal if $f_{0}(x)$ is the minimum value of O
- feasible x is Pareto optimal if $f_{0}(x)$ is a minimal value of O

Regularized least-squares

$$
\text { minimize (w.r.t. } \left.\mathbf{R}_{+}^{2}\right) \quad\left(\|A x-b\|_{2}^{2},\|x\|_{2}^{2}\right)
$$

example for $A \in \mathbf{R}^{100 \times 10}$; heavy line is formed by Pareto optimal points

Risk-return trade-off in portfolio optimization

$$
\begin{array}{ll}
\text { minimize (w.r.t. } \left.\mathbf{R}_{+}^{2}\right) & \left(-\bar{p}^{T} x, x^{T} \Sigma x\right) \\
\text { subject to } & \mathbf{1}^{T} x=1, \quad x \geq 0
\end{array}
$$

- $x \in \mathbf{R}^{n}$ is investment portfolio; x_{i} is fraction invested in asset i
- return is $r=p^{T} x$ where $p \in \mathbf{R}^{n}$ is vector of relative asset price changes
- p is modeled as a random variable with mean \bar{p}, covariance Σ
- $\bar{p}^{T} x=\mathbf{E} r$ is expected return; $x^{T} \Sigma x=\operatorname{var} r$ is return variance (risk)

Example

Scalarization

to find Pareto optimal points: choose $\lambda>_{K^{*}} 0$ and solve scalar problem

$$
\begin{array}{ll}
\operatorname{minimize} & \lambda^{T} f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- solutions x of scalar problem are Pareto-optimal for vector optimization problem

- partial converse for convex vector optimization problems (see later in duality): can find (almost) all Pareto optimal points by varying $\lambda>_{K^{*}} 0$
- objective of scalar problem is convex if f_{0} is K-convex

Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

$$
\lambda^{T} f_{0}(x)=\lambda_{1} F_{1}(x)+\cdots+\lambda_{q} F_{q}(x)
$$

- regularized least squares problem of page 4.46
take $\lambda=(1, \gamma)$ with $\gamma>0$

$$
\text { minimize } \quad\|A x-b\|_{2}^{2}+\gamma\|x\|_{2}^{2}
$$

for fixed γ, a LS problem

- risk-return trade-off of page 4.47: with $\gamma>0$,

$$
\begin{array}{ll}
\text { minimize } & -\bar{p}^{T} x+\gamma x^{T} \Sigma x \\
\text { subject to } & \mathbf{1}^{T} x=1, \quad x \geq 0
\end{array}
$$

