4. Convex optimization problems

- standard form (convex) optimization problem
- linear optimization
- quadratic optimization
- geometric programming
- semidefinite optimization
- quasiconvex optimization
- vector and multicriterion optimization

Optimization problem in standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- $x \in \mathbf{R}^n$ is the optimization variable
- $f_0 : \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- $f_i : \mathbf{R}^n \to \mathbf{R}$, for i = 1, ..., m, are the inequality constraint functions
- $h_i : \mathbf{R}^n \to \mathbf{R}$, for i = 1, ..., p, are the equality constraint functions

Feasible and optimal points

Feasible point: *x* is *feasible* if $x \in \text{dom } f_0$ and it satisfies all constraints **Optimal value**

 $p^{\star} = \inf \{ f_0(x) \mid f_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p \}$

- $p^* = \infty$ if the problem is infeasible (set of feasible *x* is empty)
- $p^{\star} = -\infty$ if the problem is unbounded below

Optimal solution

- a feasible x is optimal if $f_0(x) = p^*$
- the set of optimal points will be denoted by X_{opt}
- \hat{x} is *locally optimal* if there is an R > 0 such that \hat{x} is optimal for the problem

$$\begin{array}{ll} \text{minimize (over } x) & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \\ & \|x-\hat{x}\|_2 \leq R \end{array}$$

Examples (n = 1, m = p = 0**)**

Implicit constraints

the standard form optimization problem has an *implicit constraint*

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

- we call ${\mathcal D}$ the domain of the problem
- the constraints $f_i(x) \le 0$, $h_i(x) = 0$ are the *explicit constraints*
- a problem is *unconstrained* if it has no explicit constraints (m = p = 0)
- the distinction will be important when we diccuss duality

Example

minimize
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

this is an unconstrained problem with implicit constraints $a_i^T x < b_i$

Feasibility problem

find
$$x$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

can be considered a special case of the general problem with $f_0(x) = 0$:

$$\begin{array}{ll} \text{minimize} & 0\\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m\\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

- $p^* = 0$ if constraints are feasible; any feasible x is optimal
- $p^{\star} = \infty$ if constraints are infeasible

this formulation is not meant as a practical method for solving feasibility problems

Convex optimization problem in standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $a_i^T x = b_i$, $i = 1, ..., p$

- objective and inequality constraint functions f_0, f_1, \ldots, f_m are convex
- equality constraints are linear, often written as Ax = b
- feasible set is convex: the intersection of several convex sets

dom f_0 , sublevel sets $\{x \mid f_i(x) \le 0\}$, the affine set $\{x \mid Ax = b\}$

• optimal set is convex: any convex combination of optimal x_1, x_2 is feasible, with

$$f_0(\theta x_1 + (1 - \theta)x_2) \leq \theta f_0(x_1) + (1 - \theta)f(x_2)$$
$$= p^*$$

hence, $f_0(\theta x_1 + (1 - \theta)x_2) = p^*$, so the convex combination is optimal

Example

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $f_1(x) = x_1/(1 + x_2^2) \le 0$
 $h_1(x) = (x_1 + x_2)^2 = 0$

- f_0 is convex
- feasible set $\{(x_1, x_2) \mid x_1 = -x_2 \le 0\}$ is convex
- not a convex problem (according to our definition): f_1 not convex, h_1 not affine
- the problem is equivalent (but not identical) to the convex problem

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 + x_2 = 0$

Local and global optima

any locally optimal point of a convex problem is (globally) optimal

• suppose x is locally optimal: there is an R > 0 such that

z feasible, $||z - x||_2 \le R \implies f_0(z) \ge f_0(x)$

- suppose x is not globally optimal: there exists a feasible y with $f_0(y) < f_0(x)$
- convex combinations of *x* and *y* are feasible
- cost function at convex combination of x and y with $0 < \theta \le 1$ satisfies

$$f_0((1-\theta)x + \theta y) \leq (1-\theta)f_0(x) + \theta f_0(y)$$

$$< (1-\theta)f_0(x) + \theta f_0(x)$$

$$= f_0(x)$$

• for $0 < \theta \le R/||y - x||_2$ this contradicts the assumption of local optimality of x

