L. Vandenberghe ECE236B (Winter 2025)

4. Convex optimization problems

e standard form (convex) optimization problem
e linear optimization

e quadratic optimization

e geometric programming

e semidefinite optimization

e quasiconvex optimization

e vector and multicriterion optimization
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Optimization problem in standard form

minimize  fy(x)
subjectto fi(x) <0, i=1,...,m
hi(x)=0, i=1,...,p
e x € R" is the optimization variable
e fy: R" — Ris the objective or cost function

e fi:R" > R, fori=1,...,m, are the inequality constraint functions

e 1, :R" - R, fori=1,...,p, are the equality constraint functions
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Feasible and optimal points

Feasible point: x is feasible if x € dom fy and it satisfies all constraints

Optimal value
p*=inf {fo(x)| (x) <0, i=1,....m, hj(x)=0,i=1,...,p}

e p* = x if the problem is infeasible (set of feasible x is empty)

e p* = —o if the problem is unbounded below

Optimal solution
e afeasible x is optimal if fy(x) = p*
e the set of optimal points will be denoted by X,

e 1 is locally optimal if there is an R > 0 such that X is optimal for the problem

minimize (over x) fo(x)

subject to filx) <0, i=1,...,m
h,-(x):O, i=1,...,p
lx —X[2 <R
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Examples (n =1,m = p =0)

Jo(x) dom fy graph p* Xopt

1/x R,. L 0 empty

—log x R, k —00 empty
xlogx R, JDL —1/e {1/e}

max{0, [x| — 1} R M 0 [—1,1]
x3 - 3x R HWL —00 empty
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Implicit constraints

the standard form optimization problem has an implicit constraint

m p
xeD = ﬂdomfi N ﬂdomhi,
i=0 i=1

e we call D the domain of the problem
e the constraints f;(x) < 0, h;(x) = 0 are the explicit constraints
e a problem is unconstrained if it has no explicit constraints (m = p = 0)

e the distinction will be important when we diccuss duality

Example
k

minimize fy(x) = — Z log(b; — al-Tx)
i=1
this is an unconstrained problem with implicit constraints al.Tx < b;
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Feasibility problem

find X
subjectto fi(x) <0, i=1,...,m
hi(x)=0, i=1,...,p

can be considered a special case of the general problem with f(x) = O:

minimize O
subjectto  f;(x) <0, i=1,...,m
hi(x) =0, i=1,...,p
e p* = 0 if constraints are feasible; any feasible x is optimal

e p* = o if constraints are infeasible

this formulation is not meant as a practical method for solving feasibility problems
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Convex optimization problem in standard form

minimize  fy(x)
subjectto  fi(x) <0, i=1,...,m
al.Tx:bi, i=1,...,p

e objective and inequality constraint functions fy, fi, ..., fn are convex
e equality constraints are linear, often written as Ax = b

e feasible set is convex: the intersection of several convex sets

dom fy, sublevel sets {x | fi(x) < 0}, the affine set {x | Ax = b}

e optimal set is convex: any convex combination of optimal x1, x is feasible, with

Jfo(Ox1+ (1 =6)x2) < Ofo(x1)+(1-06)f(x2)

*

= P
hence, fy(0x; + (1 —0)xy) = p*, so the convex combination is optimal
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Example

minimize  fo(x) = x] + x5

subjectto  fi(x) =x1/(1+x3) <0
hi(x) = (x1+x2)2 =0

® fois convex
e feasible set {(x1,x2) | x1 = —xp < 0} is convex
e not a convex problem (according to our definition): f; not convex, i not affine

e the problem is equivalent (but not identical) to the convex problem

minimize  x7 + x5
subjectto x; <0
X1 +Xy = 0
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Local and global optima
any locally optimal point of a convex problem is (globally) optimal

e suppose x is locally optimal: there is an R > 0 such that

zfeasible, |lz—-x|]p <R = fy(2) = fo(x)

e suppose x is not globally optimal: there exists a feasible y with f(y) < fo(x)
e convex combinations of x and y are feasible

e cost function at convex combination of x and y with 0 < 6 < 1 satisfies

fo((I1=0)x+6y) < (1-0)fo(x)+0f(y)
< (1-0)fo(x)+6f(x)
= fox)

e for0 < 8 < R/||y — x||» this contradicts the assumption of local optimality of x
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Optimality criterion for differentiable f

x is optimal if and only if it is feasible and

Vix) ! (y—x) >0 forall feasible y

if nonzero, V fy(x) defines a supporting hyperplane to feasible set X at x

Convex optimization problems

4.10



Proof (necessity)

e consider feasible y # x and define line segment I = {x +f(y —x) |0 <t < 1}
e by convexity of X, points in I are feasible
o let g(¢) = fo(x +t(y — x)) be the restriction of fyto I

e derivative at 7 is g’(t) = Vfy(x +t(y —x))! (y — x), so

g'(0) = Vfo(x)" (y — x)

o if g’(0) = Vfy(x)! (x — y) <0, the point x is not even locally optimal

Proof (sufficiency)

if y is feasible and V fy(x)? (y — x) > 0, then, by convexity of f,

vV

fo(x) + Vfo(x)' (y — x)
Jo(x)

fo(y)

vV
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Examples

Unconstrained problem: x is optimal if and only if
x € dom fy, Vio(x)=0

(recall our assumption that dom f is an open set if f; is differentiable)

Minimization over nonnegative orthant

minimize  fy(x)
subjectto x >0

x is optimal if and only if

\Y >0 x;=0
x € dom f, x >0, { folx); A

Vir(x)i=0 x;>0

Convex optimization problems
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Equality constrained problem

minimize  fy(x)
subjectto Ax=0b

x is optimal if and only if there exists a v such that
xedomfy, Ax=b, Vx)+Alv=0

e first two conditions are feasibility of x
e gradient V fy(x) can be decomposed as V fy(x) + Alv = w with Aw =0

e if w = 0, the optimality condition on page 4.10 holds:

Vi) (y—x)=—v'A(y —x) =0 forall y with Ay =b

e if w # 0, condition on p. 4.10 does not hold: y = x — tw is feasible for small r > 0,

Vi) (y-x) = —t(w-A"w=—t]w|5 <0
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Linear program (LP)

minimize c¢Ix+d

subjectto Gx < h
Ax=0>b
e convex problem with affine objective and constraint functions

e feasible set is a polyhedron

Convex optimization problems
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Examples

Diet problem: choose quantities xy, ..., x,, of n foods

e one unit of food j costs ¢, contains amount a;; of nutrient i

e healthy diet requires nutrient i in quantity at least b;

to find cheapest healthy diet,

minimize c¢!x

subjectto Ax >b, x>0
Piecewise-linear minimization

minimize  max (al-Tx+bl-)
i=1,....m

equivalent to an LP

minimize ¢

subjectto alx+b; <t, i=1,...

Convex optimization problems
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Chebyshev center of a polyhedron
Chebyshev center of
P={x|ax<b;,i=1,...,m}
is center of largest inscribed ball

B ={xc+ulllulz<r;

o a/x < b;forallx € Bif and only if

T

sup{a; (xc +u) | lull2 < r} = aj xc +rllaillz < b;

e hence, x., r can be determined by solving the LP

maximize r

subjectto a!

l.xc+r||a,-||2 <b;, i=1,...,m
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Quadratic program (QP)

minimize  3xT Px + g x +r
subjectto Gx < h
Ax=0>b
e P € S, so objective is convex quadratic

e Mminimize a convex quadratic function over a polyhedron

Convex optimization problems
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Examples

Least squares
minimize [|Ax — b5

e analytical solution x* = ATH (AT is pseudo-inverse)

e can add linear constraints, e.g., [ <x < u

Linear program with random cost

minimize éx+yx!Zx = Eclx + yvar(clx)
subjectto Gx < h

Ax=0>b

e ¢ is random vector with mean ¢ and covariance X

T T

e hence, ¢! x is random variable with mean ¢’ x and variance x! Xx
e v > (is risk aversion parameter

e y controls trade-off between expected cost and variance (risk)

Convex optimization problems

4.18



Quadratically constrained quadratic program (QCQP)

o if Py,..