Optimality criterion for differentiable f_0

x is optimal if and only if it is feasible and

 $\nabla f_0(x)^T(y-x) \ge 0$ for all feasible y

if nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x

Proof (necessity)

- consider feasible $y \neq x$ and define line segment $I = \{x + t(y x) \mid 0 \le t \le 1\}$
- by convexity of *X*, points in *I* are feasible
- let $g(t) = f_0(x + t(y x))$ be the restriction of f_0 to I
- derivative at *t* is $g'(t) = \nabla f_0(x + t(y x))^T(y x)$, so

$$g'(0) = \nabla f_0(x)^T (y - x)$$

• if $g'(0) = \nabla f_0(x)^T (x - y) < 0$, the point x is not even locally optimal

Proof (sufficiency)

if y is feasible and $\nabla f_0(x)^T(y-x) \ge 0$, then, by convexity of f_0 ,

$$f_0(y) \ge f_0(x) + \nabla f_0(x)^T (y - x)$$
$$\ge f_0(x)$$

Examples

Unconstrained problem: *x* is optimal if and only if

 $x \in \operatorname{dom} f_0, \qquad \nabla f_0(x) = 0$

(recall our assumption that dom f_0 is an open set if f_0 is differentiable)

Minimization over nonnegative orthant

 $\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & x \ge 0 \end{array}$

x is optimal if and only if

$$x \in \operatorname{dom} f_0, \qquad x \ge 0, \qquad \left\{ \begin{array}{ll} \nabla f_0(x)_i \ge 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{array} \right.$$

Equality constrained problem

minimize $f_0(x)$ subject to Ax = b

x is optimal if and only if there exists a v such that

$$x \in \operatorname{dom} f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^T v = 0$$

- first two conditions are feasibility of *x*
- gradient $\nabla f_0(x)$ can be decomposed as $\nabla f_0(x) + A^T v = w$ with Aw = 0
- if w = 0, the optimality condition on page 4.10 holds:

$$\nabla f_0(x)^T(y-x) = -v^T A(y-x) = 0$$
 for all y with $Ay = b$

• if $w \neq 0$, condition on p. 4.10 does not hold: y = x - tw is feasible for small t > 0,

$$\nabla f_0(x)^T (y - x) = -t(w - A^T v)^T w = -t ||w||_2^2 < 0$$

Linear program (LP)

minimize
$$c^T x + d$$

subject to $Gx \le h$
 $Ax = b$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Examples

Diet problem: choose quantities x_1, \ldots, x_n of *n* foods

- one unit of food *j* costs c_j , contains amount a_{ij} of nutrient *i*
- healthy diet requires nutrient i in quantity at least b_i

to find cheapest healthy diet,

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \geq b, \quad x \geq 0 \end{array}$

Piecewise-linear minimization

minimize
$$\max_{i=1,...,m} (a_i^T x + b_i)$$

equivalent to an LP

minimize
$$t$$

subject to $a_i^T x + b_i \le t$, $i = 1, ..., m$

Chebyshev center of a polyhedron

Chebyshev center of

$$\mathcal{P} = \{x \mid a_i^T x \le b_i, i = 1, \dots, m\}$$

is center of largest inscribed ball

 $\mathcal{B} = \{x_{c} + u \mid ||u||_{2} \le r\}$

•
$$a_i^T x \leq b_i$$
 for all $x \in \mathcal{B}$ if and only if

$$\sup\{a_i^T(x_c + u) \mid ||u||_2 \le r\} = a_i^T x_c + r ||a_i||_2 \le b_i$$

• hence, x_c , r can be determined by solving the LP

maximize
$$r$$

subject to $a_i^T x_c + r ||a_i||_2 \le b_i$, $i = 1, ..., m$

Quadratic program (QP)

minimize $\frac{1}{2}x^T P x + q^T x + r$ subject to $Gx \le h$ Ax = b

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Examples

Least squares

minimize $||Ax - b||_2^2$

- analytical solution $x^* = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- can add linear constraints, *e.g.*, $l \leq x \leq u$

Linear program with random cost

minimize
$$\overline{c}^T x + \gamma x^T \Sigma x = \mathbf{E} c^T x + \gamma \operatorname{var}(c^T x)$$

subject to $Gx \leq h$
 $Ax = b$

- c is random vector with mean \bar{c} and covariance Σ
- hence, $c^T x$ is random variable with mean $\bar{c}^T x$ and variance $x^T \Sigma x$
- $\gamma > 0$ is risk aversion parameter
- γ controls trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

minimize
$$\frac{1}{2}x^T P_0 x + q_0^T x + r_0$$

subject to $\frac{1}{2}x^T P_i x + q_i^T x + r_i \le 0$, $i = 1, \dots, m$
 $Ax = b$

- $P_i \in \mathbf{S}_+^n$; objective and constraints are convex quadratic
- if $P_1, \ldots, P_m \in \mathbf{S}_{++}^n$, feasible set is intersection of *m* ellipsoids and an affine set

Second-order cone programming

minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i$, $i = 1, ..., m$
 $Fx = g$

 $(A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n})$

• inequalities are called second-order cone (SOC) constraints:

 $(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbf{R}^{n_i+1}$

- for $n_i = 0$, reduces to an LP; if $c_i = 0$, reduces to a QCQP
- more general than QCQP and LP

Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$, $i = 1, \dots, m$

there can be uncertainty in c, a_i , b_i

two common approaches to handling uncertainty (in a_i , for simplicity)

• deterministic model: constraints must hold for all $a_i \in \mathcal{E}_i$

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$ for all $a_i \in \mathcal{E}_i$, $i = 1, ..., m$,

• stochastic model: a_i is random variable; constraints must hold with probability η

minimize
$$c^T x$$

subject to $\operatorname{prob}(a_i^T x \le b_i) \ge \eta, \quad i = 1, \dots, m$

Deterministic approach via SOCP

choose an ellipsoid as \mathcal{E}_i :

$$\mathcal{E}_i = \{ \bar{a}_i + P_i u \mid ||u||_2 \le 1 \} \qquad (\bar{a}_i \in \mathbf{R}^n, \ P_i \in \mathbf{R}^{n \times n})$$

center is \bar{a}_i , semi-axes determined by singular values/vectors of P_i

SOCP formulation

minimize
$$c^T x$$

subject to $a_i^T x \le b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$

this is equivalent to the SOCP

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \|P_i^T x\|_2 \le b_i$, $i = 1, ..., m$

(follows from
$$\sup_{\|u\|_2 \le 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T x + \|P_i^T x\|_2$$
)

Convex optimization problems

Stochastic approach via SOCP

- assume $a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i)$): Gaussian with mean \bar{a}_i , covariance Σ_i
- $a_i^T x$ is Gaussian random variable with mean $\bar{a}_i^T x$, variance $x^T \Sigma_i x$
- if we denote the CDF of $\mathcal{N}(0,1)$ by $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$,

$$\operatorname{prob}(a_i^T x \le b_i) = \Phi\left(\frac{b_i - \bar{a}_i^T x}{\|\Sigma_i^{1/2} x\|_2}\right)$$

SOCP formulation of robust LP

minimize
$$c^T x$$

subject to $\mathbf{prob}(a_i^T x \le b_i) \ge \eta, \quad i = 1, \dots, m$

for $\eta \ge 1/2$, this is equivalent to the SOCP

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \le b_i, \quad i = 1, \dots, m$

Example

$$\mathbf{prob}(a_i^T x \le b_i) \ge \eta, \quad i = 1, \dots, 5$$

feasible set for three values of η

Geometric programming

Monomial function

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}, \quad \text{dom } f = \mathbf{R}_{++}^n$$

with c > 0; exponent a_i can be any real number

Posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \text{dom } f = \mathbf{R}_{++}^n$$