_ . 1 T T
minimize  5x" Pox + g, x + 10
subject to %xTP,-x + ql.Tx +r; <0, i=1,...,m
Ax=0>b

P; € S”; objective and constraints are convex quadratic

., Py € SE,, feasible set is intersection of m ellipsoids and an affine set
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Second-order cone programming

minimize  flx
subjectto [|[Aix+billa < cjx+d;, i=1,...,m
Fx=g

(A; € R F € RP*M)
e inequalities are called second-order cone (SOC) constraints:

(Aix + b;, ¢! x + d;) € second-order cone in R"!

e for n; =0, reduces to an LP; if ¢; = 0, reduces to a QCQP

e more general than QCQP and LP
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Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize c¢!x

subjectto alx <b;, i=1,....,m

there can be uncertainty in c, a;, b;

two common approaches to handling uncertainty (in a;, for simplicity)

e deterministic model: constraints must hold for all a; € &;

minimize c¢x

subjectto alx < b;foralla;€&;, i=1,...,m,
e stochastic model: a; is random variable; constraints must hold with probability r

minimize c¢!x

subject to prob(aiTx <b)=zn, i=1,...,m
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Deterministic approach via SOCP

choose an ellipsoid as &;:
& ={ai+Pu|llulla <1} (@ eR", P;e R"")

center is a;, semi-axes determined by singular values/vectors of P;

SOCP formulation

minimize c¢!x

subject to al.Tx <b; Va;e&;, i=1,...,m
this is equivalent to the SOCP

minimize  ¢'x

subjectto  ax+||Plxlly < b, i

[
[
»
.
3

(follows from sup (a; + Piu)'x = al x +||P] x||2)
Jull2<1

Convex optimization problems
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Stochastic approach via SOCP

e assume a; ~ N(a;, 2;)): Gaussian with mean a;, covariance %

T T
i i

e if we denote the CDF of A (0, 1) by ®(x) =

e a!lx is Gaussian random variable with mean a? x, variance x! 3;x

prob(aiTx <b)=

12" x ]2

SOCP formulation of robust LP

minimize c¢!x

subject to prob(aiTx <b)=zn i=1,...,m

forn > 1/2, this is equivalent to the SOCP
minimize  ¢’x

subjectto  alx +® ' (PIZ Pxlla <bi, i=1,...,m

Convex optimization problems
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Example

I
[E—
»
.
)|

prob(aiTx <bj)=zn, i

feasible set for three values of ry

n = 10% 1 = 50% 1 = 90%
® () <0 dl(n) =0 ® () >0
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Geometric programming

Monomial function
fx) = ex{'x5% - x", dom f = R,

with ¢ > 0; exponent a; can be any real number

Posynomial function: sum of monomials

f<x>—Zc Xt - xpt, dom f =RY,

Geometric program (GP)

minimize  fy(x)
subjectto fi(x) <1, i=1,...,m
hix)=1, i=1,...,p
with f; posynomial, 4#; monomial

Convex optimization problems
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Geometric program in convex form

change variables to y; = log x;, and take logarithm of cost, constraints

ai

|-+~ x," transforms to

e monomial f(x) = cx
log f(e¥',....,e"")=aly+b (b =logc)

e posynomial f(x) = Z5_, cxx| x5% - - - xy" transforms to

K
log f(e”,...,e") =log(D e™*P%)  (with by = logcy)
k=1

e geometric program transforms to convex problem

K
minimize  log( X exp(a(T)ky +Dox))
k=1

K
subjectto log( X eXP(“Z;cy +bir)) <0, i=1,....,m
k=1

Gy+d=0
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Design of cantilever beam

segment4 segment3 segment2 segment 1

e N segments with unit lengths, rectangular cross-sections of size w; X h;