Geometric program (GP)

minimize
$$f_0(x)$$

subject to $f_i(x) \le 1$, $i = 1, ..., m$
 $h_i(x) = 1$, $i = 1, ..., p$

with f_i posynomial, h_i monomial

Convex optimization problems

Geometric program in convex form

change variables to $y_i = \log x_i$, and take logarithm of cost, constraints

• monomial $f(x) = cx_1^{a_1} \cdots x_n^{a_n}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = a^T y + b \qquad (b = \log c)$$

• posynomial $f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = \log(\sum_{k=1}^K e^{a_k^T y + b_k})$$
 (with $b_k = \log c_k$)

• geometric program transforms to convex problem

minimize
$$\log(\sum_{k=1}^{K} \exp(a_{0k}^{T}y + b_{0k}))$$

subject to $\log(\sum_{k=1}^{K} \exp(a_{ik}^{T}y + b_{ik})) \le 0, \quad i = 1, ..., m$
 $Gy + d = 0$

Design of cantilever beam

- N segments with unit lengths, rectangular cross-sections of size $w_i \times h_i$
- given vertical force *F* applied at the right end

Design problem

minimize total weight subject to upper & lower bounds on w_i , h_i upper bound & lower bounds on aspect ratios h_i/w_i upper bound on stress in each segment upper bound on vertical deflection at the end of the beam

variables: w_i , h_i for $i = 1, \ldots, N$

Objective and constraint functions

- total weight $w_1h_1 + \cdots + w_Nh_N$ is posynomial
- aspect ratio h_i/w_i and inverse aspect ratio w_i/h_i are monomials
- maximum stress in segment *i* is given by $6iF/(w_ih_i^2)$, a monomial
- vertical deflection y_i and slope v_i of central axis at the right end of segment *i*:

$$v_{i} = 12(i - 1/2)\frac{F}{Ew_{i}h_{i}^{3}} + v_{i+1}$$
$$y_{i} = 6(i - 1/3)\frac{F}{Ew_{i}h_{i}^{3}} + v_{i+1} + y_{i+1}$$

for i = N, N - 1, ..., 1, with $v_{N+1} = y_{N+1} = 0$ (*E* is Young's modulus) v_i and y_i are posynomial functions of w, h

Formulation as a GP

minimize
$$w_1h_1 + \dots + w_Nh_N$$

subject to $w_{\max}^{-1}w_i \le 1$, $w_{\min}w_i^{-1} \le 1$, $i = 1, \dots, N$
 $h_{\max}^{-1}h_i \le 1$, $h_{\min}h_i^{-1} \le 1$, $i = 1, \dots, N$
 $S_{\max}^{-1}w_i^{-1}h_i \le 1$, $S_{\min}w_ih_i^{-1} \le 1$, $i = 1, \dots, N$
 $6iF\sigma_{\max}^{-1}w_i^{-1}h_i^{-2} \le 1$, $i = 1, \dots, N$
 $y_{\max}^{-1}y_1 \le 1$

note

• we write $w_{\min} \le w_i \le w_{\max}$ and $h_{\min} \le h_i \le h_{\max}$

 $w_{\min}/w_i \le 1$, $w_i/w_{\max} \le 1$, $h_{\min}/h_i \le 1$, $h_i/h_{\max} \le 1$

• we write $S_{\min} \leq h_i/w_i \leq S_{\max}$ as

$$S_{\min}w_i/h_i \le 1, \qquad h_i/(w_iS_{\max}) \le 1$$

Minimizing spectral radius of nonnegative matrix

Perron–Frobenius eigenvalue $\lambda_{pf}(A)$

- exists for (elementwise) positive $A \in \mathbf{R}^{n \times n}$
- a real, positive eigenvalue of A, equal to spectral radius $\max_i |\lambda_i(A)|$
- determines asymptotic growth (decay) rate of A^k : $A^k \sim \lambda_{pf}^k$ as $k \to \infty$
- alternative characterization: $\lambda_{pf}(A) = \inf\{\lambda \mid Av \leq \lambda v \text{ for some } v > 0\}$

Minimizing spectral radius of matrix of posynomials

- minimize $\lambda_{pf}(A(x))$, where the elements $A(x)_{ij}$ are posynomials of x
- equivalent geometric program:

minimize
$$\lambda$$

subject to $\sum_{j=1}^{n} A(x)_{ij} v_j / (\lambda v_i) \le 1, \quad i = 1, \dots, n$

variables λ , v, x

Conic linear optimization

minimize
$$c^T x$$

subject to $Fx + g \leq_K 0$
 $Ax = b$

- *K* is a proper convex cone in \mathbf{R}^m
- *F* is an $m \times n$ matrix, *g* is a *m*-vector
- constraint means $-(Fx + g) \in K$
- linear programming is special case with $K = \mathbf{R}^m_+$
- same properties as standard convex problem (local optimum is global, etc.)

Semidefinite program (SDP)

minimize
$$c^T x$$

subject to $x_1F_1 + x_2F_2 + \dots + x_nF_n + G \le 0$
 $Ax = b$

with F_i , $G \in \mathbf{S}^k$

- inequality constraint is called *linear matrix inequality* (LMI)
- includes problems with multiple LMI constraints: for example,

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \le 0, \qquad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \le 0$$

is equivalent to single LMI

$$x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \le 0$$

LP and SOCP as SDP

LP and equivalent SDP

LP: minimize $c^T x$ SDP: minimize $c^T x$ subject to $Ax \le b$ SDP: minimize $c^T x$ subject to $diag(Ax - b) \le 0$

(note different interpretation of generalized inequality \leq)

SOCP and equivalent SDP

SOCP: minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i$, $i = 1, ..., m$
SDP: minimize $f^T x$
subject to $\begin{bmatrix} (c_i^T x + d_i)I & A_i x + b_i \\ (A_i x + b_i)^T & c_i^T x + d_i \end{bmatrix} \ge 0$, $i = 1, ..., m$

Eigenvalue minimization

minimize $\lambda_{\max}(A(x))$

where $A(x) = A_0 + x_1A_1 + \cdots + x_nA_n$ (with given $A_i \in \mathbf{S}^k$)

Equivalent SDP

 $\begin{array}{ll} \text{minimize} & t\\ \text{subject to} & A(x) \leq tI \end{array}$

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- equivalence follows from

$$\lambda_{\max}(A) \le t \quad \Longleftrightarrow \quad A \le tI$$

Matrix norm minimization

minimize
$$||A(x)||_2 = (\lambda_{\max}(A(x)^T A(x)))^{1/2}$$

where $A(x) = A_0 + x_1A_1 + \cdots + x_nA_n$ (with given $A_i \in \mathbf{R}^{p \times q}$)

Equivalent SDP

minimize
$$t$$

subject to $\begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \ge 0$

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- constraint follows from

$$\|A\|_{2} \leq t \iff A^{T}A \leq t^{2}I, \quad t \geq 0$$
$$\longleftrightarrow \begin{bmatrix} tI & A\\ A^{T} & tI \end{bmatrix} \geq 0$$

Quasiconvex optimization

minimize $f_0(x)$ subject to $f_i(x) \le 0$, i = 1, ..., mAx = b

- f_0 is quasiconvex
- f_1, \ldots, f_m are convex

can have locally optimal points that are not (globally) optimal

 $(x, f_0(x))$

Linear-fractional program

minimize
$$f_0(x)$$

subject to $Gx \le h$ (1)
 $Ax = b$

where

$$f_0(x) = \frac{c^T x + d}{e^T x + f}, \quad \text{dom } f_0 = \{x \mid e^T x + f > 0\}$$

- a quasiconvex optimization problem
- also equivalent to the LP (variables y, z)

minimize
$$c^T y + dz$$

subject to $Gy \le hz$
 $Ay = bz$
 $e^T y + fz = 1$
 $z \ge 0$

(2)

Exercise

assume the linear-fractional program (1) is feasible

- show how to obtain the solution of (1) from the solution of the LP (2)
- what do solutions (y, z) of (2) with z = 0 mean for (1)?