e given vertical force F applied at the right end

Design problem

minimize total weight
subject to upper & lower bounds on wj;, A;

upper bound & lower bounds on aspect ratios Ah; /w;
upper bound on stress in each segment
upper bound on vertical deflection at the end of the beam

variables: w;, h;fori=1,...,N
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Objective and constraint functions

e total weight wih; + -+ wyhy is posynomial
e aspect ratio h;/w; and inverse aspect ratio w;/h; are monomials
e maximum stress in segment i is given by 6iF/(w,-hl.2), a monomial

e vertical deflection y; and slope v; of central axis at the right end of segment i:

F
vi = 12(1—-1/2 + V41
i (i-1/ )Ewih? i+
. F
yi = 60 —=1/3)——=+vit1 + i+l
wihl.

fori=N,N—-1,...,1,withoyy; = ynys+1 =0 (£ is Young's modulus)

v; and y; are posynomial functions of w, A
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Formulation as a GP

minimize wih{+---+wyhy

subjectto  wpiwi <1, wmpw; ' <1, i=1,...,N
hpixhi <1, hminh7! <1, i=1,...,N
S thi <1, Spinwihy! <1, i=1,...,N
61F0'maX 1hz<1 i=1,...,N

max

Vb1 < 1

note

Wmin/w; < 1, Wi /Wmax < 1, hmin/hi <1, hi/hmax <1

o we write Spin < hi/w; < Smax as

Sminwi/hi < 1, hi/(w;Smax) < 1
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Minimizing spectral radius of nonnegative matrix

Perron—-Frobenius eigenvalue 1,¢(A)

e exists for (elementwise) positive A € R™"
e areal, positive eigenvalue of A, equal to spectral radius max; |1;(A)]

e determines asymptotic growth (decay) rate of A¥; AX ~ /l’;f as k — o

e alternative characterization: Apr(A) = inf{4 | Av < Av for some v > 0}

Minimizing spectral radius of matrix of posynomials
e minimize A,¢(A(x)), where the elements A(x);; are posynomials of x
e equivalent geometric program:
minimize A
n
subjectto X A(x);vi/(Av;)) <1, i=1,...,n
j=1

variables A, v, x

Convex optimization problems
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Conic linear optimization

minimize c¢!x

subjectto Fx+g <0
Ax=0>b
e K is a proper convex cone in R
e [is an m X n matrix, g is a m-vector
e constraint means —(Fx+g) € K
e linear programming is special case with K = R”"

e same properties as standard convex problem (local optimum is global, etc.)
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Semidefinite program (SDP)

minimize c¢lx
subjectto x Fi+x0Fr+ - +x,F,+G <0
Ax=0b

with F;, G € S¥

e inequality constraint is called linear matrix inequality (LMI)

e includes problems with multiple LMI constraints: for example,

A ~

xitBi+- +x,F,+G <0, xFi+ - -+x,F,+G<0

is equivalent to single LMI

xﬁlo
o F

0

+ X2 0 £

+ 4 Xy
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LP and SOCP as SDP

LP and equivalent SDP

LP:  minimize c¢’x SDP: minimize c¢!x
subjectto Ax < b subjectto diag(Ax —b) <0
(note different interpretation of generalized inequality <)
SOCP and equivalent SDP
SOCP: minimize f!x
subjectto [|[Aix+billa <clx+d;, i=1,...,m
SDP: minimize  flx
T : : :
subject to (cjx+d)l - Apx+bi >0, i=1,....,m

(A;jx + bi)T CZTX +d; |
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Eigenvalue minimization

minimize Amax(A(x))
where A(x) = Ag +x[A] + - - + x,A, (With given A; € S¥)
Equivalent SDP

minimize ¢

subjectto A(x) <tl

e variablesx e R",r e R

e equivalence follows from

Amax(A) £t — A=<t

Convex optimization problems
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Matrix norm minimization

minimize  [[A(0)ll2 = (Amax (A(0)TA(x)))'/

where A(x) = Ag +x1A1 + - - + x,A,, (with given A; € RP*9)