Solution: denote the optimal values of (1) and (2) by $p_{\rm lfp}^{\star}$ and $p_{\rm lp}^{\star}$, respectively

1. for every feasible x in (1), there is a corresponding feasible (y, z) in (2):

$$y = \frac{x}{e^T x + f},$$
 $z = \frac{1}{e^T x + f},$ $c^T y + d = \frac{c^T x + d}{e^T x + f}$

2. for every feasible (y, z) in (2) with z > 0, there is a feasible x in (1):

$$x = \frac{y}{z},$$
 $f_0(x) = \frac{c^T x + d}{e^T x + f} = \frac{c^T y + dz}{e^T y + fz} = c^T y + d$

3. suppose (y, z) is feasible for (2) with z = 0:

$$Gy \le 0, \qquad Ay = 0, \qquad e^T y = 1$$

let \hat{x} be a feasible point for (1):

$$G\hat{x} \le h, \qquad A\hat{x} = b, \qquad e^T\hat{x} + f > 0$$

all points on the half-line $\{\hat{x} + \alpha y \mid \alpha \ge 0\}$ are feasible for (1),

$$G(\hat{x} + \alpha y) \le h,$$
 $A(\hat{x} + \alpha y) = b,$ $e^T(\hat{x} + \alpha y + f) > 0,$

and the cost function at $\hat{x} + \alpha y$ tends to $c^T y$ as $\alpha \to \infty$:

$$f_0(\hat{x} + \alpha y) = \frac{c^T \hat{x} + d + \alpha c^T y}{e^T \hat{x} + f + \alpha} \longrightarrow c^T y$$

- 1 shows that $p_{lfp}^{\star} \ge p_{lp}^{\star}$ and 2, 3 show that $p_{lp}^{\star} \ge p_{lfp}^{\star}$; therefore $p_{lp}^{\star} = p_{lfp}^{\star}$
- if (y, z) is an optimal solution of (2) and z > 0, then x = y/z is optimal for (1)
- (y, 0) of (2) indicates the optimal value of (1) is finite but not attained

Generalized linear-fractional program

$$f_0(x) = \max_{i=1,\dots,r} \frac{c_i^T x + d_i}{e_i^T x + f_i}, \qquad \text{dom } f_0(x) = \{x \mid e_i^T x + f_i > 0, \ i = 1,\dots,r\}$$

- a quasiconvex optimization problem
- LP reformulation of page 4.37 does not extend to generalized problem

Example: Von Neumann model of a growing economy

maximize (over
$$x, x^+$$
) $\min_{i=1,...,n} x_i^+ / x_i$
subject to $x^+ \ge 0, \quad Bx^+ \le Ax$

- $x, x^+ \in \mathbf{R}^n$: activity levels of *n* sectors, in current and next period
- $(Ax)_i$: amount of good *i* produced in current period
- $(Bx^+)_i$: amount consumed in next period, cannot exceed $(Ax)_i$
- x_i^+/x_i : growth rate of sector *i*

allocate activity to maximize growth rate of slowest growing sector

Convex representation of sublevel sets of f_0

if f_0 is quasiconvex, there exists a family of functions ϕ_t such that:

- $\phi_t(x)$ is convex in *x* for fixed *t*
- *t*-sublevel set of f_0 is 0-sublevel set of ϕ_t , *i.e.*,

$$f_0(x) \le t \quad \Longleftrightarrow \quad \phi_t(x) \le 0$$

Example

$$f_0(x) = \frac{p(x)}{q(x)}$$

with *p* convex, *q* concave, and $p(x) \ge 0$, q(x) > 0 on dom f_0

can take $\phi_t(x) = p(x) - tq(x)$:

- for $t \ge 0$, ϕ_t convex in x
- $p(x)/q(x) \le t$ if and only if $\phi_t(x) \le 0$

Quasiconvex optimization via convex feasibility problems

$$\phi_t(x) \le 0, \qquad f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b$$
 (3)

- for fixed *t*, a convex feasibility problem in *x*
- if feasible, we can conclude that $t \ge p^*$; if infeasible, $t \le p^*$

Bisection method

```
given: l \le p^*, u \ge p^*, tolerance \epsilon > 0
repeat
1. t := (l + u)/2
2. solve the convex feasibility problem (3)
3. if (3) is feasible, u := t
else l := t
until u - l \le \epsilon
```

requires exactly $\left\lceil \log_2\left(\frac{u-l}{\epsilon}\right) \right\rceil$ iterations

Vector optimization

General vector optimization problem

$$\begin{array}{ll} \text{minimize (w.r.t. } K) & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

vector objective $f_0 : \mathbf{R}^n \to \mathbf{R}^q$, minimized with respect to proper cone $K \in \mathbf{R}^q$

Convex vector optimization problem

minimize (w.r.t. *K*)
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, ..., m$
 $Ax = b$

where f_1, \ldots, f_m are convex and f_0 is "*K*-convex", *i.e.*,

$$f_0(\theta x + (1 - \theta)y) \leq_K \theta f_0(x) + (1 - \theta)f_0(y)$$

for all $x, y \in \text{dom } f_0$ and $\theta \in [0, 1]$

Convex optimization problems

Multicriterion optimization

vector optimization problem with $K = \mathbf{R}_{+}^{q}$

$$f_0(x) = (F_1(x), \dots, F_q(x))$$

- q different objectives F_i ; roughly speaking we want all F_i 's to be small
- feasible x^* is optimal if

y feasible
$$\implies f_0(x^{\star}) \leq f_0(y)$$

if there exists an optimal point, the objectives are noncompeting

• feasible x^{po} is *Pareto optimal* if

y feasible,
$$f_0(y) \le f_0(x^{\text{po}}) \implies f_0(x^{\text{po}}) = f_0(y)$$

if Pareto optimal values are not unique, there is a trade-off between objectives

• f_0 is *K*-convex if F_1, \ldots, F_q are convex (in the usual sense)

Optimal and Pareto optimal points

set of achievable objective values

 $O = \{f_0(x) \mid x \text{ feasible}\}$

- feasible x is **optimal** if $f_0(x)$ is the minimum value of O
- feasible x is **Pareto optimal** if $f_0(x)$ is a minimal value of O

Regularized least-squares

minimize (w.r.t.
$$\mathbf{R}_{+}^{2}$$
) ($||Ax - b||_{2}^{2}$, $||x||_{2}^{2}$)

example for $A \in \mathbf{R}^{100 \times 10}$; heavy line is formed by Pareto optimal points

Risk-return trade-off in portfolio optimization

minimize (w.r.t.
$$\mathbf{R}^2_+$$
) $(-\bar{p}^T x, x^T \Sigma x)$
subject to $\mathbf{1}^T x = 1, x \ge 0$

- $x \in \mathbf{R}^n$ is investment portfolio; x_i is fraction invested in asset *i*
- return is $r = p^T x$ where $p \in \mathbf{R}^n$ is vector of relative asset price changes
- p is modeled as a random variable with mean \bar{p} , covariance Σ
- $\bar{p}^T x = \mathbf{E} r$ is expected return; $x^T \Sigma x = \mathbf{var} r$ is return variance (risk)

Example

Scalarization

to find Pareto optimal points: choose $\lambda >_{K^*} 0$ and solve scalar problem

$$\begin{array}{ll} \text{minimize} & \lambda^T f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

• solutions x of scalar problem are Pareto-optimal for vector optimization problem

 $\langle \cdot \rangle$

- partial converse for convex vector optimization problems (see later in duality): can find (almost) all Pareto optimal points by varying $\lambda >_{K^*} 0$
- objective of scalar problem is convex if f_0 is *K*-convex

Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

$$\lambda^T f_0(x) = \lambda_1 F_1(x) + \dots + \lambda_q F_q(x)$$

• regularized least squares problem of page 4.46

• risk-return trade-off of page 4.47: with $\gamma > 0$,

minimize
$$-\bar{p}^T x + \gamma x^T \Sigma x$$

subject to $\mathbf{1}^T x = 1, \quad x \ge 0$