Equivalent SDP
minimize ¢
t1 A(x) ] . 0

subject to lA(x)T /1

e variablesx e R", r € R
e constraint follows from
A, <t = ATA<?I, >0

tl A - 0
Al 1 |~

Convex optimization problems
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Quasiconvex optimization

minimize  fy(x)
subjectto  fi(x) <0, i=1,...,m
Ax=0>b

e fois quasiconvex

e fi,..., fm are convex

can have locally optimal points that are not (globally) optimal

(x, fo(x))

Convex optimization problems 4.36



Linear-fractional program

minimize  fy(x)
subjectto Gx < h
Ax =b

where

T
fo(x) = ch+d’ dom fo = {x | elx+ f > 0}
elx+ f

e a quasiconvex optimization problem

¢ also equivalent to the LP (variables vy, z)

minimize ¢!y +dz
subjectto Gy < hz
Ay = bz
ely+fz=1
220
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Exercise

assume the linear-fractional program (1) is feasible

e show how to obtain the solution of (1) from the solution of the LP (2)

e what do solutions (y, z) of (2) with z = 0 mean for (1)?

Solution: denote the optimal values of (1) and (2) by pﬁcp and pﬁ), respectively

1. for every feasible x in (1), there is a corresponding feasible (y, z) in (2):

cIx+d
elx+ f

X 1

T
= , = , C +d:
Y elx+ f elx+ f Y

2. for every feasible (y, z) in (2) with z > 0, there is a feasible x in (1):

T T
c'x+d C +d
Y Z—cTy+d

Y
X ==, xX) = —
Z Jo) elx+f ely+fz
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3. suppose (y, z) is feasible for (2) with z = 0:
Gy <0, Ay =0, eTy:I
let X be a feasible point for (1):
Gi<h, Af=b, e2+f>0
all points on the half-line {x + ay | @ > 0} are feasible for (1),
GE+ay)<h, AR+ay)=b, e F+ay+f)>0,
and the cost function at £ + @y tends to ¢! y as @ — oo

c2+d+acly T
T/\ > C y
elX+f+a

fo(X+ay) =

e 1 shows that p{}p > pf; and 2, 3 show that pf]‘? > pfjfp; therefore pﬁj = pﬁp
e if (y,z) is an optimal solution of (2) and z > 0, then x = y/z is optimal for (1)

e (y,0) of (2) indicates the optimal value of (1) is finite but not attained
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Generalized linear-fractional program

T
c: X +d;
fo(x) = max T—l dom fy(x) = {x | el-Tx+f,- >0,i=1,...,r}
i=1,...r el.x+fi

o~

e a quasiconvex optimization problem

e LP reformulation of page 4.37 does not extend to generalized problem

Example: Von Neumann model of a growing economy

maximize (over x, x*)  min x;/x;

subject to xt >0, Bx"<Ax

e x,x* € R"™: activity levels of n sectors, in current and next period
e (Ax);: amount of good i produced in current period
e (Bx*);: amount consumed in next period, cannot exceed (Ax);

e x/x;: growth rate of sector i

allocate activity to maximize growth rate of slowest growing sector
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Convex representation of sublevel sets of f

if fo is quasiconvex, there exists a family of functions ¢; such that:

e ¢;(x) is convex in x for fixed ¢

e t-sublevel set of fj is O-sublevel set of ¢, i.e.,

fox) <t < ¢i(x)<0

Example
p(x)

q(x)

with p convex, g concave, and p(x) > 0, g(x) > 0 on dom fj

Jo(x) =

can take ¢;(x) = p(x) —tg(x):

e fortr > 0, ¢; convex in x

e p(x)/q(x) <tifandonly if ¢;(x) <0

Convex optimization problems
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Quasiconvex optimization via convex feasibility problems

d:(x) <0, fi(x) <0, i=1,...,m, Ax=b (3)

e for fixed ¢, a convex feasibility problem in x

e if feasible, we can conclude that r > p*; if infeasible, t < p*

Bisection method

given: [ < p*, u > p*, tolerance € > 0
repeat
1.t:=+u)/2
2. solve the convex feasibility problem (3)
3. if (3) is feasible, u :=t¢
elsel =t
untilu — [ < €

requires exactly [logz (”T‘lﬂ iterations

Convex optimization problems 4.42



Vector optimization

General vector optimization problem
minimize (w.r.t. K) fo(x)
subject to fix) <0, i=1,...,m
hi(x) =0, i=1,...,p

vector objective fj : R” — R%, minimized with respect to proper cone K € R4

Convex vector optimization problem

minimize (w.r.t. K) fo(x)

subject to filx) <0, i=1,...,m
Ax=0>b
where fi, ..., f; are convex and fy is “K-convex”, i.e.,

Jo(6x + (1 = 0)y) <k 0fo(x) + (1 -6)fo(y)

forall x,y € dom fy and 8 € |0, 1]

Convex optimization problems
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Multicriterion optimization

vector optimization problem with K = R?
Jo(x) = (F1(x), ..., Fg(x))

e ¢ different objectives F;; roughly speaking we want all F;’s to be small

o feasible x* is optimal if

yfeasible = fy(x*) < fo(y)

if there exists an optimal point, the objectives are noncompeting

o feasible xP° is Pareto optimal if

y feasible, fo(y) < fo(x*) = fo(xP°) = fio(y)

if Pareto optimal values are not unique, there is a trade-off between objectives

e fois K-convex if Fi, ..., I, are convex (in the usual sense)
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Optimal and Pareto optimal points

set of achievable objective values
O = {fo(x) | x feasible}

e feasible x is optimal if f(x) is the minimum value of O

e feasible x is Pareto optimal if f(x) is a minimal value of O

So(xP°)

fo(x™)

x* is optimal xP° is Pareto optimal
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Regularized least-squares

minimize (w.r.t. R3)  ([lAx - b|13, [Ix||3)

Fr(x) = |1x[13

0 10 20 30 40 50

Fi(x) = ||Ax = blI3

example for A € R!199%19: heavy line is formed by Pareto optimal points
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Risk—return trade-off in portfolio optimization

minimize (w.r.t. R2) (=pTx, xTZx)
subject to 17x=1, x>0

e x € R" is investment portfolio; x; is fraction invested in asset i
e returnis r = p’x where p € R”" is vector of relative asset price changes
e p is modeled as a random variable with mean p, covariance X

e plx = Er is expected return; x! Zx = varr is return variance (risk)

Example
15% — ‘ ‘ |
x(4)/ x(3) x(2)
E =
3 10% 8
o —
st o] 0.5+
§ ;Cg x(1)
E 5% (]
O,
0% — ‘ : : : :
0% 10% 20% 0% 10% 20%
standard deviation of return standard deviation of return
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Scalarization
to find Pareto optimal points: choose A >+ 0 and solve scalar problem

minimize A’ fy(x)
subjectto  fi;(x) <0, i=1,...,m
hi(x) =0, i=1,...,p

e solutions x of scalar problem are Pareto-optimal for vector optimization problem

x not Pareto-optimal

U
Jfeasible y : fo(y) <k fo(x), fo(y) # fo(x)

U
AL fo(y) < A" fo(x) for A >k, O

e partial converse for convex vector optimization problems (see later in duality):
can find (almost) all Pareto optimal points by varying 4 >k 0

e objective of scalar problem is convex if fyis K-convex
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Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

A fo(x) = 4F1(x) + - + A, Fy (x)

e regularized least squares problem of page 4.46

20

take 4 = (1,y) withy > 0 15/
minimize  [|Ax — b||5 + y|Ix||3

for fixed v, a LS problem

15
IAx = blI3

e risk—return trade-off of page 4.47: with y > 0,
minimize —plx + yx! Zx
subjectto 1'x=1, x>0

Convex optimization problems
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